

16

R8C/3JT Group

User's Manual: Hardware

RENESAS MCU R8C Family / R8C/3x Series

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics www.renesas.com

Rev.1.00 Apr 2011

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual.

The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the R8C/3JT Group. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web site.

Document Type	Description	Document Title	Document No.
Datasheet	Hardware overview and electrical characteristics	R8C/3JT Group Datasheet	REJ03B0320
User's Manual: Hardware	Hardware specifications (pin assignments, memory maps, peripheral function specifications, electrical characteristics, timing charts) and operation description Note: Refer to the application notes for details on using peripheral functions.	R8C/3JT Group User's Manual: Hardware	This User's Manual
User's Manual: Software	Description of CPU instruction set	R8C/Tiny Series User's Manual: Software	REJ09B0001
Application note	Information on using peripheral functions and application examples Sample programs Information on writing programs in assembly language and C	Available from Renes Web site.	as Electronics
Renesas technical update	Product specifications, updates on documents, etc.		

2. Notation of Numbers and Symbols

The notation conventions for register names, bit names, numbers, and symbols used in this manual are described below.

(1)	Registers, bits	es, Bit Names, and Pin Names , and pins are referred to in the text by symbols. The symbol is accompanied by the word "register," ' to distinguish the three categories. the PM03 bit in the PM0 register
	Examples	P3_5 pin, VCC pin
(2)	values of sing	umbers n "b" is appended to numeric values given in binary format. However, nothing is appended to the le bits. The indication "h" is appended to numeric values given in hexadecimal format. Nothing is umeric values given in decimal format. Binary: 11b Hexadecimal: EFA0h Decimal: 1234

3. Register Notation

The symbols and terms used in register diagrams are described below.

x.x.x	хх	(X F	Register (S	Symbol)						
Address XXXXh										
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sym	nbol	XXX	7 XXX6	XXX5	XXX4			XXX1	XXX0	*1
After Re	eset	0	0	0	0	0	0	0	0]
Bit	Symb	loc		Bit Name				Functio	n	R/W
b0	XXX	0	XXX bit			b1 b0				RW
b1	XXX	(1				0 0: XX 0 1: XX				(R/W)
						-	not set.			
						1 1: XX				
b2	_		Nothing is as	signed. If ne	cessary, se	t to 0. Wh	en read, th	e content is	s undefined.	
b3	—		Reserved bit	-	-	Set to 0).			R/W
b4	XXX	(4	XXX bit			Functio	on varies a	ccording to	the operating m	node. R/W
b5	XXX			\backslash			\backslash			W
b6	XXX							\backslash		R/W
b7	XXX	(7	XXX bit			0: XXX		\backslash		R
						1: XXX		\rightarrow		
					\mathbf{X}			\setminus		
					`*2			``	*3	
*1 R/W: Read and write. R: Read only. W: Write only. —: Nothing is assigned.										
*2 • Reserve		hit	Sat to specify	ad value						
ке	served	on.	Set to specifie	eu value.						
 *3 Nothing is assigned. Nothing is assigned to the bit. As the bit may be used for future functions, if necessary, set to 0. Do not set to a value. Operation is not guaranteed when a value is set. Function varies according to the operating mode. The function of the bit varies with the peripheral function mode. Refer to the register diagram for information on the individual modes. 										

4. List of Abbreviations and Acronyms

Abbreviation	Full Form
ACIA	Asynchronous Communication Interface Adapter
bps	bits per second
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
DMAC	Direct Memory Access Controller
GSM	Global System for Mobile Communications
Hi-Z	High Impedance
IEBus	Inter Equipment Bus
I/O	Input/Output
IrDA	Infrared Data Association
LSB	Least Significant Bit
MSB	Most Significant Bit
NC	Non-Connect
PLL	Phase Locked Loop
PWM	Pulse Width Modulation
SIM	Subscriber Identity Module
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator

All trademarks and registered trademarks are the property of their respective owners.

Table of Contents

SFR Page Reference B		
1. Ov	erview	1
1.1	Features	
1.1	Applications	
1.1.2	Specifications	
1.1.2	Product List	
1.2	Block Diagram	
1.4	Pin Assignment	
1.5	Pin Functions	
110		Ů
2. Ce	ntral Processing Unit (CPU)	
2.1	Data Registers (R0, R1, R2, and R3)	
2.2	Address Registers (A0 and A1)	
2.3	Frame Base Register (FB)	
2.4	Interrupt Table Register (INTB)	
2.5	Program Counter (PC)	
2.6	User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)	
2.7	Static Base Register (SB)	
2.8	Flag Register (FLG)	
2.8.1	Carry Flag (C)	
2.8.2	Debug Flag (D)	
2.8.3	Zero Flag (Z)	
2.8.4	Sign Flag (S)	
2.8.5	Register Bank Select Flag (B)	
2.8.6	Overflow Flag (O)	
2.8.7	Interrupt Enable Flag (I)	
2.8.8	Stack Pointer Select Flag (U)	
2.8.9	Processor Interrupt Priority Level (IPL)	
2.8.10	Reserved Bit	
3. Me	emory	
3.1	R8C/3JT Group	
		10
4. Sp	ecial Function Registers (SFRs)	
5. Re	sets	
5.1	Registers	
5.1.1	Processor Mode Register 0 (PM0)	
5.1.2	Reset Source Determination Register (RSTFR)	
5.1.3	Option Function Select Register (OFS)	
5.1.4	Option Function Select Register 2 (OFS2)	
5.2	Hardware Reset	
5.2.1	When Power Supply is Stable	
5.2.2	Power On	
5.3	Power-On Reset Function	
5.4	Voltage Monitor 0 Reset	
5.5	Watchdog Timer Reset	
5.6	Software Reset	

5.7	Cold Start-Up/Warm Start-Up Determination Function	
5.8	Reset Source Determination Function	
6. Vo	Itage Detection Circuit	37
6.1	Overview	
6.2	Registers	
6.2.1	Voltage Monitor Circuit Control Register (CMPA)	
6.2.2	Voltage Monitor Circuit Edge Select Register (VCAC)	
6.2.3	Voltage Detect Register 1 (VCA1)	
6.2.4	Voltage Detect Register 1 (VCA1)	
6.2.4	Voltage Detection 1 Level Select Register (VD1LS)	
6.2.6	Voltage Monitor 0 Circuit Control Register (VW0C)	
6.2.7	Voltage Monitor 1 Circuit Control Register (VW1C)	
6.2.8	Voltage Monitor 2 Circuit Control Register (VW2C)	
6.2.9	Option Function Select Register (OFS)	
6.3	VCC Input Voltage	
6.3.1	Monitoring Vdet0	
6.3.2	Monitoring Vdet0	
6.3.3	Monitoring Vdet1	
6.4	Voltage Monitor 0 Reset	
6.5	Voltage Monitor 1 Interrupt	
6.6	Voltage Monitor 2 Interrupt	
0.0	· • • • • • • • • • • • • • • • • • • •	
7. I/C) Ports	55
7.1	Functions of I/O Ports	55
7.2	Effect on Peripheral Functions	
7.3	Pins Other than I/O Ports	
7.4	Registers	
7.4.1	Port Pi Direction Register (PDi) (i = 0 to 4)	
7.4.2	Port Pi Register (Pi) (i = 0 to 4)	
7.4.3	Timer RA Pin Select Register (TRASR)	
7.4.4	Timer RB/RC Pin Select Register (TRBRCSR)	
7.4.5	Timer RC Pin Select Register 0 (TRCPSR0)	
7.4.6	Timer RC Pin Select Register 1 (TRCPSR1)	
7.4.7	UARTO Pin Select Register (U0SR)	
7.4.8	UART2 Pin Select Register 0 (U2SR0)	
7.4.9	UART2 Pin Select Register 1 (U2SR1)	
7.4.10	INT Interrupt Input Pin Select Register (INTSR)	
7.4.1	I/O Function Pin Select Register (PINSR)	
7.4.12	2 Low-Voltage Signal Mode Control Register (TSMR)	
7.4.13	B Pull-Up Control Register 0 (PUR0)	
7.4.14	Pull-Up Control Register 1 (PUR1)	
7.4.15		
7.4.10	5 Port P2 Drive Capacity Control Register (P2DRR)	
7.4.17	Drive Capacity Control Register 0 (DRR0)	
7.4.18		
7.4.19	9 Input Threshold Control Register 0 (VLT0)	
7.4.20	Input Threshold Control Register 1 (VLT1)	
7.5	Port Settings	

7.0	6	Low-Voltage Signal Mode	
7.	7	Unassigned Pin Handling	105
8.	Bus	5	106
9.	Clo	ck Generation Circuit	
9.		Overview	
9.		Registers	
	2 9.2.1	System Clock Control Register 0 (CM0)	
	9.2.1	System Clock Control Register 1 (CM1)	
	9.2.2	System Clock Control Register 3 (CM3)	
	9.2.4	Oscillation Stop Detection Register (OCD)	
	9.2.5	High-Speed On-Chip Oscillator Control Register 7 (FRA7)	
	9.2.6	High-Speed On-Chip Oscillator Control Register 0 (FRA0)	
	9.2.7	High-Speed On-Chip Oscillator Control Register 1 (FRA1)	
	9.2.8	High-Speed On-Chip Oscillator Control Register 2 (FRA2)	
	9.2.9	Clock Prescaler Reset Flag (CPSRF)	
	9.2.10	High-Speed On-Chip Oscillator Control Register 4 (FRA4)	
	9.2.11	High-Speed On-Chip Oscillator Control Register 5 (FRA5)	
	9.2.12	High-Speed On-Chip Oscillator Control Register 6 (FRA6)	
	9.2.13	High-Speed On-Chip Oscillator Control Register 3 (FRA3)	
	9.2.14	Voltage Detect Register 2 (VCA2)	
9.	3	XIN Clock	
9.4	4	On-Chip Oscillator Clock	
	9.4.1	Low-Speed On-Chip Oscillator Clock	
	9.4.2	High-Speed On-Chip Oscillator Clock	
9.:	5	CPU Clock and Peripheral Function Clock	
	9.5.1	System Clock	
	9.5.2	CPU Clock	121
	9.5.3	Peripheral Function Clock (f1, f2, f4, f8, and f32)	121
	9.5.4	f0C0	121
	9.5.5	fOCO40M	121
	9.5.6	fOCO-F	
	9.5.7	fOCO-S	122
	9.5.8	fOCO128	122
	9.5.9	fOCO-WDT	122
9.0	б	Power Control	123
	9.6.1	Standard Operating Mode	123
	9.6.2	Wait Mode	125
	9.6.3	Stop Mode	129
9.′	7	Oscillation Stop Detection Function	132
	9.7.1	How to Use Oscillation Stop Detection Function	
9.8	8	Notes on Clock Generation Circuit	
	9.8.1	Stop Mode	
	9.8.2	Wait Mode	136
	9.8.3	Oscillation Stop Detection Function	
	9.8.4	Oscillation Circuit Constants	

10.	Pro	tection	138
10.1	l	Register	
10	0.1.1	Protect Register (PRCR)	138
11.	Inte	rrupts	139
11.1	l	Overview	139
11	1.1.1	Types of Interrupts	139
11	1.1.2	Software Interrupts	140
11	1.1.3	Special Interrupts	141
11	1.1.4	Peripheral Function Interrupts	141
11	1.1.5	Interrupts and Interrupt Vectors	142
11.2	2	Registers	144
11	1.2.1	Interrupt Control Register (S2TIC, S2RIC, KUPIC, ADIC, S0TIC, S0RIC, TRAIC, TRBIC, U2BCNIC, SCUIC, V VCMP2IC)	
11	1.2.2	Interrupt Control Register (FMRDYIC, TRCIC)	
11	1.2.3	INTi Interrupt Control Register (INTiIC) (i = 0 to 3)	146
11.3	3	Interrupt Control	147
11	1.3.1	I Flag	147
11	1.3.2	IR Bit	147
11	1.3.3	Bits ILVL2 to ILVL0, IPL	147
11	1.3.4	Interrupt Sequence	148
11	1.3.5	Interrupt Response Time	149
11	1.3.6	IPL Change when Interrupt Request is Acknowledged	149
11	1.3.7	Saving Registers	150
11	1.3.8	Returning from Interrupt Routine	152
11	1.3.9	Interrupt Priority	152
11	1.3.10) Interrupt Priority Level Selection Circuit	153
11.4	ł	INT Interrupt	
11	1.4.1	$\overline{\text{INTi}}$ Interrupt (i = 0 to 3)	154
11	1.4.2	INT Interrupt Input Pin Select Register (INTSR)	154
11	1.4.3	Low-Voltage Signal Mode Control Register (TSMR)	155
11	1.4.4	External Input Enable Register 0 (INTEN)	156
11	1.4.5	INT Input Filter Select Register 0 (INTF)	
11	1.4.6	$\overline{\text{INTi}}$ Input Filter (i = 0 to 3)	157
11.5	5	Low-Voltage Signal Mode	158
11.6	5	Key Input Interrupt	
11	1.6.1	Key Input Enable Register 0 (KIEN)	160
11.7	7	Address Match Interrupt	161
11	1.7.1	Address Match Interrupt Enable Register i (AIERi) (i = 0 or 1)	
11	1.7.2	Address Match Interrupt Register i (RMADi) (i = 0 or 1)	
11.8		Timer RC Interrupt, Flash Memory Interrupt (Interrupts with Multiple Interrupt Request So Sensor Control Unit Interrupt (Interrupt with Single Interrupt Request Sources)	
11.9		Notes on Interrupts	
	1.9.1	Reading Address 00000h	
	1.9.2	SP Setting	
	1.9.3	External Interrupt and Key Input Interrupt	
	1.9.4	Changing Interrupt Sources	
11	1.9.5	Rewriting Interrupt Control Register	167

12. ID	Code Areas	168
12.1	Overview	168
12.2	Functions	169
12.3	Forced Erase Function	170
12.4	Standard Serial I/O Mode Disabled Function	170
12.5	Notes on ID Code Areas	171
12.5.1	Setting Example of ID Code Areas	171
10 0-	tion Exaction Colort Area	170
	tion Function Select Area	
13.1	Overview	
13.2	Registers	
13.2.1		
13.2.2		
13.3	Notes on Option Function Select Area	
13.3.1	Setting Example of Option Function Select Area	1/5
14. Wa	atchdog Timer	176
14.1	Overview	176
14.2	Registers	178
14.2.1	Processor Mode Register 1 (PM1)	178
14.2.2	Watchdog Timer Reset Register (WDTR)	178
14.2.3	Watchdog Timer Start Register (WDTS)	178
14.2.4	Watchdog Timer Control Register (WDTC)	179
14.2.5	Count Source Protection Mode Register (CSPR)	179
14.2.6	Option Function Select Register (OFS)	180
14.2.7	Option Function Select Register 2 (OFS2)	181
14.3	Functional Description	
14.3.1	Common Items for Multiple Modes	182
14.3.2	Count Source Protection Mode Disabled	183
14.3.3	Count Source Protection Mode Enabled	
15. DT	C	185
15.1	Overview	
15.2	Registers	
15.2.1	-	
15.2.2	DTC Block Size Register j (DTBLSj) (j = 0 to 23)	
15.2.3		
15.2.4	DTC Transfer Count Reload Register j (DTRLDj) (j = 0 to 23)	
15.2.5	DTC Source Address Register j (DTSARj) ($j = 0$ to 23)	
15.2.6	DTC Destination Address Register j (DTDARj) ($j = 0$ to 23)	188
15.2.7	DTC Activation Enable Register i (DTCENi) (i = 0 to 3, 5, 6)	189
15.2.8	B DTC Activation Control Register (DTCTL)	190
15.3	Function Description	191
15.3.1	Overview	191
15.3.2	Activation Sources	191
15.3.3	Control Data Allocation and DTC Vector Table	193
15.3.4	Normal Mode	197
15.3.5	Repeat Mode	198
15.3.6	6 Chain Transfers	199

15.3.7	Interrupt Sources	199
15.3.8	Operation Timings	200
15.3.9	Number of DTC Execution Cycles	201
15.3.10) DTC Activation Source Acknowledgement and Interrupt Source Flags	202
15.4	Notes on DTC	203
15.4.1	DTC activation source	203
15.4.2	DTCENi (i = 0 to 3, 5, 6) Registers	203
15.4.3	Peripheral Modules	
15.4.4	Interrupt Request	
16. Ger	neral Overview of Timers	204
17. Tim	er RA	206
17.1	Overview	
17.2	Registers	
17.2.1	Timer RA Control Register (TRACR)	
17.2.2	Timer RA I/O Control Register (TRAIOC)	
17.2.3	Timer RA Mode Register (TRAMR)	
17.2.4	Timer RA Prescaler Register (TRAPRE)	
17.2.5	Timer RA Register (TRA)	
17.2.6	Timer RA Pin Select Register (TRASR)	
	Timer Mode	
17.3.1	Timer RA I/O Control Register (TRAIOC) in Timer Mode	
17.3.1	Timer Write Control during Count Operation	
	Pulse Output Mode	
17.4	Timer RA I/O Control Register (TRAIOC) in Pulse Output Mode	
	Event Counter Mode	
17.5.1	Timer RA I/O Control Register (TRAIOC) in Event Counter Mode	
	Pulse Width Measurement Mode	
17.6.1	Timer RA I/O Control Register (TRAIOC) in Pulse Width Measurement Mode	
17.6.2	Operating Example	
	Pulse Period Measurement Mode	
17.7.1	Timer RA I/O Control Register (TRAIOC) in Pulse Period Measurement Mode	
17.7.2	Operating Example	
17.8	Notes on Timer RA	222
40 Tim		000
	er RB	
	Overview	
18.2	Registers	
18.2.1	Timer RB Control Register (TRBCR)	224
18.2.2	Timer RB One-Shot Control Register (TRBOCR)	224
18.2.3	Timer RB I/O Control Register (TRBIOC)	225
18.2.4	Timer RB Mode Register (TRBMR)	225
18.2.5	Timer RB Prescaler Register (TRBPRE)	226
18.2.6	Timer RB Secondary Register (TRBSC)	226
18.2.7	Timer RB Primary Register (TRBPR)	227
18.2.8	Timer RB/RC Pin Select Register (TRBRCSR)	227
18.3	Timer Mode	228
18.3.1	Timer RB I/O Control Register (TRBIOC) in Timer Mode	

18.3.2	Timer Write Control during Count Operation	229
18.4	Programmable Waveform Generation Mode	231
18.4.1	Timer RB I/O Control Register (TRBIOC) in Programmable Waveform Generation Mode	232
18.4.2	Operating Example	233
18.5	Programmable One-shot Generation Mode	234
18.5.1	Timer RB I/O Control Register (TRBIOC) in Programmable One-Shot Generation Mode	235
18.5.2	Operating Example	236
18.5.3	One-Shot Trigger Selection	237
18.6	Programmable Wait One-Shot Generation Mode	238
18.6.1	Timer RB I/O Control Register (TRBIOC) in Programmable Wait One-Shot Generation Mode .	239
18.6.2	Operating Example	240
18.7	Notes on Timer RB	241
18.7.1	Timer Mode	241
18.7.2	Programmable Waveform Generation Mode	241
18.7.3	Programmable One-shot Generation Mode	242
18.7.4	Programmable Wait One-shot Generation Mode	242
19. Tim	er RC	243
19.1	Overview	243
19.2	Registers	245
19.2.1	Module Standby Control Register (MSTCR)	246
19.2.2	Timer RC Mode Register (TRCMR)	246
19.2.3	Timer RC Control Register 1 (TRCCR1)	247
19.2.4	Timer RC Interrupt Enable Register (TRCIER)	247
19.2.5	Timer RC Status Register (TRCSR)	248
19.2.6	Timer RC I/O Control Register 0 (TRCIOR0)	249
19.2.7	Timer RC I/O Control Register 1 (TRCIOR1)	249
19.2.8	Timer RC Counter (TRC)	250
19.2.9	Timer RC General Registers A, B, C, and D (TRCGRA, TRCGRB, TRCGRC, TRCGRD)	
19.2.10) Timer RC Control Register 2 (TRCCR2)	251
19.2.1	Timer RC Digital Filter Function Select Register (TRCDF)	251
19.2.12	2 Timer RC Output Master Enable Register (TRCOER)	252
19.2.13	3 Timer RC Trigger Control Register (TRCADCR)	252
19.2.14	Timer RB/RC Pin Select Register (TRBRCSR)	253
19.2.15	5 Timer RC Pin Select Register 0 (TRCPSR0)	254
19.2.16	5 Timer RC Pin Select Register 1 (TRCPSR1)	255
19.3	Common Items for Multiple Modes	256
19.3.1	Count Source	256
19.3.2	Buffer Operation	257
19.3.3	Digital Filter	259
19.3.4	Forced Cutoff of Pulse Output	260
19.4	Timer Mode (Input Capture Function)	
19.4.1	Timer RC I/O Control Register 0 (TRCIOR0) for Input Capture Function	264
19.4.2	Timer RC I/O Control Register 1 (TRCIOR1) for Input Capture Function	
19.4.3	Operating Example	266
19.5	Timer Mode (Output Compare Function)	
19.5.1	Timer RC Control Register 1 (TRCCR1) for Output Compare Function	269
19.5.2	Timer RC I/O Control Register 0 (TRCIOR0) for Output Compare Function	270
19.5.3	Timer RC I/O Control Register 1 (TRCIOR1) for Output Compare Function	271

19.5.4	Timer RC Control Register 2 (TRCCR2) for Output Compare Function	
19.5.5	Operating Example	
19.5.6	Changing Output Pins in Registers TRCGRC and TRCGRD	
19.6	PWM Mode	
19.6.1	Timer RC Control Register 1 (TRCCR1) in PWM Mode	
19.6.2	Timer RC Control Register 2 (TRCCR2) in PWM Mode	279
19.6.3	Operating Example	
19.7	PWM2 Mode	
19.7.1	Timer RC Control Register 1 (TRCCR1) in PWM2 Mode	
19.7.2	Timer RC Control Register 2 (TRCCR2) in PWM2 Mode	
19.7.3	Timer RC Digital Filter Function Select Register (TRCDF) in PWM2 Mode	
19.7.4	Operating Example	
19.8	Timer RC Interrupt	
19.9	Notes on Timer RC	
19.9.1	TRC Register	291
19.9.2	TRCSR Register	
19.9.3	TRCCR1 Register	
19.9.4	Count Source Switching	
19.9.5	Input Capture Function	
19.9.6	TRCMR Register in PWM2 Mode	
19.9.7	Count Source fOCO40M	
20. Se	rial Interface (UART0)	293
20.1	Overview	293
20.2	Registers	
20.2.1		
20.2.2		
20.2.3		
20.2.4	e v v	
20.2.5	e v v	
20.2.6		
20.2.7	\mathcal{E}	
20.2.8		
20.3	Clock Synchronous Serial I/O Mode	
20.3.1	Measure for Dealing with Communication Errors	
20.3.2	5	
20.3.3		
20.3.4		
20.4	Clock Asynchronous Serial I/O (UART) Mode	
20.4.1	Bit Rate	
20.4.2		
20.5	Low-Voltage Signal Mode	
20.6	Notes on Serial Interface (UART0)	
21. Se	rial Interface (UART2)	317
21.1	Overview	
21.1	Registers	
21.2.1	UART2 Transmit/Receive Mode Register (U2MR)	
21.2.2		
=	\mathcal{C} \langle , \rangle	

21.2.3	UART2 Transmit Buffer Register (U2TB)	320
21.2.4	UART2 Transmit/Receive Control Register 0 (U2C0)	321
21.2.5	UART2 Transmit/Receive Control Register 1 (U2C1)	322
21.2.6	UART2 Receive Buffer Register (U2RB)	323
21.2.7	UART2 Digital Filter Function Select Register (URXDF)	324
21.2.8	UART2 Special Mode Register 5 (U2SMR5)	
21.2.9	UART2 Special Mode Register 4 (U2SMR4)	
21.2.1		
21.2.1		
21.2.1		
21.2.1		
21.2.1		
	5 Low-Voltage Signal Mode Control Register (TSMR)	
21.3	Clock Synchronous Serial I/O Mode	
21.3.1	Measure for Dealing with Communication Errors	
21.3.2	CLK Polarity Select Function	
21.3.3	LSB First/MSB First Select Function	
21.3.4	Continuous Receive Mode	
21.3.5	Serial Data Logic Switching Function	
21.3.6		
21.5.0	Clock Asynchronous Serial I/O (UART) Mode	
21.4.1	Bit Rate	
21.4.2		
21.4.3	LSB First/MSB First Select Function	
21.4.4	Serial Data Logic Switching Function	
21.4.5	TXD and RXD I/O Polarity Inverse Function	
21.4.5	TXD and RXD FO Folarity inverse Function CTS/RTS Function	
21.4.0	RXD2 Digital Filter Select Function	
21.4.7	Special Mode 1 (I ² C Mode)	
21.5	Detection of Start and Stop Conditions	
21.5.1	Output of Start and Stop Conditions	
21.5.2	Transfer Clock	
21.5.3	SDA Output	
21.5.4	SDA Output	
21.5.6	ACK and NACK	
21.5.0	Initialization of Transmission/Reception	
21.5.7	Special Mode 2 (SSU Mode)	
21.0	Clock Phase Setting Function	
21.0.1	Multiprocessor Communication Function	
21.7	Multiprocessor Transmission	
21.7.1	Multiprocessor Reception	
21.7.2	RXD2 Digital Filter Select Function	
21.7.5	Low-Voltage Signal Mode	
21.8 21.9	Notes on Serial Interface (UART2)	
21.9	Clock Synchronous Serial I/O Mode	
21.9.1	Special Mode 1 (I ² C Mode)	
21.9.2		507
22. Hai	dware LIN	368
22.1	Overview	308

22.2	Input/Output Pins	369
22.3	Registers	
22.3.1	LIN Control Register 2 (LINCR2)	
22.3.2	LIN Control Register (LINCR)	
22.3.3	LIN Status Register (LINST)	
22.4	Function Description	
22.4.1	Master Mode	
22.4.2	Slave Mode	
22.4.3	Bus Collision Detection Function	379
22.4.4	6	
22.5	Interrupt Requests	
22.6	Notes on Hardware LIN	
23. A/C) Converter	
23.1	Overview	
23.2	Registers	
23.2.1	On-Chip Reference Voltage Control Register (OCVREFCR)	
23.2.2	A/D Register i (ADi) ($i = 0$ to 7)	
23.2.2	A/D Mode Register (ADMOD)	
23.2.4		
23.2.5	A/D Control Register 0 (ADCON0)	
23.2.6		
23.3	Common Items for Multiple Modes	
23.3.1	Input/Output Pins	
23.3.2	A/D Conversion Cycles	
23.3.3	A/D Conversion Start Condition	
23.3.4	A/D Conversion Result	
23.3.5	Low Current Consumption Function	
23.3.6	On-Chip Reference Voltage (OCVREF)	395
23.3.7	A/D Open-Circuit Detection Assist Function	395
23.4	One-Shot Mode	397
23.5	Repeat Mode 0	398
23.6	Repeat Mode 1	399
23.7	Single Sweep Mode	401
23.8	Repeat Sweep Mode	403
23.9	Output Impedance of Sensor under A/D Conversion	405
23.10	Notes on A/D Converter	
24. Ser	nsor Control Unit	407
24.1	Overview	
24.2	Registers	
24.2.1	SCU Control Register 0 (SCUCR0)	
24.2.2	SCU Mode Register (SCUMR)	
24.2.3	SCU Timing Control Register 0 (SCTCR0)	
24.2.4	SCU Timing Control Register 1 (SCTCR1)	
24.2.5	SCU Timing Control Register 2 (SCTCR2)	
24.2.6		
24.2.7	SCU Channel Control Register (SCHCR)	
24.2.8		

24.2.9	SCU Flag Register (SCUFR)	
24.2.10	SCU Status Counter (SCUSTC)	
24.2.11	SCU Secondary Counter Set Register (SCSCSR)	
24.2.12	SCU Secondary Counter (SCUSCC)	
24.2.13	SCU Destination Address Register (SCUDAR)	
24.2.14	SCU Data Buffer Register (SCUDBR)	
24.2.15	SCU Primary Counter (SCUPRC)	
24.2.16	Touch Sensor Input Enable Register 0 (TSIER0)	
24.2.17	Touch Sensor Input Enable Register 1 (TSIER1)	
24.2.18	Touch Sensor Input Enable Register 2 (TSIER2)	
24.3 H	Functional Description	
24.3.1	Common Items for Multiple Modes	
24.3.2	Specifications and Operation Example of Sensor Control Unit	
24.4 H	Principle of Measurement Operation	
	Notes on Sensor Control Unit	
24.5.1	A/D Converter	
24.5.2	Address to Store Detection Data	
24.5.3	Wait Mode	
24.5.4	Measurement Trigger	
24.5.5	Charging Time	
25. Flasl	h Memory	437
25.1 (Overview	
	Memory Map	
	Functions to Prevent Flash Memory from being Rewritten	
25.3.1	ID Code Check Function	
25.3.2	ROM Code Protect Function	
25.3.3	Option Function Select Register (OFS)	
	CPU Rewrite Mode	
25.4.1	Flash Memory Status Register (FST)	
25.4.2	Flash Memory Control Register 0 (FMR0)	
25.4.3	Flash Memory Control Register 1 (FMR1)	
25.4.4	Flash Memory Control Register 2 (FMR2)	
25.4.5	EW0 Mode	
25.4.6	EW1 Mode	
25.4.7	Suspend Operation	
25.4.8	How to Set and Exit Each Mode	
25.4.9	BGO (BackGround Operation) Function	
25.4.10	Data Protect Function	
25.4.11	Software Commands	
25.4.12		
	Standard Serial I/O Mode	
25.5.1	ID Code Check Function	
	Parallel I/O Mode	
25.6.1	ROM Code Protect Function	
	Notes on Flash Memory	
25.7.1	CPU Rewrite Mode	

Reducing Power Consumption	475
Overview	475
Key Points and Processing Methods for Reducing Power Consumption	475
2.1 Voltage Detection Circuit	475
2.2 Ports	475
2.3 Clocks	475
2.4 Wait Mode, Stop Mode	475
2.5 Stopping Peripheral Function Clocks	475
2.6 Timers	475
2.7 A/D Converter	475
2.8 Reducing Internal Power Consumption	476
2.9 Stopping Flash Memory	477
2.10 Low-Current-Consumption Read Mode	478
2.11 Others	479
Electrical Characteristics	480
Jsage Notes	501
Notes on Clock Generation Circuit	501
.1 Stop Mode	501
.2 Wait Mode	501
.3 Oscillation Stop Detection Function	502
.4 Oscillation Circuit Constants	502
Notes on Interrupts	503
2.1 Reading Address 00000h	503
2.2 SP Setting	503
2.3 External Interrupt and Key Input Interrupt	503
2.4 Changing Interrupt Sources	504
2.5 Rewriting Interrupt Control Register	505
Notes on ID Code Areas	506
3.1 Setting Example of ID Code Areas	506
Notes on Option Function Select Area	506
I.1 Setting Example of Option Function Select Area	506
Notes on DTC	507
5.1 DTC activation source	507
5.2 DTCENi (i = 0 to 3, 5, 6) Registers	507
5.3 Peripheral Modules	507
5.4 Interrupt Request	507
Notes on Timer RA	508
Notes on Timer RB	509
7.1 Timer Mode	509
7.2 Programmable Waveform Generation Mode	509
7.3 Programmable One-shot Generation Mode	510
7.4 Programmable Wait One-shot Generation Mode	510
Notes on Timer RC	511
3.1 TRC Register	511
3.2 TRCSR Register	511
3.3 TRCCR1 Register	511
3.4 Count Source Switching	511
	Overview Key Points and Processing Methods for Reducing Power Consumption 1 Voltage Detection Circuit 2.2 Ports 3.3 Clocks 4.4 Wait Mode, Stop Mode 5.5 Stopping Peripheral Function Clocks 6.6 Timers 7 A/D Converter 7.8 Reducing Internal Power Consumption 9.9 Stopping Flash Memory 10 Low-Current-Consumption Read Mode 11 Others 216 Characteristics 218 Notes on Clock Generation Circuit 1 Stop Mode 2 Wait Mode 3 Oscillation Stop Detection Function 4 Oscillation Stop Detection Function 4 Oscillation Stop Detection Function 5 Rewriting Interrupts 5 Rewriting Interrupt Sources 5 Rewriting Interrupt Sources 5 Rewriting Interrupt Control Register 5 Rewriting Interrupt Control Registers 6 Thereas 5 Rewriting Interrupt Control Register <t< td=""></t<>

28.8.5 Input Capture Function	12
28.8.6 TRCMR Register in PWM2 Mode	12
28.8.7 Count Source fOCO40M	12
28.9 Notes on Serial Interface (UART0)	13
28.10 Notes on Serial Interface (UART2)	14
28.10.1 Clock Synchronous Serial I/O Mode	14
28.10.2 Special Mode 1 (I ² C Mode)	14
28.11 Notes on Hardware LIN	15
28.12 Notes on A/D Converter	15
28.13 Notes on Sensor Control Unit	16
28.13.1 A/D Converter	16
28.13.2 Address to Store Detection Data	16
28.13.3 Wait Mode	16
28.13.4 Measurement Trigger	16
28.13.5 Charging Time	16
28.14 Notes on Flash Memory 51	17
28.14.1 CPU Rewrite Mode	17
28.15 Notes on Noise	21
28.15.1 Inserting a Bypass Capacitor between VCC and VSS Pins as a Countermeasure against Noise and	
Latch-up	
28.15.2 Countermeasures against Noise Error of Port Control Registers	21
28.16 Note on Supply Voltage Fluctuation	21
29. Notes on On-Chip Debugger 52	22
30. Notes on Emulator Debugger 52	23
Appendix 1. Package Dimensions 52	24
Appendix 2. Connection Examples between Serial Programmer and On-Chip Debugging Emulator 52	25
Appendix 3. Example of Oscillation Evaluation Circuit 52	26
Index	27

SFR Page Reference

Address	Register	Symbol	Page
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	28
0005h	Processor Mode Register 1	PM1	178
0006h	System Clock Control Register 0	CM0	110
0007h	System Clock Control Register 1	CM1	111
0008h	Module Standby Control Register	MSTCR	246
0009h	System Clock Control Register 3	CM3	112
000Ah	Protect Register	PRCR	138
000Bh	Reset Source Determination Register	RSTFR	28
000Ch	Oscillation Stop Detection Register	OCD	113
000Dh	Watchdog Timer Reset Register	WDTR	178
000Eh	Watchdog Timer Start Register	WDTS	178
000Fh	Watchdog Timer Control Register	WDTC	179
0010h			
0011h			
0012h			
0013h			
0014h			
0015h	High-Speed On-Chip Oscillator Control Register 7	FRA7	113
0016h			
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	179
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	114
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	114
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	115
0026h	On-Chip Reference Voltage Control Register	OCVREFCR	385
0027h			
0028h	Clock Prescaler Reset Flag	CPSRF	115
0029h	High-Speed On-Chip Oscillator Control Register 4	FRA4	116
002Ah	High-Speed On-Chip Oscillator Control Register 5	FRA5	116
002Bh	High-Speed On-Chip Oscillator Control Register 6	FRA6	116
002Ch			
002Dh			
002Eh			
002Fh	High-Speed On-Chip Oscillator Control Register 3	FRA3	116
0030h	Voltage Monitor Circuit Control Register	CMPA	41
0031h	Voltage Monitor Circuit Edge Select Register	VCAC	42
0032h		1014	4-
0033h	Voltage Detect Register 1	VCA1	42
0034h	Voltage Detect Register 2	VCA2	43, 117
0035h	Malterra Datastian Alexard O. L. (D. 1)		4.1
0036h	Voltage Detection 1 Level Select Register	VD1LS	44
0037h		1000	4-
0038h	Voltage Monitor 0 Circuit Control Register	VW0C	45
0039h	Voltage Monitor 1 Circuit Control Register	VW1C	46
003Ah	Voltage Monitor 2 Circuit Control Register	VW2C	47
003Bh			
003Ch			
003Dh			
003Eh			
003Fh			

Address	Register	Symbol	Page
0040h			
0041h	Flash Memory Ready Interrupt Control Register	FMRDYIC	145
0042h			
0043h			
0044h			
0045h			
0046h	F 201	TROID	
0047h	Timer RC Interrupt Control Register	TRCIC	145
0048h 0049h			
004911 004Ah			
004An	UART2 Transmit Interrupt Control Register	S2TIC	144
004Ch	UART2 Receive Interrupt Control Register	S2RIC	144
004Dh	Key Input Interrupt Control Register	KUPIC	144
004Eh	A/D Conversion Interrupt Control Register	ADIC	144
004Fh		-	
0050h			
0051h	UART0 Transmit Interrupt Control Register	SOTIC	144
0052h	UART0 Receive Interrupt Control Register	SORIC	144
0053h			
0054h			
0055h	INT2 Interrupt Control Register	INT2IC	146
0056h	Timer RA Interrupt Control Register	TRAIC	144
0057h			
0058h	Timer RB Interrupt Control Register	TRBIC	144
0059h	INT1 Interrupt Control Register	INT1IC	146
005Ah	INT3 Interrupt Control Register	INT3IC	146
005Bh			
005Ch			
005Dh	INT0 Interrupt Control Register	INTOIC	146
005Eh	UART2 Bus Collision Detection Interrupt Control Register	U2BCNIC	144
005Fh			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h 0067h			
0067h		1	
0068h			
006911 006Ah	Sensor Control Unit Interrupt Control Register	SCUIC	144
006Bh	Control Control Child Interrupt Control Register	00010	
006Ch			
006Dh			
006Eh			
006Fh		Ì	
0070h		İ	
0071h		İ	
0072h	Voltage Monitor 1 Interrupt Control Register	VCMP1IC	144
0073h	Voltage Monitor 2 Interrupt Control Register	VCMP2IC	144
0074h			
0075h			
0076h			
0077h			
0078h			
0079h			
007Ah			
007Bh			
007Ch			
007Dh			
007Eh 007Fh			
		1	

Address	Register	Symbol	Page
0080h	DTC Activation Control Register	DTCTL	190
0081h			
0082h			
0083h			
0084h			
0085h			
0086h			
0087h			
0088h	DTC Activation Enable Register 0	DTCEN0	189
0089h	DTC Activation Enable Register 1	DTCEN1	189
008Ah	DTC Activation Enable Register 2	DTCEN2	189
008Bh	DTC Activation Enable Register 3	DTCEN3	189
008Ch			
008Dh	DTC Activation Enable Register 5	DTCEN5	189
008Eh	DTC Activation Enable Register 6	DTCEN6	189
008Fh			
0090h			
0091h			
0092h			
0093h			
0094h			
0095h			
0096h			
0097h			
0098h			
0099h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Fh			
00A0h	UART0 Transmit/Receive Mode Register	U0MR	295
00A1h	UART0 Bit Rate Register	U0BRG	295
00A2h	UART0 Transmit Buffer Register	U0TB	296
00A3h	6		
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	297
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	297
00A6h	UART0 Receive Buffer Register	U0RB	298
00A7h	-		
00A8h	UART2 Transmit/Receive Mode Register	U2MR	319
00A9h	UART2 Bit Rate Register	U2BRG	319
00AAh	UART2 Transmit Buffer Register	U2TB	320
00ABh			
00ACh	UART2 Transmit/Receive Control Register 0	U2C0	321
00ADh	UART2 Transmit/Receive Control Register 1	U2C1	322
00AEh	UART2 Receive Buffer Register	U2RB	323
00AFh			
00B0h	UART2 Digital Filter Function Select Register	URXDF	324
00B1h	<u> </u>		1
00B2h			1
00B3h			1
00B4h			+
00B5h			+
00B6h			+
00B7h			-
00B8h			-
00B9h			+
00B9h			
00BAh	LIART2 Special Mode Pagister 5	LI2SMP5	224
	UART2 Special Mode Register 5	U2SMR5	324
00BCh	UART2 Special Mode Register 4	U2SMR4	325
00BDh	UART2 Special Mode Register 3	U2SMR3	325
00BEh	UART2 Special Mode Register 2 UART2 Special Mode Register	U2SMR2 U2SMR	326 326
00BFh			

Address	Register	Symbol	Page
00C0h	A/D Register 0	AD0	386
00C1h			
00C2h	A/D Register 1	AD1	386
00C3h			
00C4h	A/D Register 2	AD2	386
00C5h			
00C6h	A/D Register 3	AD3	386
00C7h			
00C8h	A/D Register 4	AD4	386
00C9h			
00CAh	A/D Register 5	AD5	386
00CBh			
00CCh	A/D Register 6	AD6	386
00CDh			
00CEh	A/D Register 7	AD7	386
00CFh			
00D0h			
00D1h			
00D2h			
00D3h			
00D4h	A/D Mode Register	ADMOD	387
00D5h	A/D Input Select Register	ADINSEL	388
00D6h	A/D Control Register 0	ADCON0	389
00D7h	A/D Control Register 1	ADCON1	390
00D8h			
00D9h			
00DAh			
00DBh			
00DCh			
00DDh			
00DEh			
00DFh			
00E0h	Port P0 Register	P0	69
00E1h	Port P1 Register	P1	69
00E2h	Port P0 Direction Register	PD0	68
00E3h	Port P1 Direction Register	PD1	68
00E4h	Port P2 Register	P2	69
00E5h	Port P3 Register	P3	69
00E6h	Port P2 Direction Register	PD2	68
00E7h	Port P3 Direction Register	PD3 P4	68
00E8h	Port P4 Register	P4	69
00E9h	Part D4 Direction Devictor	PD4	00
00EAh	Port P4 Direction Register	PD4	68
00EBh 00ECh			
00EDh			
00EDh 00EEh			
00EDh 00EEh 00EFh			
00EDh 00EEh 00EFh 00F0h			
00EDh 00EEh 00EFh 00F0h 00F1h			
00EDh 00EEh 00EFh 00F0h 00F1h 00F2h			
00EDh 00EEh 00EFh 00F0h 00F1h 00F2h 00F3h			
00EDh 00EEh 00EFh 00F0h 00F1h 00F2h 00F3h 00F4h			
00EDh 00EEh 00EFh 00F0h 00F1h 00F2h 00F3h 00F4h 00F5h			
00EDh 00EEh 00EFh 00F0h 00F1h 00F2h 00F3h 00F4h 00F5h 00F6h			
00EDh 00EEh 00EFh 00F0h 00F1h 00F2h 00F3h 00F4h 00F5h 00F6h 00F7h			
00EDh 00EEh 00F0h 00F0h 00F2h 00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h			
00EDh 00EEh 00Fh 00F0h 00F1h 00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F9h			
00EDh 00EEh 00Fh 00F0h 00F1h 00F2h 00F3h 00F4h 00F4h 00F6h 00F6h 00F6h 00F9h 00F9h			
00EDh 00EEh 00F0h 00F1h 00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F9h 00FAh 00FAh			
00EDh 00EFh 00F0h 00F1h 00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F9h 00F8h 00F9h			
00EDh 00EEh 00F0h 00F1h 00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F9h 00FAh 00FAh			

Address	Register	Symbol	Page
0100h	Timer RA Control Register	TRACR	207
0101h	Timer RA I/O Control Register	TRAIOC	207, 210, 213,
010111		1104000	215, 217, 220
0102h	Timer RA Mode Register	TRAMR	208
0103h	Timer RA Prescaler Register	TRAPRE	208
0104h	Timer RA Register	TRA	209
0105h	LIN Control Register 2	LINCR2	370
0106h	LIN Control Register	LINCR	371
0107h	LIN Status Register	LINST	371
0108h	Timer RB Control Register	TRBCR	224
0109h	Timer RB One-Shot Control Register	TRBOCR	224
010Ah	Timer RB I/O Control Register	TRBIOC	225, 228, 232,
0.0/			235, 239
010Bh	Timer RB Mode Register	TRBMR	225
010Ch	Timer RB Prescaler Register	TRBPRE	226
010Dh	Timer RB Secondary Register	TRBSC	226
010Eh	Timer RB Primary Register	TRBPR	227
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h			
0115h			
0116h			
0117h			
0118h			
0119h			
011Ah			
011Bh			
011Ch			
011Dh			
011Eh			
011Fh			
0120h	Timer RC Mode Register	TRCMR	246
0121h	Timer RC Control Register 1	TRCCR1	247, 269, 278, 284
0122h	Timer RC Interrupt Enable Register	TRCIER	247
0123h	Timer RC Status Register	TRCSR	248
0124h	Timer RC I/O Control Register 0	TRCIOR0	249, 264, 270
0125h	Timer RC I/O Control Register 1	TRCIOR1	249, 265, 271
0126h	Timer RC Counter	TRC	250
0127h			
0128h	Timer RC General Register A	TRCGRA	250
0129h			
012Ah	Timer RC General Register B	TRCGRB	250
012Bh	-		
012Ch	Timer RC General Register C	TRCGRC	250
012Dh			
012Eh	Timer RC General Register D	TRCGRD	250
012Fh			

Address	Register	Symbol	Page
	-		-
0130h	Timer RC Control Register 2	TRCCR2	251, 272, 279, 285
0131h	Timer RC Digital Filter Function Select	TRCDF	251, 286
	Register		
0132h	Timer RC Output Master Enable Register	TRCOER	252
0133h	Timer RC Trigger Control Register	TRCADCR	252
0134h			
0135h			
0136h			
0137h			
0138h			
0139h			
013Ah			
013Bh			
013Ch			
013Dh			
013Eh			
013Fh			
0140h			
0141h			
0142h			
0143h			
0144h			
0145h			
0146h			
0147h			
0148h			
0149h			
014Ah			
014Bh			
014Ch			
014Dh			
014Eh			
014Fh			
0150h			
0151h			
0152h			
0153h			
0154h			
0155h			
0156h			
0150h		+	
0158h			
0159h			
0159h			
015An			
015Ch			
015Dh			
015Eh			
015Fh			

Address	Register	Symbol	Page
0160h			0
0161h			
0162h			
0163h			
0164h			
0165h			
0166h			
0167h			
0168h			
0169h			
016Ah			
016Bh			
016Ch			
016Dh			
016Eh			
016Fh			
0170h			
0171h		1	
0172h		1	
0173h			
0174h			
0175h 0176h			
0177h 0178h			
0178h 0179h			
0179h 017Ah			
017An 017Bh			
017Bh		1	
017Ch		1	
017Eh			
017Eh			
	Timer RA Pin Select Register	TRASR	70 209
0180h	Timer RA Pin Select Register	TRASR	70, 209
0180h 0181h	Timer RB/RC Pin Select Register	TRBRCSR	70, 227, 253
0180h 0181h 0182h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0	TRBRCSR TRCPSR0	70, 227, 253 71, 254
0180h 0181h	Timer RB/RC Pin Select Register	TRBRCSR	70, 227, 253
0180h 0181h 0182h 0183h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0	TRBRCSR TRCPSR0	70, 227, 253 71, 254
0180h 0181h 0182h 0183h 0184h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0	TRBRCSR TRCPSR0	70, 227, 253 71, 254
0180h 0181h 0182h 0183h 0183h 0184h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0	TRBRCSR TRCPSR0	70, 227, 253 71, 254
0180h 0181h 0182h 0183h 0183h 0184h 0185h 0186h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0	TRBRCSR TRCPSR0	70, 227, 253 71, 254
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1	TRBRCSR TRCPSR0 TRCPSR1	70, 227, 253 71, 254 72, 255
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1	TRBRCSR TRCPSR0 TRCPSR1	70, 227, 253 71, 254 72, 255
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0188h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1	70, 227, 253 71, 254 72, 255 73, 299
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0189h 018Ah 018Bh 018Ch	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0	TRBRCSR TRCPSR0 TRCPSR1 	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0188h 0188h 0188h 018Bh 018Bh	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1	TRBRCSR TRCPSR0 TRCPSR1 U0SR U2SR0 U2SR1	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0187h 0188h 0189h 018Ah 018Bh 018Ch 018Dh	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0189h 0189h 018Bh 018Bh 018Dh 018Eh 018Fh	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0187h 0188h 0189h 018Ah 018Bh 018Ch 018Dh	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0186h 0187h 0188h 0182h 018Bh 018Bh 018Bh 018Bh 018Eh 018Fh 018Fh	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0187h 0188h 0188h 018Bh 018Ch 018Bh 018Ch 018Bh 018Fh 018Fh 0190h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0188h 0188h 0188h 0188h 0188h 018Bh 018Ch 018Bh 018Ch 018Bh 018Ch 018Bh 018Ch 018Bh 018Ch 0190h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0188h 0188h 0188h 018Bh 018Bh 018Ch 018Bh 018Ch 018Bh 018Ch 018Fh 0190h 0191h 0192h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0186h 0188h 0188h 0188h 018Bh 018Bh 018Bh 018Bh 018Bh 018Ch 018Dh 018Fh 0190h 0191h 0192h 0193h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0184h 0185h 0185h 0185h 0187h 0188h 0187h 0188h 0188h 0188h 0182h 0182h 0182h 0182h 0181h 0182h 0190h 0191h 0192h 0193h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0186h 0187h 0188h 0188h 0188h 0188h 0188h 018Bh 018Bh 018Fh 018Fh 0187h 0191h 0192h 0193h 0193h 0195h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0183h 0184h 0185h 0187h 0187h 0187h 0188h 0187h 0188h 018Ch 018Bh 018Ch 018Fh 018Fh 018Fh 0191h 0192h 0193h 0195h 0197h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0186h 0186h 0188h 0188h 0188h 018Bh 018Bh 018Bh 018Bh 018Bh 018Ch 0191h 0192h 0191h 0192h 0193h 0194h 0195h 0196h 0197h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0187h 0188h 0182h 0182h 0182h 0182h 0182h 0190h 0190h 0191h 0192h 0193h 0194h 0195h 0197h 0198h 0199h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0188h 0188h 0188h 0182h 0182h 0188h 0182h 0188h 0182h 0188h 0187h 0190h 0191h 0192h 0193h 0193h 0199h 0199h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0188h 0188h 0188h 0182h 0182h 0182h 0182h 0182h 0190h 0191h 0192h 0193h 0194h 0195h 0199h 0199h 0199h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0188h 0188h 0188h 0182h 0182h 0188h 0182h 0188h 0182h 0188h 0187h 0190h 0191h 0192h 0193h 0193h 0199h 0199h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0187h 0188h 0188h 0188h 0188h 0188h 0182h 0182h 0187h 0190h 0191h 0192h 0193h 0193h 0197h 0198h 0199h 0199h 0192h 0192h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,
0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0187h 0188h 0188h 0188h 0188h 0188h 0188h 0182h 0182h 0187h 0190h 0191h 0192h 0193h 0195h 0199h 0199h 0198h 0198h 0198h 0198h	Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 UART0 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 INT Interrupt Input Pin Select Register I/O Function Pin Select Register	TRBRCSR TRCPSR0 TRCPSR1 U0SR U0SR U2SR0 U2SR1 U2SR1 INTSR PINSR	70, 227, 253 71, 254 72, 255 73, 299 73, 299 74, 327 75, 328 75, 154 76 77, 155,

Address	Pogistor	Symbol	Page
01A0h	Register	Symbol	Faye
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
01A9h			
01AAh			
01ABh			
01ACh			
01ADh 01AEh		-	
01AEh 01AFh			
01APH 01B0h			
01B0h		-	
01B1h	Flash Memory Status Register	FST	442
01B2h			. 12
01B4h	Flash Memory Control Register 0	FMR0	444
01B5h	Flash Memory Control Register 1	FMR1	447
01B6h	Flash Memory Control Register 2	FMR2	449
01B7h	-		
01B8h			
01B9h			
01BAh			
01BBh			
01BCh			
01BDh			
01BEh			
01BFh	Address Match Internet Devictor 0	DMADO	400
01C0h 01C1h	Address Match Interrupt Register 0	RMAD0	162
01C1h			
01C2h	Address Match Interrupt Enable Register 0	AIER0	162
01C3h	Address Match Interrupt Register 1	RMAD1	162
01C5h		1110121	
01C6h			
01C7h	Address Match Interrupt Enable Register 1	AIER1	162
01C8h			
01C9h			
01CAh			
01CBh			
01CCh			
01CCh 01CDh			
01CCh 01CDh 01CEh			
01CCh 01CDh 01CEh 01CFh			
01CCh 01CDh 01CEh 01CFh 01D0h			
01CCh 01CDh 01CEh 01CFh 01D0h 01D1h			
01CCh 01CDh 01CEh 01CFh 01D0h 01D1h 01D2h			
01CCh 01CDh 01CEh 01CFh 01D0h 01D1h 01D2h 01D3h			
01CCh 01CDh 01CEh 01CFh 01D0h 01D1h 01D2h 01D3h 01D4h			
01CCh 01CDh 01CEh 01CFh 01D0h 01D1h 01D2h 01D3h 01D4h 01D5h			
01CCh 01CDh 01CEh 01CFh 01D0h 01D1h 01D2h 01D3h 01D4h 01D5h 01D6h			
01CCh 01CDh 01CEh 01CFh 01D0h 01D1h 01D2h 01D3h 01D4h 01D5h 01D6h 01D7h			
01CCh 01CDh 01CEh 01CFh 01D0h 01D1h 01D2h 01D3h 01D4h 01D5h 01D6h			
01CCh 01CDh 01CEh 01CFh 01D0h 01D1h 01D2h 01D3h 01D4h 01D5h 01D6h 01D7h 01D8h			
01CCh 01CDh 01CEh 01CFh 01D0h 01D1h 01D2h 01D2h 01D3h 01D5h 01D6h 01D7h 01D8h 01D9h			
01CCh 01CDh 01CEh 01CFh 01D0h 01D1h 01D2h 01D3h 01D4h 01D5h 01D6h 01D7h 01D8h 01D9h 01DAh			
01CCh 01CDh 01CEh 01CFh 01D0h 01D1h 01D2h 01D2h 01D3h 01D4h 01D5h 01D6h 01D7h 01D8h 01D9h			
01CCh 01CDh 01CEh 01CFh 01D0h 01D2h 01D2h 01D2h 01D2h 01D5h 01D5h 01D6h 01D7h 01D8h 01D2h 01DAh 01DBh		- -	

	Posistor	Symbol	Page
Address 01E0h	Register Pull-Up Control Register 0	Symbol PUR0	Page 78
01E0h	Pull-Up Control Register 1	PUR1	78
01E2h		TOIL	10
01E3h			
01E4h			
01E5h			
01E6h			
01E7h			
01E8h			
01E9h			
01EAh			
01EBh			
01ECh			
01EDh			
01EEh			
01EFh			
01F0h	Port P1 Drive Capacity Control Register	P1DRR	79
01F1h	Port P2 Drive Capacity Control Register	P2DRR	79
01F2h	Drive Capacity Control Register 0	DRR0	80
01F3h	Drive Capacity Control Register 1	DRR1	81
01F4h		1	
01F5h	Input Threshold Control Register 0	VLT0	82
01F6h	Input Threshold Control Register 1	VLT1	82
01F7h			-
01F8h			
01F9h		1	
01FAh	External Input Enable Register 0	INTEN	156
01FBh			
01FCh	INT Input Filter Select Register 0	INTF	156
01FDh			
01FEh	Key Input Enable Register 0	KIEN	160
01FFh	- · · ·		
:			
02C0h	SCU Control Register 0	SCUCR0	410
02C1h	SCU Mode Register	SCUMR	411
02C2h	SCU Timing Control Register 0	SCTCR0	411
02C3h	SCU Timing Control Register 1	SCTCR1	412
02C4h	SCU Timing Control Register 2	SCTCR2	414
	SCU Timing Control Register 3	SCTCR3	416
02C5h	SCO mining control Register 5	00.010	
02C5h 02C6h	SCU Channel Control Register	SCHCR	417
			417 418
02C6h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register	SCHCR	
02C6h 02C7h	SCU Channel Control Register SCU Channel Control Counter	SCHCR SCUCHC	418
02C6h 02C7h 02C8h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register	SCHCR SCUCHC SCUFR	418 419
02C6h 02C7h 02C8h 02C9h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter	SCHCR SCUCHC SCUFR SCUSTC	418 419 420
02C6h 02C7h 02C8h 02C9h 02CAh	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR	418 419 420 420
02C6h 02C7h 02C8h 02C9h 02CAh 02CBh	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR	418 419 420 420
02C6h 02C7h 02C8h 02C9h 02CAh 02CBh 02CCh	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR	418 419 420 420
02C6h 02C7h 02C8h 02C9h 02CAh 02CBh 02CCh 02CDh	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC	418 419 420 420 420
02C6h 02C7h 02C8h 02C9h 02CAh 02CBh 02CCh 02CDh 02CEh	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC	418 419 420 420 420
02C6h 02C7h 02C8h 02C9h 02CAh 02CBh 02CCh 02CCh 02CCh 02CEh 02CFh	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR	418 419 420 420 420 420
02C6h 02C7h 02C8h 02C9h 02CAh 02CBh 02CCh 02CDh 02CEh 02CFh 02CFh 02D0h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR	418 419 420 420 420 420
02C6h 02C7h 02C8h 02C9h 02CAh 02CCh 02CCh 02CCh 02CCh 02CFh 02CFh 02D0h 02D1h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register SCU Data Buffer Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR SCUDAR	418 419 420 420 420 421 421 422
02C6h 02C7h 02C8h 02C9h 02CAh 02CCh 02CCh 02CCh 02CCh 02CFh 02CFh 02D0h 02D1h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register SCU Data Buffer Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR SCUDAR	418 419 420 420 420 421 421 422
02C6h 02C7h 02C8h 02C9h 02CAh 02CBh 02CCh 02CCh 02CCh 02CFh 02D0h 02D1h 02D1h 02D2h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register SCU Data Buffer Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR SCUDAR	418 419 420 420 420 421 421 422
02C6h 02C7h 02C8h 02C9h 02CAh 02CBh 02CCh 02CCh 02CCh 02CFh 02D0h 02D1h 02D2h 02D3h 02D4h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register SCU Data Buffer Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR SCUDAR	418 419 420 420 420 421 421 422
02C6h 02C7h 02C8h 02C9h 02CAh 02CBh 02CCh 02CCh 02CCh 02CCh 02D0h 02D0h 02D1h 02D2h 02D3h 02D4h 02D5h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register SCU Data Buffer Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR SCUDAR	418 419 420 420 420 421 421 422
02C6h 02C7h 02C8h 02C9h 02CAh 02CCh 02CCh 02CCh 02CCh 02CCh 02CCh 02CCh 02CCh 02CCh 02C2h 02D0h 02D1h 02D2h 02D3h 02D4h 02D5h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register SCU Data Buffer Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR SCUDAR	418 419 420 420 420 421 421 422
02C6h 02C7h 02C8h 02C9h 02CAh 02CCh 02CCh 02CCh 02CCh 02CCh 02CCh 02C0h 02D1h 02D2h 02D2h 02D4h 02D5h 02D6h 02D7h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register SCU Data Buffer Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR SCUDAR	418 419 420 420 420 421 421 422
02C6h 02C7h 02C8h 02C9h 02CAh 02CCh 02CDh 02CCh 02CCh 02CCh 02C0h 02C1h 02D1h 02D2h 02D3h 02D3h 02D5h 02D6h 02D7h 02D8h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register SCU Data Buffer Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR SCUDAR	418 419 420 420 420 421 421 422
02C6h 02C7h 02C8h 02C9h 02CAh 02CCh 02CCh 02CCh 02CCh 02CCh 02C2h 02C2h 02D1h 02D2h 02D2h 02D3h 02D2h 02D5h 02D6h 02D6h 02D6h 02D8h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register SCU Data Buffer Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR SCUDAR	418 419 420 420 420 421 421 422
02C6h 02C7h 02C8h 02C9h 02CAh 02CCh 02CCh 02CCh 02CFh 02CFh 02D0h 02D1h 02D2h 02D2h 02D3h 02D5h 02D5h 02D6h 02D7h 02D8h 02D9h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register SCU Data Buffer Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR SCUDAR	418 419 420 420 420 421 421 422
02C6h 02C7h 02C8h 02C9h 02CAh 02CBh 02CCh 02CCh 02CCh 02CCh 02CCh 02CDh 02D1h 02D2h 02D3h 02D4h 02D5h 02D5h 02D5h 02D7h 02D8h 02DA	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register SCU Data Buffer Register SCU Data Buffer Register	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR SCUDBR SCUDBR SCUPRC	418 419 420 420 420 421 422 423
02C6h 02C7h 02C8h 02C9h 02CAh 02CBh 02CCh 02CCh 02CFh 02CFh 02D0h 02D1h 02D2h 02D3h 02D4h 02D5h 02D6h 02D8h 02D9h 02D8h 02D9h 02D8h	SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter SCU Destination Address Register SCU Data Buffer Register SCU Data Buffer Register SCU Primary Counter	SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC SCUDAR SCUDBR SCUDBR SCUPRC	418 419 420 420 420 421 421 422 423 423 423

Address	Register	Symbol	Page
2C00h	DTC Transfer Vector Area	,	0
2C01h	DTC Transfer Vector Area		
2C02h	DTC Transfer Vector Area		
2C03h	DTC Transfer Vector Area		
2C04h	DTC Transfer Vector Area		
2C05h	DTC Transfer Vector Area		
2C06h	DTC Transfer Vector Area		
2C07h	DTC Transfer Vector Area		
2C08h	DTC Transfer Vector Area		
2C09h	DTC Transfer Vector Area		
	DTC Transfer Vector Area		
:	DTC Transfer Vector Area		
:	DTC Transfer Vector Area		
	DTC Transfer Vector Area		
2C3Bh	DTC Transfer Vector Area		
	DTC Transfer Vector Area		
2C3Dh	DTC Transfer Vector Area		
	DTC Transfer Vector Area		
2C3Fh	DTC Transfer Vector Area		
2C40h	DTC Control Data 0	DTCD0	
2C40h 2C41h		01000	
2C4 Ih 2C42h			
2C42h 2C43h			
2C43h 2C44h			
2C44h 2C45h			
2C45h			
2C46h 2C47h			
2C47h 2C48h	DTC Control Data 1	DTCD1	
2C48h 2C49h	DTC Control Data 1	DICDI	
2C49h 2C4Ah			
2C4Ah 2C4Bh			
2C4Ch			
2C4Dh 2C4Eh			
2C4Fh		DTODO	
2C50h	DTC Control Data 2	DTCD2	
2C51h			
2C52h			
2C53h			
2C54h			
2C55h			
2C56h			
2C57h		DTODO	
2C58h	DTC Control Data 3	DTCD3	
2C59h			
2C5Ah			
2C5Bh			
2C5Ch			
2C5Dh			
2C5Eh			
2C5Fh		DTOF :	ļ
2C60h	DTC Control Data 4	DTCD4	
2C61h			
2C62h			
2C63h			
2C64h			
2C65h			
2C66h			
2C67h			
2C68h	DTC Control Data 5	DTCD5	
2C69h			
2C6Ah			
2C6Bh			
2C6Ch			
2C6Dh			
2C6Eh			
2C6Fh		DTCT	
2C70h	DTC Control Data 6	DTCD6	
2C71h			
2C72h			
2C73h			
2C74h			
2C75h			
2C76h			
2C77h			

Address Register Syr 2C78h DTC Control Data 7 DTCI	mbol Page
	D7
2C79h	
2C7Ah	
2C7Bh	
2C7Ch	
2C7Dh	
2C7Eh	
2C7Fh	
2C80h DTC Control Data 8 DTCI	D8
2C81h	
2C82h	
2C83h 2C84h	
2C85h	
2C86h	
2C87h	
2C88h DTC Control Data 9 DTCI	9
2C89h	
2C8Ah	
2C8Bh	
2C8Ch	
2C8Dh	
2C8Eh	
2C8Fh	
2C90h DTC Control Data 10 DTCI	D10
2C91h	
2C92h	
2C93h	
2C94h	
2C95h	
2C96h	
2C97h	
2C98h DTC Control Data 11 DTCI	D11
2C99h	
2C9Ah	
2C9Bh 2C9Ch	
2C9Dh	
2C9Eh	
2C9Fh	
2CA0h DTC Control Data 12 DTCI	D12
2CA1h	
2CA2h	
2CA3h	
2CA4h	
2CA5h	
2CA6h	
2CA7h	
2CA8h DTC Control Data 13 DTCI	D13
2CA9h	
2CAAh	
2CABh 2CACh	
2CACh 2CADh	
2CADn 2CAEh	
2CAEh 2CAFh	
2CB0h DTC Control Data 14 DTCI	D14
2CB1h	
2CB2h	
2CB3h	
2CB4h	
2CB5h	
2CB6h	
2CB7h	
2CB8h DTC Control Data 15 DTCI	D15
2CB9h	
2CBAh	
2CBBh	
2CBCh	
2CBDh	
2CBEh 2CBFh	
	1 1 1

Address	Register	Symbol	Page
2CC0h	DTC Control Data 16	DTCD16	
2CC1h			
2CC2h			
2CC3h			
2CC4h			
2CC5h			
2CC6h			
2CC7h			
2CC8h	DTC Control Data 17	DTCD17	
2CC9h			
2CCAh			
2CCBh			
2CCCh			
2CCDh			
2CCEh			
2CCFh	DTO Operated Data 40	DTOD40	
2CD0h	DTC Control Data 18	DTCD18	
2CD1h			
2CD2h			
2CD3h 2CD4h			
2CD4n 2CD5h			
2CD5h 2CD6h			
2CD6h 2CD7h			
2CD7h 2CD8h	DTC Control Data 19	DTCD19	
2CD9h		2.0010	
2CDAh			
2CDBh			
2CDCh			
2CDDh			
2CDEh			
2CDFh			
2CE0h	DTC Control Data 20	DTCD20	
2CE1h			
2CE2h			
2CE3h			
2CE4h			
2CE5h			
2CE6h			
2CE7h		DTODOL	
2CE8h	DTC Control Data 21	DTCD21	
2CE9h 2CEAh			
2CEBh			
2CEDh			
2CEDh			
2CEDI1 2CEEh			
2CEFh			
2CF0h	DTC Control Data 22	DTCD22	
2CF1h			
2CF2h			
2CF3h			
2CF4h			
2CF5h			
2CF6h			
2CF7h			
2CF8h	DTC Control Data 23	DTCD23	
2CF9h			
2CFAh			
2CFBh			
2CFCh			
2CFDh			
2CFEh			
2CFFh			
2D00h			
:		1	I
2FFFh			
: FFDBh	Option Function Select Register 2	OFS2	30, 174, 181
:	Spalar randion Deleter register 2	01.02	30, 117, 101
FFFFh	Option Function Select Register	OFS	29, 48, 173,
	-		180, 440

R8C/3JT Group RENESAS MCU

1.1 Features

The R8C/3JT Group of single-chip MCUs incorporates the R8C CPU core, employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

Power consumption is low, and the supported operating modes allow additional power control. These MCUs are designed to maximize EMI/EMS performance.

Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of system components.

The R8C/3JT Group has data flash (1 KB \times 4 blocks) with the background operation (BGO) function.

1.1.1 Applications

Electronic household appliances, office equipment, audio equipment, consumer equipment, etc.

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/3JT Group.

Item	Function	Specification
CPU	Central processing unit	 R8C CPU core Number of fundamental instructions: 89 Minimum instruction execution time: 50 ns (f(XIN) = 20 MHz, VCC = 2.7 V to 5.5 V) 200 ns (f(XIN) = 5 MHz, VCC = 1.8 V to 5.5 V) Multiplier: 16 bits × 16 bits → 32 bits Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits → 32 bits Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM, Data flash	Refer to Table 1.3 Product List for R8C/3JT Group.
Power Supply Voltage Detection	Voltage detection circuit	 Power-on reset Voltage detection 3 (detection level of voltage detection 0 and voltage detection 1 selectable)
I/O Ports	Programmable I/O ports	 Input-only: 1 pin CMOS I/O ports: 31, selectable pull-up resistor High current drive ports: 31
Clock	Clock generation circuits	 3 circuits: XIN clock oscillation circuit, High-speed on-chip oscillator (with frequency adjustment function), Low-speed on-chip oscillator Oscillation stop detection: XIN clock oscillation stop detection function Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16 Low power consumption modes: Standard operating mode (high-speed clock, high-speed on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode
Interrupts		 Number of interrupt vectors: 69 External Interrupt: 8 (INT × 4, Key input × 4) Priority levels: 7 levels
Watchdog Tim	er	 14 bits × 1 (with prescaler) Reset start selectable Low-speed on-chip oscillator for watchdog timer selectable
DTC (Data Tra	nsfer Controller)	 1 channel Activation sources: 22 Transfer modes: 2 (normal mode, repeat mode)
Timer	Timer RA	 8 bits × 1 (with 8-bit prescaler) Timer mode (period timer), pulse output mode (output level inverted every period), event counter mode, pulse width measurement mode, pulse period measurement mode
	Timer RB	8 bits x 1 (with 8-bit prescaler) Timer mode (period timer), programmable waveform generation mode (PWM output), programmable one-shot generation mode, programmable wait one-shot generation mode
	Timer RC	16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin)

Table 1.1Specifications for R8C/3JT Group (1)

Item	Function	Specification				
Serial	UART0	Clock synchronous serial I/O/UART				
Interface	UART2	Clock synchronous serial I/O/UART, I ² C mode (I ² C-bus), SSU mode, multiprocessor communication function				
LIN Module		Hardware LIN: 1 (timer RA, UART0)				
A/D Converte	r	10-bit resolution \times 12 channels, includes sample and hold function, with sweep mode				
Sensor Contro	ol Unit	System CH × 3, electrostatic capacitive touch detection × 22				
Flash Memory Programming and erasure voltage: VCC = 2.7 V to 5.5 V Programming and erasure endurance: 10,000 times (data flash) 1,000 times (program ROM) Program security: ROM code protect, ID code check Debug functions: On-chip debug, on-board flash rewrite function Background operation (BGO) function 						
Operating Frequency/Supply Voltage		f(XIN) = 20 MHz (VCC = 2.7 V to 5.5 V) f(XIN) = 5 MHz (VCC = 1.8 V to 5.5 V)				
Current Consumption		Typ. 6.5 mA (VCC = 5.0 V, f(XIN) = 20 MHz) Typ. 3.5 mA (VCC = 3.0 V, f(XIN) = 10 MHz) Typ. 3.5 μ A (VCC = 3.0 V, wait mode) Typ. 2.0 μ A (VCC = 3.0 V, stop mode)				
Operating Am	bient Temperature	-20 to 85°C (N version)				
Package 40-pin HXQFN Package code: PXQN0040LA-A						

Table 1.2 Specifications for R8C/3JT Group (2)

Current of Apr 2011

1.2 Product List

Table 1.3 lists Product List for R8C/3JT Group. Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/3JT Group.

Part No.	ROM C	apacity	RAM	Package Type	Remarks	
Fait NO.	Program ROM	Data flash	Capacity	Fackage Type	Remarks	
R5F213J4TNNP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PXQN0040LA-A	N version	
R5F213J5TNNP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PXQN0040LA-A		
R5F213J6TNNP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PXQN0040LA-A		

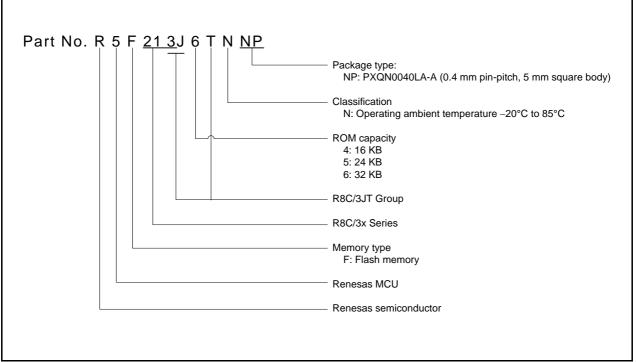


Figure 1.1 Part Number, Memory Size, and Package of R8C/3JT Group

1.3 Block Diagram

Figure 1.2 shows a Block Diagram.

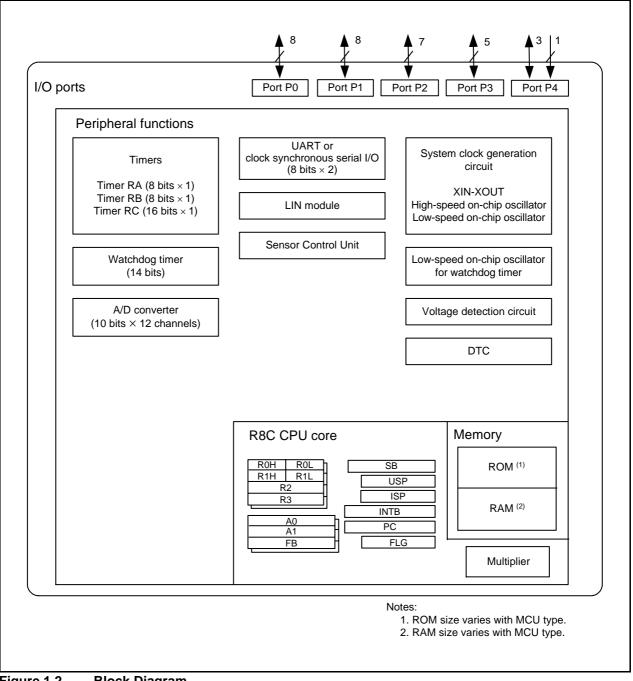


Figure 1.2 Block Diagram

1.4 Pin Assignment

Figure 1.3 shows Pin Assignment (Top View). Table 1.4 outlines the Pin Name Information by Pin Number.

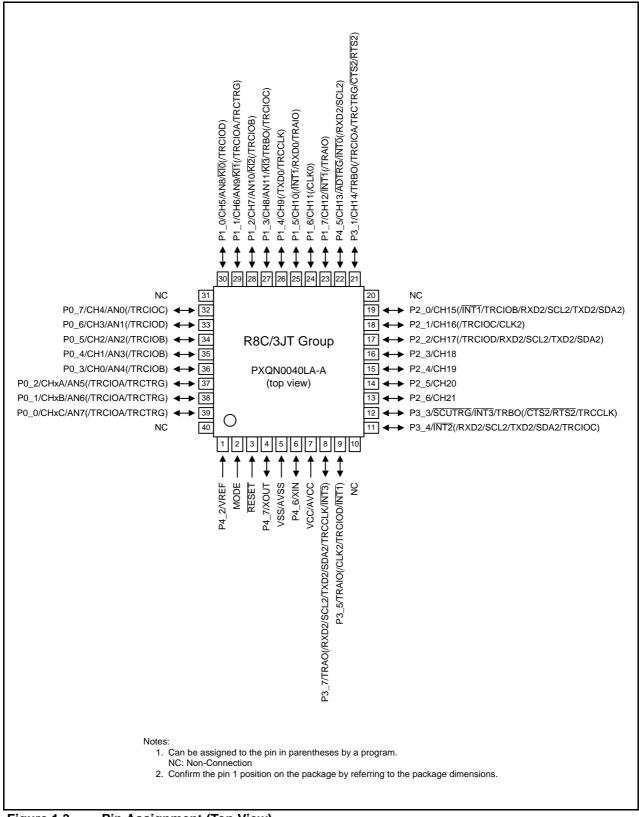


Figure 1.3 Pin Assignment (Top View)

Pin Number	Control Pin	Port	I/O Pin Functions for Peripheral Modules					
	Control P III		Interrupt	Timer	Serial Interface	A/D Converter	Sensor Control Uni	
1		P4_2				VREF		
2	MODE							
3	RESET							
4	XOUT	P4_7						
5	VSS/AVSS							
6	XIN	P4_6						
7	VCC/AVCC							
8		P3_7	(INT3)	TRAO/	(RXD2/SCL2/			
				(TRCCLK)	TXD2/SDA2)			
9		P3_5	(INT1)	TRAIO/ (TRCIOD)	(CLK2)			
11		P3_4	INT2	(TRCIOC)	(RXD2/SCL2/ TXD2/SDA2)			
12		P3_3	INT3	TRBO/ (TRCCLK)	(CTS2/RTS2)		SCUTRG	
13		P2_6					CH21	
14		P2_5					CH20	
15		P2_4					CH19	
16		P2_3					CH18	
17		P2_2		(TRCIOD)	(RXD2/TXD2/ SCL2/SDA2)		CH17	
18		P2_1		(TRCIOC)	(CLK2)		CH16	
19		P2_0	(INT1)	(TRCIOB)	(RXD2/TXD2/ SCL2/SDA2)		CH15	
21		P3_1		TRBO/ (TRCTRG/ TRCIOA)	(CTS2/RTS2)		CH14	
22		P4_5	INT0	INTO (RXD2/SCL2) AD		ADTRG	CH13	
23		P1_7	INTI (TRAIO)			CH12		
24		P1_6		. ,	(CLK0)		CH11	
25		P1_5	(INT1)				CH10	
26		P1_4	(((N))))	(TRCCLK)	(TXD0)		CH9	
20		P1_3	KI3			AN11	CH8	
28		P1_2	KI2			AN10	CH7	
29		 P1_1	KI1			AN9	CH6	
30		P1_0	KI0			AN8	CH5	
32		P0_7	NU	(TRCIOC)		ANO	CH4	
33		P0_7		(TRCIOC)		ANU AN1	CH4 CH3	
34		P0_0 P0_5		(TRCIOD)		AN1 AN2	CH3 CH2	
35		P0_5 P0_4		(TRCIOB)		AN2 AN3	CH2 CH1	
36		P0_4 P0_3		(TRCIOB)		AN3 AN4	CH1 CH0	
37		P0_3 P0_2		(TRCIOB) (TRCIOA/ TRCTRG)		AN4 AN5	CHxA	
38		P0_1		(TRCIOA/ TRCTRG)		AN6	СНхВ	
39		P0_0		(TRCIOA/ TRCTRG)		AN7	CHxC	

Table 1.4 Pin Name Information by Pin Number

Note:

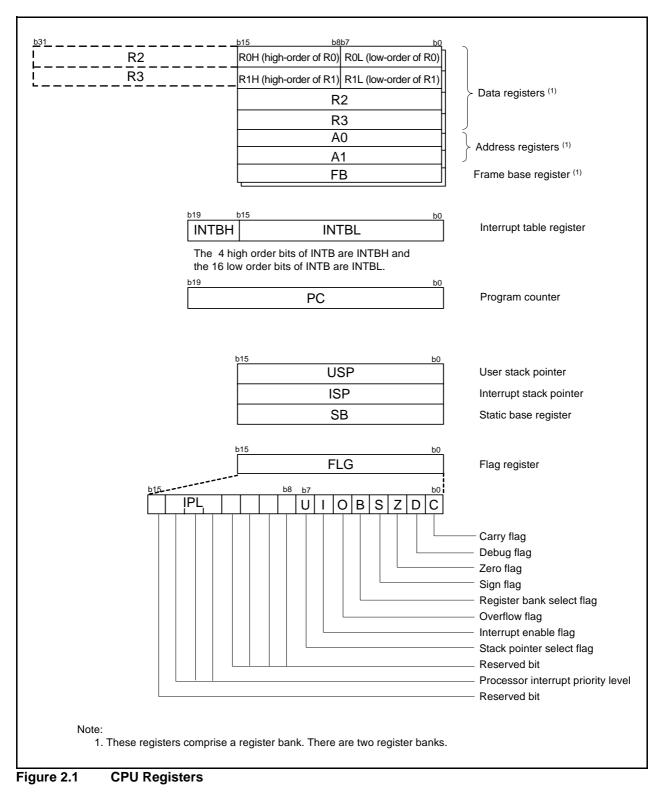
1. Can be assigned to the pin in parentheses by a program.

1.5 Pin Functions

Table 1.5 lists Pin Functions.

Table 1.5Pin Functions

Item	Pin Name	I/O Type	Description
Power supply input	VCC, VSS	_	Apply 1.8 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	—	Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between the XIN and XOUT pins. ⁽¹⁾
XIN clock output	XOUT	I/O	To use an external clock, input it to the XOUT pin and leave the XIN pin open.
INT interrupt input	INT0 to INT3	I	INT interrupt input pins. INT0 is timer RB, and RC input pin.
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
	TRAO	0	Timer RA output pin
Timer RB	TRBO	0	Timer RB output pin
Timer RC	TRCCLK	I	External clock input pin
	TRCTRG	I	External trigger input pin
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Timer RC I/O pins
Serial interface	CLK0, CLK2	I/O	Transfer clock I/O pins
	RXD0, RXD2	I	Serial data input pins
	TXD0, TXD2	0	Serial data output pins
	CTS2	I	Transmission control input pin
	RTS2	0	Reception control output pin
	SCL2	I/O	I ² C mode clock I/O pin
	SDA2	I/O	I ² C mode data I/O pin
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter
	ADTRG	I	AD external trigger input pin
Sensor control unit	CHxA, CHxB, CHxC	I/O	Control pins for electrostatic capacitive touch detection
	CH0 to CH21	I	Electrostatic capacitive touch detection pins
	SCUTRG	I	Sensor control unit external trigger input
I/O port	P0_0 to P0_7,	I/O	CMOS I/O ports. Each port has an I/O select direction
	P1_0 to P1_7, P2_0 to P2_6, P3_1, P3_3 to P3_5, P3_7, P4_5 to P4_7		register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. All ports can be used as LED drive ports.


Note:

1. Refer to the oscillator manufacturer for oscillation characteristics.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

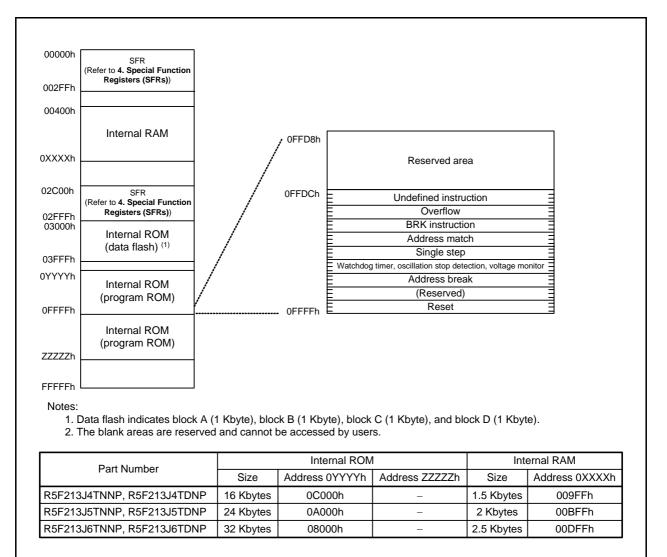
2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3. Memory


Figure 3.1 is a Memory Map of R8C/3JT Group. The R8C/3JT Group has a 1-Mbyte address space from addresses 00000h to FFFFFh. For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.12 list the special function registers. Table 4.13 lists the ID Code Areas and Option Function Select Area.

Table 4.1	SFR Information (1) (1)		
Address	Register	Symbol	After Reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	00101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h	Module Standby Control Register	MSTCR	00h
0009h	System Clock Control Register 3	CM3	00h
000Ah	Protect Register	PRCR	00h
000Bh	Reset Source Determination Register	RSTFR	0XXXXXXXb ⁽²⁾
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDTC	00111111b
0010h			
0011h		l l l l l l l l l l l l l l l l l l l	1
0012h			
0013h			
0014h			
0015h	High-Speed On-Chip Oscillator Control Register 7	FRA7	When shipping
0016h			
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
			1000000b (3)
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h	On-Chip Reference Voltage Control Register	OCVREFCR	00h
0027h			
0028h	Clock Prescaler Reset Flag	CPSRF	00h
0029h	High-Speed On-Chip Oscillator Control Register 4	FRA4	When shipping
002Ah	High-Speed On-Chip Oscillator Control Register 5	FRA5	When shipping
002Bh	High-Speed On-Chip Oscillator Control Register 6	FRA6	When shipping
002Ch			
002Dh			
002Eh			
002Fh	High-Speed On-Chip Oscillator Control Register 3	FRA3	When shipping
0030h	Voltage Monitor Circuit Control Register	CMPA	00h
0031h	Voltage Monitor Circuit Edge Select Register	VCAC	00h
0032h			
0033h	Voltage Detect Register 1	VCA1	00001000b
0034h	Voltage Detect Register 2	VCA2	00h ⁽⁴⁾
			0010000b ⁽⁵⁾
0035h			
0036h	Voltage Detection 1 Level Select Register	VD1LS	00000111b
0037h		l l l l l l l l l l l l l l l l l l l	1
0038h	Voltage Monitor 0 Circuit Control Register	VW0C	1100X010b (4)
	- v		1100X011b (5)
0039h	Voltage Monitor 1 Circuit Control Register	VW1C	10001010b
V: Undefined			100010100

Table 4.1SFR Information (1) (1)

X: Undefined

Notes:

- 1. The blank areas are reserved and cannot be accessed by users.
- 2. The CWR bit in the RSTFR register is set to 0 after power-on and voltage monitor 0 reset. Hardware reset, Software reset, or watchdog timer reset does not affect this bit.

3. The CSPROINI bit in the OFS register is set to 0.

4. The LVDAS bit in the OFS register is set to 1.

5. The LVDAS bit in the OFS register is set to 0.

ddress	Register	Symbol	After Reset
03Ah	Voltage Monitor 2 Circuit Control Register	VW2C	10000010b
003Bh			
03Ch			
03Dh			
03Eh		1	
003Fh		ľ	
0040h			
0041h	Flash Memory Ready Interrupt Control Register	FMRDYIC	XXXXX000b
0042h			
0042h			
0043h			
004411 0045h			
0046h	Timer DC Interrupt Control Deviate	TROID	VVVVV000L
0047h	Timer RC Interrupt Control Register	TRCIC	XXXXX000b
0048h			
0049h			
004Ah			
004Bh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
004Ch	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh		ľ	
0050h			1
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0053h			
0053h			
	INTO Interrupt Control Pagistor		VV00V000h
0055h	INT2 Interrupt Control Register	INT2IC	XX00X000b
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h			
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Ah	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh			
005Ch			
005Dh	INT0 Interrupt Control Register	INTOIC	XX00X000b
005Eh	UART2 Bus Collision Detection Interrupt Control Register	U2BCNIC	XXXXX000b
005Fh		02201110	
0060h			
0060h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah	Sensor Control Unit Interrupt Control Register	SCUIC	XXXXX000b
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			
0070h			
0071h			100000
0072h	Voltage Monitor 1 Interrupt Control Register	VCMP1IC	XXXXX000b
0073h	Voltage Monitor 2 Interrupt Control Register	VCMP2IC	XXXXX000b
0074h			
0075h			
0076h			
0077h			
0078h			
0079h			
0073h			
007An 007Bh			
007Ch			
007Dh			
007Eh			
007Fh			

SFR Information (2) ⁽¹⁾ Table 4.2

Address	Register	Symbol	After Reset
0080h	DTC Activation Control Register	DTCTL	00h
0081h			
0082h			
0083h			
0084h			
0085h			
0086h			
0087h			
0088h	DTC Activation Enable Register 0	DTCEN0	00h
0089h	DTC Activation Enable Register 1	DTCEN1	00h
008Ah	DTC Activation Enable Register 2	DTCEN2	00h
008Bh	DTC Activation Enable Register 3	DTCEN3	00h
008Ch	- · · · · · · · · · · · · · · · · · ·		
008Dh	DTC Activation Enable Register 5	DTCEN5	00h
008Eh	DTC Activation Enable Register 6	DTCEN6	00h
008Fh	DTO Activation Enable Register 0	DICENS	0011
0090h			
0091h			
0092h			
0093h			
0094h			
0095h			
0096h			
0097h			
0098h			
0099h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Fh			
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UARTO Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	UOTB	XXh
00A3h		00.2	XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00/(4)	UART0 Transmit/Receive Control Register 1	U0C1	0000010b
00A6h	UARTO Receive Buffer Register	UORB	XXh
00A8h		UURB	XXh
	LIADTO Transmit/Describes Marks Descietor	LIOND	00h
00A8h	UART2 Transmit/Receive Mode Register	U2MR	
00A9h	UART2 Bit Rate Register	U2BRG	XXh
00AAh	UART2 Transmit Buffer Register	U2TB	XXh
00ABh			XXh
00ACh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
00ADh	UART2 Transmit/Receive Control Register 1	U2C1	00000010b
00AEh	UART2 Receive Buffer Register	U2RB	XXh
00AFh			XXh
00B0h	UART2 Digital Filter Function Select Register	URXDF	00h
00B1h			
00B2h			
00B3h			
00B4h			
00B5h			
00B6h			
00B7h		İ	
00B8h			
00B9h			
00BAh			
00BAn 00BBh	UART2 Special Mode Register 5	U2SMR5	00h
00BBh 00BCh	UART2 Special Mode Register 5	U2SMR5 U2SMR4	00h
00BDh	UART2 Special Mode Register 3	U2SMR3	000X0X0Xb
00BEh	UART2 Special Mode Register 2	U2SMR2 U2SMR	X000000b X000000b
00BFh	UART2 Special Mode Register		

Note:

Address Register Symbol ADR Register 00Cinh ADR Register 1 ADD 00000XAb 00Cinh ADR Register 1 ADD 00000XAb 00Cinh ADR Register 2 ADD 00000XAb 00Cinh ADR Register 3 00000XAb 00000XAb 00Cinh ADR Register 3 ADD 00000XAb 00Cinh ADR Register 3 ADD 00000XAb 00Cinh ADR Register 3 ADD 00000XAb 00Cinh ADR Register 5 ADS Xh 00Cinh ADR Register 6 ADF Xh 00Cinh ADR Register 7 AD7 00000XAb 00Cinh ADR Register 7 AD7 <td< th=""><th>Address</th><th>Bogister</th><th>Symbol</th><th>After Reset</th></td<>	Address	Bogister	Symbol	After Reset
00C1h AD Register 1 AD1 XNh 00C3h AD Register 2 AD2 XNh 00C3h AD Register 2 AD2 00000Xb 00C3h AD Register 3 AD3 XNh 00C3h AD Register 3 AD3 XNh 00C3h AD Register 4 AD4 XNh 00C3h AD Register 5 AD5 XNh 00C3h AD Register 6 000000Xb 00000Xb 00C5h AD Register 7 AD7 XNh 00C6h AD Register 7 00000Xb 00000Xb 00C5h AD Register 7 AD7 XNh 000000 - - - 000000 - - - 000000 - - - 000000 - - - 000000 - - - 000000 - - - 000000 - - - 000000 -				
0002h ADI Register 1 AD1 XNh 0002h AD Register 2 AD2 XNh 0002h AD Register 3 AD3 XNh 0002h AD Register 3 AD3 XNh 0002h AD Register 3 AD3 XNh 0002h AD Register 4 AD4 XNh 0002h AD Register 5 AD5 XNh 0002h AD Register 5 AD5 XNh 0002h AD Register 7 AD7 XNh 0002h AD Register 7 AD7 XNh 0002h AD Register 7 AD7 XNh 0002h - - - 0002h - - - 0002h - - - 0002h AD Register 7 ADMOD 00h 0002h AD Register 7 ADMOD 00h 0002h AD Register 1 ADMOD 00h 0002h AD Register 1 ADMOD 00h		A/D Register 0	ADO	
00CAT AD Register 2 ODOCOMA 20000XXb 00CEh AD Register 3 AD3 XNn 00CEh AD Register 3 AD3 XNn 00CEh AD Register 4 AD4 XNn 00CEh AD Register 4 AD4 XNn 00CEh AD Register 5 AD5 XNn 00CEh AD Register 5 AD5 XNn 00CEh AD Register 6 AD6 COD000XXb 00CEh AD Register 7 AD7 COD00XXb 00CEh AD Register 7 AD7 COD000XXb 00CEh AD Register 7 AD7 COD00XXb 00CEh AD Register 7 AD7 COD00XXb 00CEh AD Register 1 AD7 COD00XB 00DFh AD Control Register 1 AD100D COD1 00DFh AD Control Register 1 ADC0N1 COD1 00DFh AD Control Register 1 ADC0N1 COD1 00DFh AD Control Register 1 ADC0N1 COD1 <				
00C4h AD Register 2 AD2 N/h 00C5h AD Register 3 AD3 X/h 00C6h AD Register 3 AD3 X/h 00C6h AD Register 3 AD4 X/h 00C6h AD Register 4 AD4 X/h 00C6h AD Register 5 AD5 X/h 00C6h AD Register 5 AD6 X0000XXb 00C6h AD Register 6 AD7 XXh 00C6h AD Register 7 AD7 XXh 00C7h AD Register 7 AD7 XXh 00C7h AD Register 7 AD7 XXh 00D1h P P XXh 00D2h P P XNh 00D2h XD Input Steat Register ADNOD Oh 00D2h <t< td=""><td>00C2h</td><td>A/D Register 1</td><td>AD1</td><td>XXh</td></t<>	00C2h	A/D Register 1	AD1	XXh
00C4h AD Register 2 AD2 N/h 00C5h AD Register 3 AD3 X/h 00C6h AD Register 3 AD3 X/h 00C6h AD Register 3 AD4 X/h 00C6h AD Register 4 AD4 X/h 00C6h AD Register 5 AD5 X/h 00C6h AD Register 5 AD6 X0000XXb 00C6h AD Register 6 AD7 XXh 00C6h AD Register 7 AD7 XXh 00C7h AD Register 7 AD7 XXh 00C7h AD Register 7 AD7 XXh 00D1h P P XXh 00D2h P P XNh 00D2h XD Input Steat Register ADNOD Oh 00D2h <t< td=""><td>00C3h</td><td></td><td></td><td>000000XXb</td></t<>	00C3h			000000XXb
0005h AD Register 3 AD Register 4 000000Xb 007ch AD Register 4 AD K XN 007ch AD Register 4 XD XD 007ch AD Register 5 ADS XN 007ch AD Register 5 ADS XD 007ch AD Register 6 ADS XD 007ch AD Register 7 AD7 XD 007ch AD Fourt Register 7 AD7 XD 007ch AD Fourt Register 7 AD7 XD 007ch AD Fourt Register 7 <		A/D Register 2		
00CCh AD Register 3 AD3 XXh 00CSh AD Register 4 AD4 XXh 00CSh AD Register 5 AD5 XXh 00CSh AD Register 6 AD5 XXh 00CSh AD Register 6 AD6 XXh 00CCh AD Register 7 AD7 XXh 00CCh AD Register 7 000000Xb 000000Xb 00CCh AD Register 7 0000000Xb 0000000Xb 00CCh AD Register 7 0000000Xb 000000000000000000000000000000000000			102	
000000000000000000000000000000000000				
00Cbh AD Register 4 AD4 XKh 00CAh AD Register 5 AD5 XKh 000000Xb 00CBh AD Register 6 AD6 XKh 000000Xb 00CCh AD Register 6 AD6 XKh 000000Xb 00CCh AD Register 7 AD7 XKh 000000Xb 00CDh COFFi AD7 XKh 000000Xb 00D0h COFFi AD7 XKh 000000Xb 00D3h COFFi COM0000000 COM00000000000 000h 00D3h AD Input Select Register ADINDEL 11000000 00h 00D3h AD Comol Register 1 ADICONI 00h 0		A/D Register 3	AD3	
00C3h AD Register 5 ADS XXh 00C3h AD Register 5 ADS XXh 00CCh AD Register 6 ADS XXh 00CCh AD Register 7 ADS XXh 00CCh AD Register 7 ADT XXh 00CCh AD Register 7 ADT XXh 00CCh AD Register 7 ADT XXh 00D0h	00C7h			00000XXb
00C3h AD Register 5 ADS XXh 00C3h AD Register 5 ADS XXh 00CCh AD Register 6 ADS XXh 00CCh AD Register 7 ADS XXh 00CCh AD Register 7 ADT XXh 00CCh AD Register 7 ADT XXh 00CCh AD Register 7 ADT XXh 00D0h	00C8h	A/D Register 4	AD4	XXh
00CAR AD Register 5 ADS XXh 00CCR AD Register 6 ADG 00000Xb 00CCR AD Register 7 AD7 000000Xb 00CCR AD Register 7 000000Xb 000000Xb 00CDn - 000000Xb 000000Xb 00D0n - 000000Xb 000000Xb 00D01 - - 000000Xb 00D3R - - 000000Xb 00D3R - - - 00D3R - - - 00D3R - - - 00D3R AD Control Register ADICON1 00h 00D3R - - - 00D5R - - - 00D5R - - -	00C9h			000000XXb
000Eh 000000Xb 000Ch AD Register 6 AD 000Ch AD Register 7 AD 000Ch AD Register 7 AD 000Ch AD 00000Xb 000Dh Image: 20000Xb 00000Xb 000Dh Image: 20000Xb 00000Xb 00Dh Image: 20000Xb 00000Xb 00Dh Image: 20000Xb 000h 00Dh Image: 20000Xb 00h 00Dh Image: 20000Xb Image: 20000Xb 00Dh Image: 20000Xb Image: 20000Xb Image: 20000Xb 00Dh Image: 20000Xb Image: 20000Xb Image: 20000Xb 00Dh Image: 20000Xb Image: 20000Xb Image: 20000Xb 00Dbh Image: 20000Xb Image: 2000Xb Image: 20000Xb		A/D Pagistar 5	AD5	
00CCh AD Register 6 AD6 XXh 00CCh AD7 XXh 00000Xb 00CFh AD7 XXh 00000Xb 00CFh AD7 00000Xb 00000Xb 00D7h - - 00000Xb 00D7h - - 000000Xb 00D7h - - 000000Xb 00D7h - - 000000Xb 00D7h AD Mode Register ADMOD 00h 00D7h AD Control Register 1 ADCONU 00h 00D7h - - - 00D7h		A/D Register 5	ADS	
000Cbr00000XXb00CbrAD7XXh00CbrAD7XXh00CbrAD7XXh00D0hImage: Construction of the second of the s				
00CEh AD Register 7 AD 7 Xth 000000XXb 00CFh 000000XXb 000000XXb 000000XXb 000000XXb 00D5h 0005h AD Mode Register ADMOD 00h 00D5h AD Mode Register ADMOD 00h 00D5h AD Control Register 0 ADCON0 00h 00D5h AD Control Register 1 ADCON1 00h 00D5h 00DCh 00DCh 00DCh 00DCh 00D5h 00DCh 00DCh 00h 00h 00D5h 00CFh PO1 Xh 00c 00D5h 00h PD1 00h 00h 00D5h Port PO Register P1 Xxh 00c 00D5h Port PO Register P2 Xxh 00c 00E5h Port P2 Register		A/D Register 6	AD6	
0002h 00000k 0000 0001h 0001h 0000 0002h 0001 0000 0002h 0000 000 0002h 000 000 0002h AD Mode Register ADMOD 0005h AD Control Register 0 ADCON0 00h 0002h AD Control Register 0 ADCON1 00h 0002h AD Control Register 1 ADCON1 00h 0002h AD Control Register 1 ADCON1 00h 0002h 000 00 0000 00h 0002h 000 00 000 00h 0002h 00 00 000 00h 0002h 00 00 00h 00h 0002h 00 00 00h 00h 0002h 00 00 00h 00h 0002h 00 00h 00h 00h 002Eh 001 P0 P0 Register P1 Xh	00CDh			00000XXb
0002h 00000k 0000 0001h 0001h 0000 0002h 0001 0000 0002h 0000 000 0002h 000 000 0002h AD Mode Register ADMOD 0005h AD Control Register 0 ADCON0 00h 0002h AD Control Register 0 ADCON1 00h 0002h AD Control Register 1 ADCON1 00h 0002h AD Control Register 1 ADCON1 00h 0002h 000 00 0000 00h 0002h 000 00 000 00h 0002h 00 00 000 00h 0002h 00 00 00h 00h 0002h 00 00 00h 00h 0002h 00 00 00h 00h 0002h 00 00h 00h 00h 002Eh 001 P0 P0 Register P1 Xh	00CEh	A/D Register 7	AD7	XXh
0000h		······································		
0001h				0000000000
0002h 000 0003h AD Mode Register ADMOD 00h 0005h AD Input Select Register ADINSEL 1100000b 0005h AD Control Register 0 ADCON0 00h 0005h AD Control Register 1 ADCON1 00h 0005h Port PR Register P1 AD ADCON1 0005h Port PD Register P1 PO XXh 005Eh Port P1 Register P1 PO1 00h 005Eh Port P2 Register P2 Xh Xh 005Eh Port P3 Direction Register P3 P3 Xh 005Eh Port P3 Register P4 P4 Xh <td></td> <td></td> <td></td> <td></td>				
0003h AD Mode Register ADMOD Ooh 0005h AD Input Salect Register ADINSEL 11000000b 0015h AD Control Register 0 ADCON Ooh 0015h AD Control Register 1 ADCON1 Ooh 00107h AD Control Register 1 ADCON1 Ooh 0005h Image: ADD Control Register 1 Image: ADD Control Register 1 Image: ADD Control Register 1 0005h Port PD Register P1 XXh Image: ADD Control Register 1 0005h Port P0 Register P1 XXh Image: ADD Control Register 1 P1 XXh 0055h Port P1 Register P2 XXh Image: ADD Control Register 1 P2 Xh 0055h Port P2 Register P3 XXh Image: ADD Control Register 1 P2 Xh 0055h Port P3 Register				
00D4h AD Input Select Register ADIOD 00h 00D5h AD Control Register 0 ADCON0 00h 00D5h AD Control Register 0 ADCON1 00h 00D5h AD Control Register 1 ADCON1 00h 00D5h				
00D4h AD Input Select Register ADIOD 00h 00D5h AD Control Register 0 ADCON0 00h 00D5h AD Control Register 0 ADCON1 00h 00D5h AD Control Register 1 ADCON1 00h 00D5h	00D3h			
0005h A/D Iontril Register A/D Control Register 0 A/D Control Register 1 00h 0005h A/D Control Register 1 A/D Control Register 1 00h 00h 0005h		A/D Mode Register	ADMOD	00h
0006h A/D Control Register 0 ADCON 00h 0007h A/D Control Register 1 ADCON1 00h 0008h		A/D Input Select Register		
0007h A/D Control Register 1 00h 0008h				
0008h				
0009h		A/D Control Register 1	ADCON1	00h
000Ah	00D8h			
000Ah	00D9h			
000Bh			1	
00DCh				
00DDh				
00DEh 000Eh Port P0 Register P0 XXh 00E1h Port P1 Register P1 XXh 00E2h Port P0 Direction Register PD0 00h 00E3h Port P1 Direction Register PD1 00h 00E3h Port P2 Register P2 XXh 00E5h Port P2 Register P3 XXh 00E6h Port P2 Register P3 XXh 00E6h Port P2 Register P3 XXh 00E6h Port P2 Direction Register PD2 00h 00E7h Port P4 Register P3 00h 00E8h Port P4 Register P4 XXh 00E9h 00E6h 00E6h 00E6h 00E6h </td <td></td> <td></td> <td></td> <td></td>				
00DFh Pott P1 Register P0 XXh 00E1h Pott P1 Register P1 XXh 00E2h Pott P0 Direction Register PD0 00h 00E3h Pott P1 Direction Register PD1 00h 00E3h Pott P2 Register P2 XXh 00E5h Pott P3 Register P2 XXh 00E5h Pott P3 Register P2 00h 00E5h Pott P4 Register PD2 00h 00E5h Pott P4 Register P4 XXh 00E6h P0t P4 Direction Register PD4 00h 00E5h P0t P4 Direction Register PD4 00h 00E6h P0t P4 Direction Register PD4 00h 00E6h P0t P4 Direction Register PD4 0h 00E6h P00E6h P01 P01	00DDh			
00DFh Pott P1 Register P0 XXh 00E1h Pott P1 Register P1 XXh 00E2h Pott P0 Direction Register PD0 00h 00E3h Pott P1 Direction Register PD1 00h 00E3h Pott P2 Register P2 XXh 00E5h Pott P3 Register P2 XXh 00E5h Pott P3 Register P2 00h 00E5h Pott P4 Register PD2 00h 00E5h Pott P4 Register P4 XXh 00E6h P0t P4 Direction Register PD4 00h 00E5h P0t P4 Direction Register PD4 00h 00E6h P0t P4 Direction Register PD4 00h 00E6h P0t P4 Direction Register PD4 0h 00E6h P00E6h P01 P01	00DEh			
ODECh Port P0 Register P0 XXh ODE1h Port P1 Register P1 XXh ODE2h Port P0 Direction Register PD0 00h ODE3h Port P1 Direction Register PD1 00h ODE4h Port P2 Register P2 XXh ODE5h Port P3 Register P3 XXh ODE5h Port P3 Direction Register PD2 00h ODE5h Port P3 Direction Register PD3 00h ODE5h Port P4 Register PD4 XXh ODE5h Port P4 Register PD3 00h ODE5h Port P4 Register PD4 0Ah ODE5h Port P4 Direction Register PD4 0Ah ODE6h PO1 P4 Direction Register PD4 0Ah ODE5h PO1 P4 Direction Register	00DFh			
00E1h Port P1 Register P1 XXh 00E2h Port P0 Direction Register PD0 00h 00E3h Port P1 Direction Register PD1 00h 00E3h Port P2 Register P2 XXh 00E5h Port P3 Register P3 XXh 00E5h Port P3 Register P3 XXh 00E5h Port P3 Register PD2 00h 00E5h Port P3 Register PD2 00h 00E5h Port P3 Direction Register PD3 00h 00E5h Port P4 Register P4 XXh 00E5h Port P4 Register PD4 00h 00E6h 00E5h 00E6h 00E5h 00E6h		Port P0 Pogistor	PO	YYh
ODE2h Port PD Direction Register PD0 O0h ODE3h Port P1 Direction Register PD1 O0h ODE4h Port P2 Register P2 XXh ODE5h Port P3 Register P3 XXh ODE6h Port P2 Direction Register PD2 O0h ODE7h Port P3 Direction Register PD3 00h ODE8h Port P4 Register PD3 00h ODE8h Port P4 Register PD3 00h ODE8h Port P4 Register PD4 XXh ODE8h Port P4 Direction Register PD4 00h ODE6h O0E2h O0E7h O0E7h O0F1h				
00E3h Port P1 Direction Régister PD1 00h 00E4h Port P2 Register P2 XXh 00E5h Port P3 Register P3 XXh 00E6h Port P2 Direction Régister PD2 00h 00E7h Port P3 Direction Régister PD3 00h 00E8h Port P4 Register PD3 00h 00E8h Port P4 Register PD4 XXh 00E8h Port P4 Direction Régister PD4 00h 00E8h POT P4 Direction Régister PD4 00h 00E8h POT P4 Direction Régister PD4 00h 00E8h POT P4 Direction Régister PD4 00h 00E8h POT P4 Direction Régister PD4 00h 00E8h POT P4 Direction Régister PD4 00h 00E8h POT P4 Direction Régister PD4 00h 00E8h POT P4 Direction Régister PD4 00h 00E8h POT P4 Direction Régister PD4 00h 00F3h PD		Port P1 Register		
O0E4h Port P2 Register P2 XXh 00E5h Port P3 Register P3 XXh 00E6h Port P3 Direction Register PD2 00h 00E7h Port P3 Direction Register PD3 00h 00E8h Port P4 Register P4 XXh 00E8h Port P4 Register P4 XXh 00E8h Port P4 Direction Register PD4 00h 00E8h Port P4 Direction Register PD4 00F 00F7h				
00E4h Port P2 Register P2 XXh 00E5h Port P3 Register P3 XXh 00E6h Port P3 Direction Register PD2 00h 00E7h Port P3 Direction Register PD3 00h 00E8h Port P4 Register P4 XXh 00E9h 00E6h Port P4 Direction Register PD4 00h 00E8h Port P4 Direction Register PD4 00h 00E6h 00E7h 00E7h <td>00E3h</td> <td>Port P1 Direction Register</td> <td>PD1</td> <td>00h</td>	00E3h	Port P1 Direction Register	PD1	00h
00E5h Port P3 Register P3 XXh 00E6h Port P2 Direction Register PD2 00h 00E7h Port P4 Register PD3 00h 00E8h Port P4 Register P4 XXh 00E9h PD4 00h 00h 00E8h Port P4 Direction Register P4 00h 00E8h PD4 00h 00h 00E6h PD4 00h 00h 00E6h PD4 00h 00E 00E6h PD4 PD4 00h 00E7h PD4 PD4 PD4 00E7h PD4 PD4 PD4 00E7h PD4 PD4 PD4 00F7h PD4 PD4 PD4 00F7h PD4 PD4 PD4 00F7h PD4 PD4 PD4 00F6h PD4 PD4 PD4 00F7h PD4 PD4 PD4 00F7h PD4 PD4 <td>00E4h</td> <td></td> <td>P2</td> <td>XXh</td>	00E4h		P2	XXh
ODE6h Port P2 Direction Register PD2 O0h 00E7h Port P3 Direction Register PD3 O0h 00E8h Port P4 Register P4 XXh 00E9h				
O0E7h Port P3 Direction Register PD3 00h 00E8h Port P4 Register P4 XXh 00E9h		Port D2 Direction Degister		
O0E8h Port P4 Register P4 XXh O0E9h				
O0E9h				00h
00E9h 00EAh Port P4 Direction Register PD4 00h 00EBh 00ECh 00EFh 00EFh 00EFh	00E8h	Port P4 Register	P4	XXh
O0EAh Port P4 Direction Register PD4 00h 00EBh	00E9h			
00EBh		Port P4 Direction Register	PD4	00h
00ECh				
00EDh				ļ
O0Eh Image: constraint of the second se				
O0EFh Image: Constraint of the system Image: Consthe system I				
O0EFh Image: Constraint of the system Image: Consthe system I	00EEh			
00F0h			1	
00F1h 00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F0h 00F1h				+
00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F9h 00F8h 00FBh 00FCh 00FDh 00FFh				<u> </u>
00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F9h 00F8h 00F8h 00F8h 00FBh 00FCh 00FDh 00FFh				
00F4h 00F5h 00F6h 00F7h 00F8h 00F9h 00F8h 00F9h 00F8h 00FBh 00FCh 00FDh 00FFh	00F2h			
00F4h 00F5h 00F6h 00F7h 00F8h 00F9h 00F8h 00F9h 00F8h 00FBh 00FCh 00FDh 00FFh	00F3h			
00F5h Image: mail of the second				1
00F6h 00F7h 00F8h 00F9h 00F9h 00FAh 00FBh 00FCh 00FDh 00FEh 00FFh			1	+
00F7h			+	
00F8h				
00F9h				
00F9h	00F8h			
00FAh			1	1
00FBh				+
00FCh			+	<u> </u>
00FDh				
00FEh 00FFh 00FFh				
00FEh 00FFh 00FFh	00FDh			
00FFh				1
				+
				1

Table 4.4SFR Information (4) (1)

Note:

Adda	Denistan	Oursels al	After Deset
Address	Register	Symbol	After Reset
0100h	Timer RA Control Register	TRACR	00h
0101h	Timer RA I/O Control Register	TRAIOC	00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h	LIN Control Register 2	LINCR2	00h
0106h	LIN Control Register	LINCR	00h
0107h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0109h	Timer RB One-Shot Control Register	TRBOCR	00h
010Ah	Timer RB I/O Control Register	TRBIOC	00h
010Bh	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary Register	TRBPR	FFh
010Fh			
0110h			
0111h			
0112h			l
0113h			
0114h			I
0115h			
0116h			1
0117h			
0117h			l
0119h			
011Ah			
011Bh			
011Ch			
011Dh			
011Eh			
011Fh			
0120h	Timer RC Mode Register	TRCMR	01001000b
0121h	Timer RC Control Register 1	TRCCR1	00h
0122h	Timer RC Interrupt Enable Register	TRCIER	01110000b
0123h	Timer RC Status Register	TRCSR	01110000b
0124h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
0125h	Timer RC I/O Control Register 1	TRCIOR1	10001000b
0126h	Timer RC Counter	TRC	00h
0127h			00h
0128h	Timer RC General Register A	TRCGRA	FFh
0129h	······		FFh
0129h	Timor PC Conoral Pagistar B	TRCGRB	FFh
	Timer RC General Register B	INCORD	
012Bh			FFh
012Ch	Timer RC General Register C	TRCGRC	FFh
012Dh			FFh
012Eh	Timer RC General Register D	TRCGRD	FFh
012Fh			FFh
	Timer RC Control Register 2	TRCCR2	
0130h			00011000b
0131h	Timer RC Digital Filter Function Select Register	TRCDF	00h
0132h	Timer RC Output Master Enable Register	TRCOER	01111111b
0133h	Timer RC Trigger Control Register	TRCADCR	00h
0134h			
0135h			
0136h			1
0137h			
0138h			
0139h			
013Ah			1
013Bh			1
013Ch			
013Dh			
013Eh			
013Fh			1
L		1	1

Table 4.5SFR Information (5) (1)

Note:

Address	Register	Symbol	After Reset
0140h			
0141h			
0142h			
0143h			
0144h			
0145h			
0146h			
0147h			
0148h			
0149h			
014Ah			
014Bh			
014Ch			
014Dh			
014Eh			
014Fh			
0150h			
0151h			
0152h			
0153h			1
0154h		1	1
0155h			
0156h			
0157h			
0158h			
0159h			
015Ah			
015Bh			
015Ch			
015Dh			
015Eh			
015Eh			
0160h			
0161h			
0162h			
0162h			
0164h			
0165h			
0166h			
0166h			
0168h			
0169h			
016Ah			
016Bh			
016Ch			
016Dh			
016Eh			
016Fh			
0170h			
0171h			
0172h			
0173h			
0174h			
0175h			
0176h			
0177h			
0178h			
0179h			
017Ah			
017Bh			
017Ch			
017Dh		1	1
017Eh			
017Eh			
Note:		1	

Table 4.6	SFR Information (6) ⁽¹⁾
-----------	------------------------------------

Note:

Address	Register	Symbol	After Reset
0180h	Timer RA Pin Select Register	TRASR	00h
0181h	Timer RB/RC Pin Select Register	TRBRCSR	00h
0182h	Timer RC Pin Select Register 0	TRCPSR0	00h
0183h	Timer RC Pin Select Register 1	TRCPSR1	00h
0184h			
0185h			
0186h			
0187h			
0188h	UART0 Pin Select Register	U0SR	00h
0189h		0001	0011
018Ah	UART2 Pin Select Register 0	U2SR0	00h
018Bh	UART2 Pin Select Register 1	U2SR1	00h
018Ch		020111	
018Dh			
018Eh	INT Interrupt Input Pin Select Register	INTSR	00h
018Fh	I/O Function Pin Select Register	PINSR	00h
0190h	Low-Voltage Signal Mode Control Register	TSMR	00h
0191h			
0192h			
0192h			
0193h 0194h			
0194n 0195h			
0196h			
0196h			
0197h 0198h			
0199h			
0199h			
019An			
019Bh			
019Dh			
019Eh			
019Eh			
0131 h			
01A0h			
01A1h			
01A2h			
01A3h			
01A4n			
01A6h			
01A0h			
01A7h 01A8h			
01A8h			
01AAh 01ABh			
01ACh 01ADh			
01AEh			
01AFh			
01B0h			
01B1h	Flack Manager Otatus Dagistas	FOT	40000V00F
01B2h	Flash Memory Status Register	FST	10000X00b
01B3h	Flack Manager Constant Depicture C	EMDO	0.01
01B4h	Flash Memory Control Register 0	FMR0	00h
01B5h	Flash Memory Control Register 1	FMR1	00h
01B6h	Flash Memory Control Register 2	FMR2	00h
01B7h			
01B8h			
01B9h			
01BAh			
01BBh			
01BCh			
01BDh			
01BEh			
01BFh			
X: Undefined			

Table 4.7SFR Information (7) (1)

X: Undefined

Note:

Address	Register	Symbol	After Reset
01C0h	Address Match Interrupt Register 0	RMAD0	XXh
01C1h			XXh
01C2h			0000XXXXb
01C3h	Address Match Interrupt Enable Register 0	AIER0	00h
01C4h	Address Match Interrupt Register 1	RMAD1	XXh
01C5h			XXh
01C6h			0000XXXXb
01C7h	Address Match Interrupt Enable Register 1	AIER1	00h
01C8h			
01C9h			
01CAh			
01CBh			
01CCh			
01CDh			
01CEh			
01CFh			
01D0h			
01D1h			
01D2h			
01D3h			
01D4h			
01D5h			
01D6h			
01D7h			
01D8h			
01D9h			
01DAh			
01DBh			
01DCh			
01DDh			
01DEh			
01DFh		DUDO	0.01
01E0h	Pull-Up Control Register 0	PUR0	00h
01E1h	Pull-Up Control Register 1	PUR1	00h
01E2h			
01E3h			
01E4h			
01E5h 01E6h			
01E6h 01E7h			
01E8h			
01E9h 01EAh			
01EAn 01EBh			
01EBh			
01EDh			
01EDh			
01EFh			
	Port P1 Drive Capacity Control Register	P1DRR	00h
01F1h	Port P2 Drive Capacity Control Register	P2DRR	00h
01F2h	Drive Capacity Control Register 0	DRR0	00h
01F3h	Drive Capacity Control Register 1	DRR1	00h
01F4h			
01F5h	Input Threshold Control Register 0	VLT0	00h
01F6h	Input Threshold Control Register 1	VLT1	00h
01F7h	1		
01F8h			
01F9h			
01FAh	External Input Enable Register 0	INTEN	00h
01FBh			
01FCh	INT Input Filter Select Register 0	INTF	00h
01FDh			
01FEh	Key Input Enable Register 0	KIEN	00h
01FFh			
X: Undefined			•

Table 4.8SFR Information (8) (1)

X: Undefined

Note:

Address	Pogiator	Symbol	After Reset
02C0h	Register SCU Control Register 0	SCUCRO	00h
02C0h	SCU Mode Register	SCUMR	00h
02C2h	SCU Timing Control Register 0	SCTCR0	00000011b
			0000001b
02C3h	SCU Timing Control Register 1	SCTCR1	
02C4h	SCU Timing Control Register 2	SCTCR2	00010000b
02C5h	SCU Timing Control Register 3	SCTCR3	00h
02C6h	SCU Channel Control Register	SCHCR	00h
02C7h	SCU Channel Control Counter	SCUCHC	00h
02C8h	SCU Flag Register	SCUFR	00h
02C9h	SCU Status Counter	SCUSTC	00h
02CAh	SCU Secondary Counter Set Register	SCSCSR	00000111b
02CBh	SCU Secondary Counter	SCUSCC	00000111b
02CCh			
02CDh			
02CEh	SCU Destination Address Register	SCUDAR	00h
02CEh	SCO Destiliation Address Register	SCODAR	
		0011000	00001100b
02D0h	SCU Data Buffer Register	SCUDBR	00h
02D1h			00h
02D2h	SCU Primary Counter	SCUPRC	00h
02D3h			00h
02D4h			
02D5h			
02D6h			
02D7h			
02D7h 02D8h			
02D8h			
02DAh			
02DBh			
02DCh	Touch Sensor Input Enable Register 0	TSIER0	00h
02DDh	Touch Sensor Input Enable Register 1	TSIER1	00h
02DEh	Touch Sensor Input Enable Register 2	TSIER2	00h
02DFh			
:			
2C00h	DTC Transfer Vector Area		XXh
2C00h	DTC Transfer Vector Area		XXh
2C02h	DTC Transfer Vector Area		XXh
2C03h	DTC Transfer Vector Area		XXh
2C04h	DTC Transfer Vector Area		XXh
2C05h	DTC Transfer Vector Area		XXh
2C06h	DTC Transfer Vector Area		XXh
2C07h	DTC Transfer Vector Area		XXh
2C08h	DTC Transfer Vector Area		XXh
2C09h	DTC Transfer Vector Area		XXh
2C03h	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
	DTC Transfer Vector Area		XXh
2C3Ah	DTC Transfer Vector Area		XXh
2C3Bh	DTC Transfer Vector Area		XXh
2C3Ch	DTC Transfer Vector Area		XXh
2C3Dh	DTC Transfer Vector Area	1	XXh
2C3Eh	DTC Transfer Vector Area		XXh
2C3Fh	DTC Transfer Vector Area		XXh
2C3111 2C40h	DTC Control Data 0	DTCD0	XXh
		01000	
2C41h	4		XXh
2C42h	4		XXh
2C43h	1		XXh
2C44h			XXh
2C45h			XXh
2C46h			XXh
2C47h	1		XXh
2C48h	DTC Control Data 1	DTCD1	XXh
2C49h		2.001	XXh
2C490 2C4Ah	4		
	4		XXh
			XXh
2C4Bh			XXh
2C4Bh 2C4Ch			
2C4Bh 2C4Ch 2C4Dh			XXh
2C4Bh 2C4Ch			

Table 4.9SFR Information (9) (1)

Note:

Address	Degister	Cump of	After Deast
Address	Register	Symbol	After Reset
2C50h	DTC Control Data 2	DTCD2	XXh
2C51h			XXh
2C52h			XXh
2C53h			XXh
2C54h			XXh
2C55h			XXh
2C56h	-		XXh
2C57h	-		XXh
2C58h	DTC Control Data 3	DTCD3	XXh
2C59h	BIC Control Data 5	DICDS	XXh
2C5Ah			XXh
2C5Bh			XXh
2C5Ch			XXh
2C5Dh			XXh
2C5Eh			XXh
2C5Fh			XXh
2C60h	DTC Control Data 4	DTCD4	XXh
2C61h			XXh
2C62h	1		XXh
2C63h	4		XXh
2C63h	4		XXh
	4		
2C65h	4		XXh
2C66h			XXh
2C67h			XXh
2C68h	DTC Control Data 5	DTCD5	XXh
2C69h			XXh
2C6Ah			XXh
2C6Bh			XXh
2C6Ch			XXh
2C6Dh	-		XXh
2C6Eh	-		XXh
2C6Fh			XXh
2C70h	DTC Control Data 6	DTCD6	XXh
2C71h			XXh
2C72h			XXh
2C73h			XXh
2C74h			XXh
2C75h	1		XXh
2C76h			XXh
2C77h	-		XXh
2C78h	DTO Ocustual Data 7	DTCD7	XXh
	DTC Control Data 7	DICDI	
2C79h			XXh
2C7Ah	4		XXh
2C7Bh			XXh
2C7Ch			XXh
2C7Dh]		XXh
2C7Eh	1		XXh
2C7Fh	1		XXh
2C80h	DTC Control Data 8	DTCD8	XXh
2C81h		51050	XXh
2C82h	4		XXh
	4		
2C83h	4		XXh
2C84h	4		XXh
2C85h	1		XXh
2C86h			XXh
2C87h]		XXh
2C88h	DTC Control Data 9	DTCD9	XXh
2C89h	1		XXh
2C8Ah	1		XXh
2C8Bh	1		XXh
	4		XXh
2C8Ch	4		
2C8Dh	4		XXh
2C8Eh	4		XXh
2C8Fh			XXh
Y: Undofined			

Table 4.10SFR Information (10) (1)

Note:

			A (;
Address	Register	Symbol	After Reset
2C90h	DTC Control Data 10	DTCD10	XXh
2C91h			XXh
2C92h			XXh
2C93h	1		XXh
2C94h	-		XXh
2C95h	4		XXh
2C96h	4		XXh
	4		
2C97h			XXh
2C98h	DTC Control Data 11	DTCD11	XXh
2C99h			XXh
2C9Ah			XXh
2C9Bh	4		XXh
2C9Ch	4		XXh
2C9Dh	-		XXh
2C9Eh	4		XXh
	4		
2C9Fh			XXh
2CA0h	DTC Control Data 12	DTCD12	XXh
2CA1h			XXh
2CA2h			XXh
2CA3h	1		XXh
2CA4h	1		XXh
2CA5h	4		XXh
2CA6h	4		XXh
	4		
2CA7h			XXh
2CA8h	DTC Control Data 13	DTCD13	XXh
2CA9h			XXh
2CAAh			XXh
2CABh			XXh
2CACh	1		XXh
2CADh	-		XXh
2CAEh	-		XXh
2CAEh 2CAFh	4		XXh
		DTOD/ (
2CB0h	DTC Control Data 14	DTCD14	XXh
2CB1h			XXh
2CB2h			XXh
2CB3h			XXh
2CB4h			XXh
2CB5h			XXh
2CB6h	4		XXh
2CB7h	-		XXh
2CB8h	DTC Control Data 15	DTCD15	XXh
	DTC Control Data 15	DICDIS	
2CB9h	4		XXh
2CBAh			XXh
2CBBh			XXh
2CBCh			XXh
2CBDh]		XXh
2CBEh	1		XXh
2CBFh	1		XXh
2CC0h	DTC Control Data 16	DTCD16	XXh
2000h		510510	XXh
2CC1h	4		XXh
	4		
2CC3h	4		XXh
2CC4h	4		XXh
2CC5h			XXh
2CC6h			XXh
2CC7h]		XXh
2CC8h	DTC Control Data 17	DTCD17	XXh
2CC9h	1		XXh
2CC3h	4		XXh
2CCAn 2CCBh	4		XXh
	4		
2CCCh	4		XXh
2CCDh	4		XXh
2CCEh			XXh
2CCFh			XXh
Y: Undofined			

Table 4.11SFR Information (11) (1)

Note:

Address	Register	Symbol	After Reset
2CD0h	DTC Control Data 18	DTCD18	XXh
2CD1h			XXh
2CD2h	1		XXh
2CD3h	1		XXh
2CD4h	1		XXh
2CD5h			XXh
2CD6h			XXh
2CD7h			XXh
2CD8h	DTC Control Data 19	DTCD19	XXh
2CD9h			XXh
2CDAh	-		XXh
2CDBh	-		XXh
2CDCh	-		XXh
2CDDh	-		XXh
2CDEh	-		XXh
2CDFh			XXh
2CE0h	DTC Control Data 20	DTCD20	XXh
2CE1h		510020	XXh
2CE2h			XXh
2CE3h			XXh
2CE4h	-		XXh
2CE5h	-		XXh
2CE6h			XXh
2CE7h	-		XXh
2CE8h	DTC Control Data 21	DTCD21	XXh
2CE9h		DIODEI	XXh
2CEAh	-		XXh
2CEBh	-		XXh
2CECh	-		XXh
2CEDh	-		XXh
2CEEh	-		XXh
2CEFh	-		XXh
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h		DTODZZ	XXh
2CF2h	-		XXh
2CF3h	-		XXh
2CF4h	-		XXh
2CF5h	4		XXh
2CF6h	4		XXh
2CF7h	-		XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h		010023	XXh
2CF9II 2CFAh	4		XXh
2CFAn 2CFBh	4		XXh
2CFBn 2CFCh	-		XXh
2CFCh 2CFDh			XXh
2CFDn 2CFEh	4		XXh
2CFEn 2CFFh	4		XXh
2CFFn 2D00h			
2D00n :			
2FFFh X: Undefined			

Table 4.12SFR Information (12) (1)

Note:

Address	Area Name	Symbol After F		
:				
FFDBh	Option Function Select Register 2	OFS2	(Note 1)	
:				
FFDFh	ID1		(Note 2)	
:				
FFE3h	ID2		(Note 2)	
:				
FFEBh	ID3		(Note 2)	
:				
FFEFh	ID4		(Note 2)	
:				
FFF3h	ID5		(Note 2)	
:	100			
FFF7h	ID6		(Note 2)	
:				
FFFBh	ID7		(Note 2)	
:	Orting Evention Colort Desigter	1050	(NI=4= 4)	
FFFFh	Option Function Select Register	OFS	(Note 1)	

Table 4.13 ID Code Areas and Option Function Select Area

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user. When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.

2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

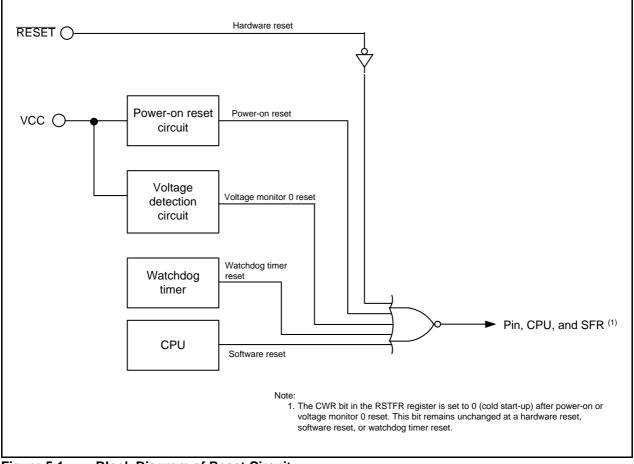
5. Resets

The following resets are implemented: hardware reset, power-on reset, voltage monitor 0 reset, watchdog timer reset, and software reset.

Table 5.1 lists the Reset Names and Sources and Figure 5.1 shows the Block Diagram of Reset Circuit.

Table 5.1Reset Names and Sources

Reset Name	Source
Hardware reset	Input voltage of RESET pin is held "L"
Power-on reset	VCC rises
Voltage monitor 0 reset	VCC falls (monitor voltage: Vdet0)
Watchdog timer reset	Underflow of watchdog timer
Software reset	Write 1 to PM03 bit in PM0 register



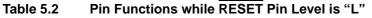
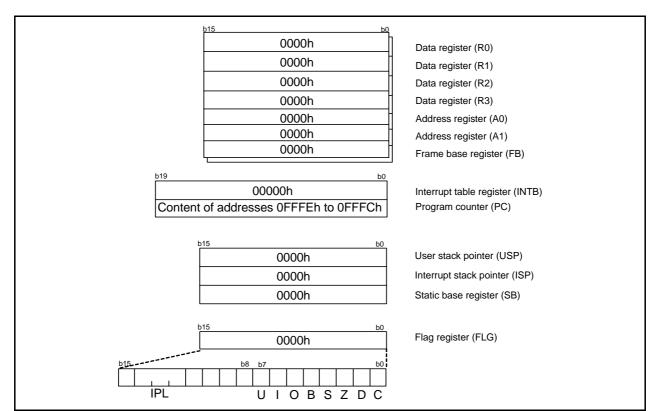
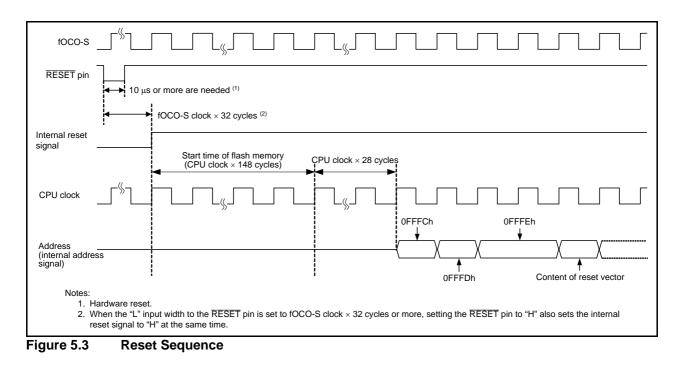
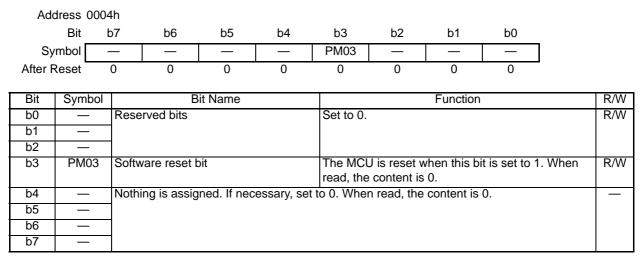

Figure 5.1 Block Diagram of Reset Circuit

Table 5.2 lists the Pin Functions while $\overline{\text{RESET}}$ Pin Level is "L", Figure 5.2 shows the CPU Register Status after Reset, Figure 5.3 shows the Reset Sequence.

Pin Name	Pin Function
P0, P1, P2_0 to P2_6, P3_1, P3_3 to P3_5, P3_7	Input port
P4_2, P4_5 to P4_7	Input port


Figure 5.2 CPU Register Status after Reset

5.1 Registers

5.1.1 Processor Mode Register 0 (PM0)

Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting the PM0 register.

5.1.2 Reset Source Determination Register (RSTFR)

Address 0	00Bh								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol		—	—	—	WDR	SWR	HWR	CWR	
After Reset	0	Х	Х	Х	Х	Х	Х	Х	(Note 1)

Bit	Symbol	Bit Name	Function	R/W
b0	CWR	Cold start-up/warm start-up	0: Cold start-up	R/W
		determine flag ^(2, 3)	1: Warm start-up	
b1	HWR	Hardware reset detect flag	0: Not detected	R
			1: Detected	
b2	SWR	Software reset detect flag	0: Not detected	R
			1: Detected	
b3	WDR	Watchdog timer reset detect flag	0: Not detected	R
			1: Detected	
b4	_	Reserved bits	When read, the content is undefined.	R
b5				
b6				
b7	_	Reserved bit	Set to 0.	R/W

Notes:

1. The CWR bit is set to 0 (cold start-up) after power-on or voltage monitor 0 reset. This bit remains unchanged at a hardware reset, software reset, or watchdog timer reset.

2. If 1 is written to the CWR bit by a program, it is set to 1. (Writing 0 does not affect this bit.)

3. When the VW0C0 bit in the VW0C register is set to 0 (voltage monitor 0 reset disabled), the CWR bit value is undefined.

5.1.3 **Option Function Select Register (OFS)**

Address	0FFFFh							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	CSPROINI	LVDAS	VDSEL1	VDSEL0	ROMCP1	ROMCR	_	WDTON
After Reset	User Setting Value (1)							

User Setting Value (1)

Bit	Symbol	Bit Name	Function	R/W
b0	WDTON	Watchdog timer start select bit	0: Watchdog timer automatically starts after reset.1: Watchdog timer is stopped after reset.	R/W
b1	—	Reserved bit	Set to 1.	R/W
b2	ROMCR	ROM code protect disable bit	0: ROM code protect disabled 1: ROMCP1 bit enabled	R/W
b3	ROMCP1	ROM code protect bit	0: ROM code protect enabled 1: ROM code protect disabled	R/W
b4	VDSEL0	Voltage detection 0 level select bit ⁽²⁾	b5 b4	R/W
b5	VDSEL1		0 0: 3.80 V selected (Vdet0_3) 0 1: 2.85 V selected (Vdet0_2) 1 0: 2.35 V selected (Vdet0_1) 1 1: 1.90 V selected (Vdet0_0)	R/W
b6	LVDAS	Voltage detection 0 circuit start bit ⁽³⁾	0: Voltage monitor 0 reset enabled after reset 1: Voltage monitor 0 reset disabled after reset	R/W
b7	CSPROINI	Count source protection mode after reset select bit	0: Count source protect mode enabled after reset 1: Count source protect mode disabled after reset	R/W

Notes:

1. The OFS register is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the OFS register. If the block including the OFS register is erased, the OFS register is set to FFh.

When blank products are shipped, the OFS register is set to FFh. It is set to the written value after written by the user.

When factory-programming products are shipped, the value of the OFS register is the value programmed by the user.

2. The same level of the voltage detection 0 level selected by bits VDSEL0 and VDESL1 is set in both functions of voltage monitor 0 reset and power-on reset.

3. To use power-on reset and voltage monitor 0 reset, set the LVDAS bit to 0 (voltage monitor 0 reset enabled after reset).

For a setting example of the OFS register, refer to 13.3.1 Setting Example of Option Function Select Area.

LVDAS Bit (Voltage Detection 0 Circuit Start Bit)

The Vdet0 voltage to be monitored by the voltage detection 0 circuit is selected by bits VDSEL0 and VDSEL1.

5.1.4 **Option Function Select Register 2 (OFS2)**

Address	0FFDBh							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol					WDTRCS1	WDTRCS0	WDTUFS1	WDTUFS0
After Reset	User Setting Value ⁽¹⁾							

Bit	Symbol	Bit Name	Function	R/W
b0	WDTUFS0	Watchdog timer underflow period set bit	0 0: 03FFh	R/W
b1	WDTUFS1		0 1: 0FFFh 1 0: 1FFFh 1 1: 3FFFh	R/W
b2 b3		Watchdog timer refresh acknowledgement period set bit	b3 b2 0 0: 25% 0 1: 50% 1 0: 75% 1 1: 100%	R/W R/W
b4	—	Reserved bits	Set to 1.	R/W
b5	_			
b6				
b7	—			

Note:

1. The OFS2 register is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the OFS2 register. If the block including the OFS2 register is erased, the OFS2 register is set to FFh.

When blank products are shipped, the OFS2 register is set to FFh. It is set to the written value after written by the user.

When factory-programming products are shipped, the value of the OFS2 register is the value programmed by the user.

For a setting example of the OFS2 register, refer to 13.3.1 Setting Example of Option Function Select Area.

Bits WDTRCS0 and WDTRCS1

(Watchdog Timer Refresh Acknowledgement Period Set Bit)

Assuming that the period from when the watchdog timer starts counting until it underflows is 100%, the refresh acknowledgement period for the watchdog timer can be selected.

For details, refer to 14.3.1.1 Refresh Acknowledgment Period.

5.2 Hardware Reset

A reset is applied using the **RESET** pin. When an "L" signal is applied to the **RESET** pin while the supply voltage meets the recommended operating conditions, pins, CPU, and SFRs are all reset (refer to **Table 5.2 Pin Functions** while **RESET** Pin Level is "L", Figure 5.2 CPU Register Status after Reset, and Table 4.1 to 4.12 SFR Information). When the input level applied to the **RESET** pin changes from "L" to "H", a program is executed beginning with the address indicated by the reset vector. After reset, the low-speed on-chip oscillator clock with no division is automatically selected as the CPU clock.

Refer to 4. Special Function Registers (SFRs) for the states of the SFRs after reset.

The internal RAM is not reset. If the **RESET** pin is pulled "L" while writing to the internal RAM is in progress, the contents of internal RAM will be undefined.

Figure 5.4 shows an Example of Hardware Reset Circuit and Operation and Figure 5.5 shows an Example of Hardware Reset Circuit (Usage Example of External Supply Voltage Detection Circuit) and Operation.

5.2.1 When Power Supply is Stable

- (1) Apply "L" to the $\overline{\text{RESET}}$ pin.
- (2) Wait for 10 μ s.
- (3) Apply "H" to the $\overline{\text{RESET}}$ pin.

5.2.2 Power On

- (1) Apply "L" to the $\overline{\text{RESET}}$ pin.
- (2) Let the supply voltage increase until it meets the recommended operating conditions.
- (3) Wait for td(P-R) or more to allow the internal power supply to stabilize (refer to 27. Electrical Characteristics).
- (4) Wait for 10 $\mu s.$
- (5) Apply "H" to the $\overline{\text{RESET}}$ pin.

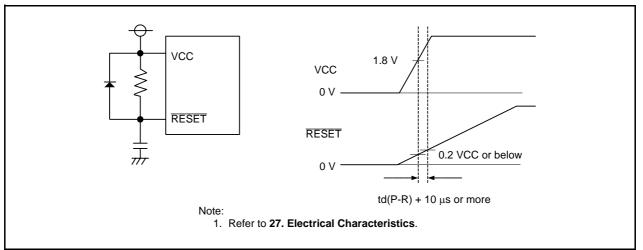


Figure 5.4 Example of Hardware Reset Circuit and Operation

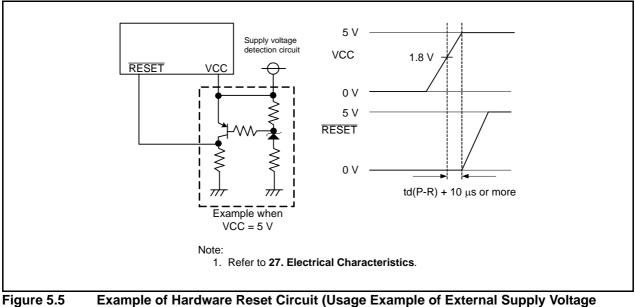
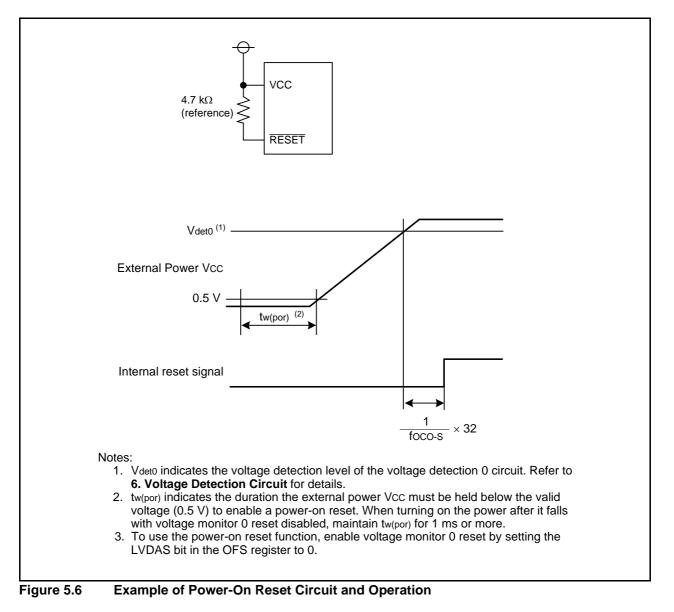


Figure 5.5 Example of Hardware Reset Circuit (Usage Example of External Supply Voltag Detection Circuit) and Operation

5.3 **Power-On Reset Function**


When the $\overline{\text{RESET}}$ pin is connected to the VCC pin via a pull-up resistor, and the VCC pin voltage level rises, the power-on reset function is enabled and the MCU resets its pins, CPU, and SFR. When a capacitor is connected to the $\overline{\text{RESET}}$ pin, too, always keep the voltage to the $\overline{\text{RESET}}$ pin 0.8VCC or more.

When the input voltage to the VCC pin reaches the Vdet0 level or above, the low-speed on-chip oscillator clock starts counting. When the low-speed on-chip oscillator clock count reaches 32, the internal reset signal is held "H" and the MCU enters the reset sequence (refer to Figure 5.3). The low-speed on-chip oscillator clock with no division is automatically selected as the CPU clock after reset.

Refer to 4. Special Function Registers (SFRs) for the states of the SFR after power-on reset.

To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

Figure 5.6 shows an Example of Power-On Reset Circuit and Operation.

5.4 Voltage Monitor 0 Reset

A reset is applied using the on-chip voltage detection 0 circuit. The voltage detection 0 circuit monitors the input voltage to the VCC pin. The voltage to monitor is Vdet0. To use voltage monitor 0 reset, set the LVDAS bit in the OFS register to 0 (voltage monitor 0 reset enabled after reset). The Vdet0 voltage detection level can be changed by the settings of bits VDSEL0 to VDSEL1 in the OFS register.

When the input voltage to the VCC pin reaches the Vdet0 level or below, the pins, CPU, and SFR are reset.

When the input voltage to the VCC pin reaches the Vdet0 level or above, the low-speed on-chip oscillator clock start counting. When the low-speed on-chip oscillator clock count reaches 32, the internal reset signal is held "H" and the MCU enters the reset sequence (refer to Figure 5.3). The low-speed on-chip oscillator clock with no division is automatically selected as the CPU clock after reset.

To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

Bits VDSEL0 to VDSEL1 and LVDAS cannot be changed by a program. To set these bits, write values to b4 to b6 of address 0FFFFh using a flash programmer.

Refer to 5.1.3 Option Function Select Register (OFS) for details of the OFS register.

Refer to 4. Special Function Registers (SFRs) for the status of the SFR after voltage monitor 0 reset.

The internal RAM is not reset. When the input voltage to the VCC pin reaches the Vdet0 level or below while writing to the internal RAM is in progress, the contents of internal RAM are undefined.

Refer to 6. Voltage Detection Circuit for details of voltage monitor 0 reset.

Figure 5.7 shows an Example of Voltage Monitor 0 Reset Circuit and Operation.

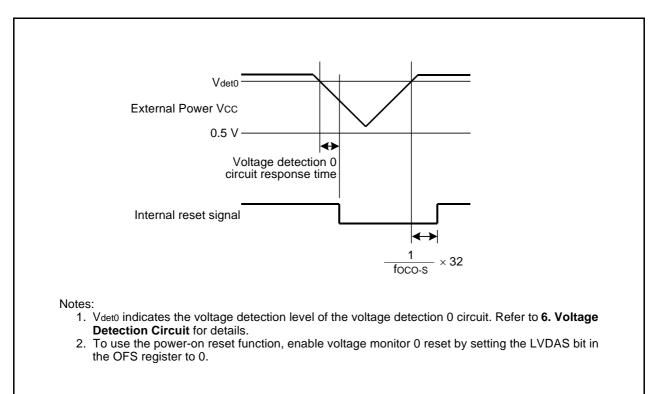


Figure 5.7 Example of Voltage Monitor 0 Reset Circuit and Operation

5.5 Watchdog Timer Reset

When the PM12 bit in the PM1 register is set to 1 (reset when watchdog timer underflows), the MCU resets its pins, CPU, and SFR if the watchdog timer underflows. Then the program beginning with the address indicated by the reset vector is executed. After reset, the low-speed on-chip oscillator clock with no division is automatically selected as the CPU clock.

Refer to 4. Special Function Registers (SFRs) for the states of the SFRs after watchdog timer reset.

The internal RAM is not reset. When the watchdog timer underflows, while writing to the internal RAM is in progress, the contents of internal RAM are undefined.

The underflow period and refresh acknowledge period for the watchdog timer can be set by bits WDTUFS0 to WDTUFS1 and bits WDTRCS0 to WDTRCS1 in the OFS2 register, respectively.

Refer to 14. Watchdog Timer for details of the watchdog timer.

5.6 Software Reset

When the PM03 bit in the PM0 register is set to 1 (MCU reset), the MCU resets its pins, CPU, and SFR. The program beginning with the address indicated by the reset vector is executed. After reset, the low-speed on-chip oscillator clock with no division is automatically selected for the CPU clock.

Refer to 4. Special Function Registers (SFRs) for the states of the SFRs after software reset.

The internal RAM is not reset.

5.7 Cold Start-Up/Warm Start-Up Determination Function

The cold start-up/warm start-up determination function uses the CWR bit in the RSTFR register to determine cold start-up (reset process) at power-on and warm start-up (reset process) when a reset occurred during operation. The CWR bit is set to 0 (cold start-up) at power-on and also set to 0 at a voltage monitor 0 reset. If 1 is written to

the CWR bit by a program, it is set to 1. This bit remains unchanged at a hardware reset, software reset, or watchdog timer reset.

The cold start-up/warm start-up determination function uses voltage monitor 0 reset. Figure 5.8 shows an Operating Example of Cold Start-Up/Warm Start-Up Function.

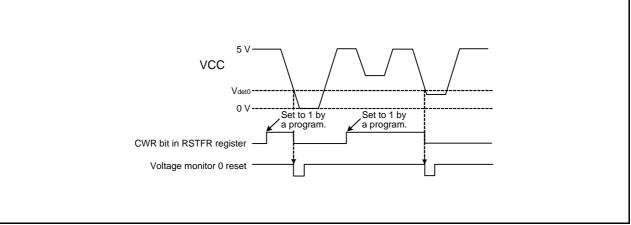


Figure 5.8 Operating Example of Cold Start-Up/Warm Start-Up Function

5.8 Reset Source Determination Function

The RSTFR register can be used to detect whether a hardware reset, software reset, or watchdog timer reset has occurred.

If a hardware reset occurs, the HWR bit is set to 1 (detected). If a software reset occurs, the SWR bit is set to 1 (detected). If a watchdog timer reset occurs, the WDR bit is set to 1 (detected).

6. Voltage Detection Circuit

The voltage detection circuit monitors the voltage input to the VCC pin. This circuit can be used to monitor the VCC input voltage by a program.

6.1 Overview

The detection voltage of voltage detection 0 can be selected among four levels using the OFS register. The detection voltage of voltage detection 1 can be selected among 16 levels using the VD1LS register. The voltage monitor 0 reset, and voltage monitor 1 interrupt and voltage monitor 2 interrupt can also be used.

	Item	Voltage Monitor 0	Voltage Monitor 1	Voltage Monitor 2
VCC	Voltage to monitor	Vdet0	Vdet1	Vdet2
monitor	Detection target	Whether passing through Vdet0 by rising or falling	Whether passing through Vdet1 by rising or falling	Whether passing through Vdet2 by rising or falling
	Detection voltage	Selectable among 4 levels using the OFS register.	Selectable among 16 levels using the VD1LS register.	Fixed level
	Monitor	None	The VW1C3 bit in the VW1C register	The VCA13 bit in the VCA1 register
			Whether VCC is higher or lower than Vdet1	Whether VCC is higher or lower than Vdet2
Process at	Reset	Voltage monitor 0 reset	None	None
voltage detection		Reset at Vdet0 > VCC; CPU operation restarts at VCC > Vdet0		
	Interrupts	None	Voltage monitor 1 interrupt	Voltage monitor 2 interrupt
			Non-maskable or maskable selectable	Non-maskable or maskable selectable
			Interrupt request at: Vdet1 > VCC and/or VCC > Vdet1	Interrupt request at: Vdet2 > VCC and/or VCC > Vdet2
Digital filter	Switching enable/ disable	No digital filter function	Supported	Supported
	Sampling time	—	(fOCO-S divided by n) × 2 n: 1, 2, 4, and 8	(fOCO-S divided by n) × 2 n: 1, 2, 4, and 8

 Table 6.1
 Voltage Detection Circuit Specifications

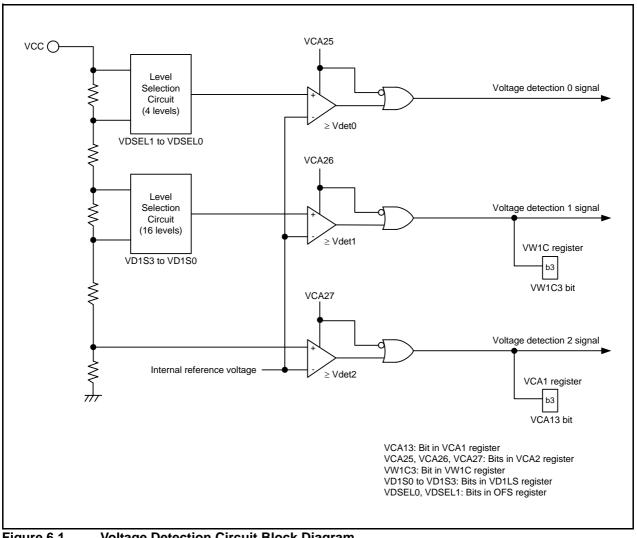


Figure 6.1 Voltage Detection Circuit Block Diagram

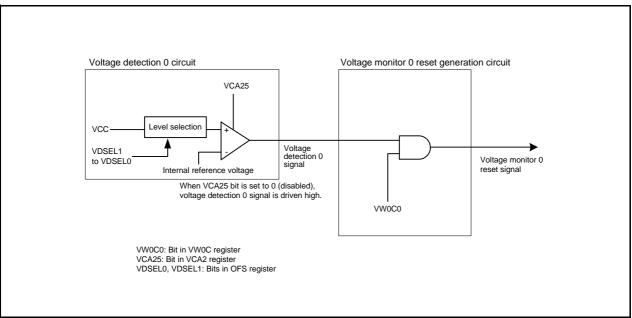


Figure 6.2 Block Diagram of Voltage Monitor 0 Reset Generation Circuit

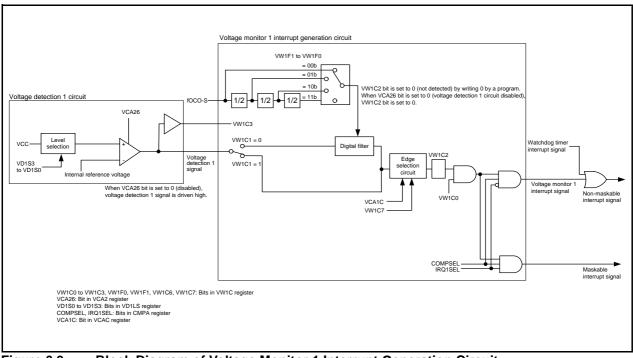


Figure 6.3 Block Diagram of Voltage Monitor 1 Interrupt Generation Circuit

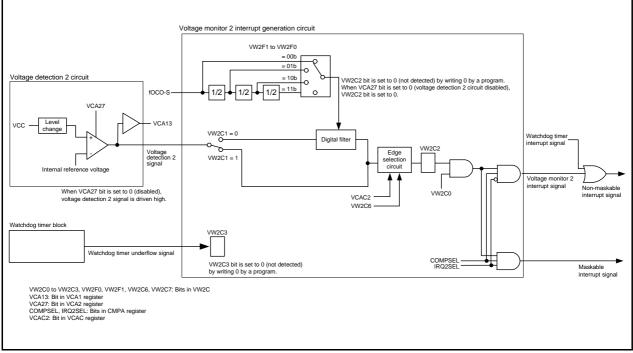


Figure 6.4 Block Diagram of Voltage Monitor 2 Interrupt Generation Circuit

6.2 Registers

6.2.1 Voltage Monitor Circuit Control Register (CMPA)

selection enable bit (1, 2)

		-					-	-	-			
A	Address (J030h										
	Bit	b7	ł	b6	b5	b	4	b3	b2	b1	b0	
S	Symbol	COMP	SEL -		IRQ2SEL	IRQ1	SEL	_				7
Afte	r Reset	0		0	0	0)	0	0	0	0	-
Bit	Syr	mbol		Bit	Name				Functio	on		R/W
b0	-	_	Reserved	d bits			Set to	0.				R/W
b1	-	_	1									
b2	-	_	1									
b3	-		1									
b4	IRQ	1SEL	Voltage r	monitor	r 1 interrupt t	<i>²</i>		n-maskable				R/W
		ļ	select bit	t (1)			1: Ma	skable inter	rupt			
b5	IRQ2	2SEL	Voltage r	monitor	r 2 interrupt t	ype	0: Nor	n-maskable	interrupt			R/W
		ļ	select bit	t (2)			1: Ma	skable inter	rupt			
b6	-	_	Reserved	d bit	·		Set to	0.				R/W
b7	COM	IPSEL	Voltage r	monitor	r interrupt typ	be	0: Bits	IRQ1SEL	and IRQ2SE	L disabled		R/W

Notes:

1. When the VW1C0 bit in the VW1C register is set to 1 (enabled), do not set bits IRQ1SEL and COMPSEL simultaneously (with one instruction).

1: Bits IRQ1SEL and IRQ2SEL enabled

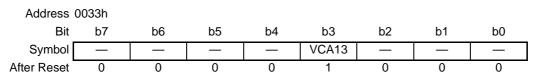
2. When the VW2C0 bit in the VW2C register is set to 1 (enabled), do not set bits IRQ2SEL and COMPSEL simultaneously (with one instruction).

R/W

R/W

R/W

6.2.2 Voltage Monitor Circuit Edge Select Register (VCAC)


Ado	dress 0	031	h									
	Bit	b	7	b6	b5	b4	b	3	b2	b1	b0	
Sy	mbol	-	_				-	-	VCAC2	VCAC1		
After F	Reset	(0	0	0	0	0)	0	0	0	-
	_											
Bit	Symb	pol			Bit Name					Functio		
b0			Nothi	ng is assig	gned. If nec	essary, set	t to 0.	Whe	n read, the	content is	0.	
b1	VCAC	C1	Volta	ge monitor	1 circuit e	dge select	bit ⁽¹⁾					
								1: B	oth edges			
b2	VCAC	C2	Volta	ge monitor	2 circuit e	dge select	bit ⁽²⁾	0: O	ne edge			
								1: B	oth edges			
b3			Nothi	ng is assig	gned. If nec	essary, set	t to 0.	Whe	n read, the	content is	0.	

b7 Notes:

b3 b4 b5 b6

- 1. When the VCAC1 bit is set tot 0 (one edge), the VW1C7 bit in the VW1C register is enabled. Set the VW1C7 bit after setting the VCAC1 bit to 0.
- 2. When the VCAC2 bit is set tot 0 (one edge), the VW2C7 bit in the VW2C register is enabled. Set the VW2C7 bit after setting the VCAC2 bit to 0.

6.2.3 Voltage Detect Register 1 (VCA1)

Bit	Symbol	Bit Name	Function	R/W
b0	—	Reserved bits	Set to 0.	R/W
b1	_			
b2	_			
b3	VCA13	Voltage detection 2 signal monitor flag ⁽¹⁾	0: VCC < Vdet2 1: VCC ≥ Vdet2 or voltage detection 2 circuit disabled	R
b4	—	Reserved bits	Set to 0.	R/W
b5	—			
b6	—			
b7	—			

Note:

1. When the VCA27 bit in the VCA2 register is set to 1 (voltage detection 2 circuit enabled), the VCA13 bit is enabled.

When the VCA27 bit in the VCA2 register is set to 0 (voltage detection 2 circuit disabled), the VCA13 bit is set to 1 (VCC \geq Vdet2).

6.2.4 Voltage Detect Register 2 (VCA2)

Address	0034h										
Bit	b7	b6	b5	b4	b3	b2	b1	b0			
Symbol	VCA27	VCA26	VCA25					VCA20			
After Reset	0	0	0	0	0	0	0	0			
	The above	applies wl	hen the LVE	DAS bit in t	the OFS re	gister is se	et to 1.				
After Reset	0	0	1	0	0	0	0	0			
	The above applies when the LVDAS bit in the OFS register is set to 0.										

Bit	Symbol	Bit Name	Function	R/W
b0	VCA20	Internal power low consumption	0: Low consumption disabled	R/W
		enable bit ⁽¹⁾	1: Low consumption enabled ⁽²⁾	
b1	—	Reserved bits	Set to 0.	R/W
b2	—			
b3	—			
b4	—			
b5	VCA25	Voltage detection 0 enable bit ⁽³⁾	0: Voltage detection 0 circuit disabled	R/W
			1: Voltage detection 0 circuit enabled	
b6	VCA26	Voltage detection 1 enable bit ⁽⁴⁾	0: Voltage detection 1 circuit disabled	R/W
			1: Voltage detection 1 circuit enabled	
b7	VCA27	Voltage detection 2 enable bit ⁽⁵⁾	0: Voltage detection 2 circuit disabled	R/W
			1: Voltage detection 2 circuit enabled	

Notes:

1. Use the VCA20 bit only when the MCU enters wait mode. To set the VCA20 bit, follow the procedure shown in Figure 9.3 Procedure for Reducing Internal Power Consumption Using VCA20 bit.

- 2. When the VCA20 bit is set to 1 (low consumption enabled), do not set the CM10 bit in the CM1 register to 1 (stop mode).
- 3. When writing to the VCA25 bit, set a value after reset.
- To use the voltage detection 1 interrupt or the VW1C3 bit in the VW1C register, set the VCA26 bit to 1. After the VCA26 bit is set to 1 from 0, allow td(E-A) to elapse before the voltage detection 1 circuit starts operation.
- To use the voltage detection 2 interrupt or the VCA13 bit in the VCA1 register, set the VCA27 bit to 1. After the VCA27 bit is set to 1 from 0, allow td(E-A) to elapse before the voltage detection 2 circuit starts operation.

Set the PRC3 bit in the PRCR register to 1 (write enabled) before rewriting the VCA2 register.

6.2.5 Voltage Detection 1 Level Select Register (VD1LS)

Add	ress 0	036h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol — — — — VD1S3			VD1S3	VD1S2	VD1S1	VD1S0				
After Re	eset	0	0	0	0	0	1	1	1	
Bit	Sym			Bit Nam	ne			Fund	ction	R/W
b0 b1 b2 b3	VD1 VD1 VD1	IS1 (IS2	Voltage detect Reference vo			e falls)	33 b2 b1 b0 0 0 0 0: 2.20 0 0 1: 2.30 0 0 1 0: 2.50 0 0 1 0: 2.50 0 1 0: 2.80 0 1 0 0: 2.80 0 1 0 1: 2.90 0 1 1 0: 3.10 0 1 1 0: 3.10 0 1 1 0: 3.40 1 0 0 0: 3.40 1 0 0 0: 3.40 1 0 1 0: 3.70 1 0 0 0: 4.00 1 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0 0: 4.00 1 0: 4.00	5 V (Vde 0 V (Vde 5 V (Vde) 5 V (Vde 5 V (Vde) 5 V (Vde)	t1_1) t1_2) t1_3) t1_4) t1_5) t1_6) t1_6) t1_7) t1_8)	R/W R/W R/W
b4	-	- F	Reserved bits				Set to 0.	,	- /	R/W
b5	_	-								
b6		-								
b7	-	-								

Set the PRC3 bit in the PRCR register to 1 (write enabled) before rewriting the VD1LS register.

6.2.6 Voltage Monitor 0 Circuit Control Register (VW0C)

Address	0038h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	—						—	VW0C0
After Reset	1	1	0	0	Х	0	1	0
	The above	applies wl	hen the LV	DAS bit in t	the OFS re	gister is se	t to 1.	
After Reset	1	1	0	0	Х	0	1	1
Symbol VW0C0 After Reset 1 1 0 0 X 0 1 0 The above applies when the LVDAS bit in the OFS register is set to 1. 1 0 1 0 1 0								

Bit	Symbol	Bit Name	Function	R/W
b0	VW0C0	Voltage monitor 0 reset enable bit ⁽¹⁾	0: Disabled	R/W
			1: Enabled	
b1	—	Reserved bit	Set to 1.	R/W
b2	—	Reserved bit	Set to 0.	R/W
b3	—	Reserved bit	When read, the content is undefined.	R
b4	_	Reserved bits	Set to 0.	R/W
b5	—			
b6	_	Reserved bits	Set to 1.	R/W
b7	—			

Note:

1. The VW0C0 bit is enabled when the VCA25 bit in the VCA2 register is set to 1 (voltage detection 0 circuit enabled). When writing to the VW0C0 bit, set a value after reset.

Set the PRC3 bit in the PRCR register to 1 (write enabled) before writing the VW0C register.

6.2.7 Voltage Monitor 1 Circuit Control Register (VW1C)

Address	0039h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	VW1C7		VW1F1	VW1F0	VW1C3	VW1C2	VW1C1	VW1C0
After Reset	1	0	0	0	1	0	1	0

Bit	Symbol	Bit Name	Function	R/W
b0	VW1C0	Voltage monitor 1 interrupt enable bit ⁽¹⁾	0: Disabled 1: Enabled	R/W
b1	VW1C1	Voltage monitor 1 digital filter disable mode select bit ^(2, 6)	0: Digital filter enabled mode (digital filter circuit enabled) 1: Digital filter disable mode (digital filter circuit disabled)	R/W
b2	VW1C2	Voltage change detection flag ^(3, 4)	0: Not detected 1: Vdet1 passing detected	R/W
b3	VW1C3	Voltage detection 1 signal monitor flag ⁽³⁾	0: VCC < Vdet1 1: VCC ≥ Vdet1 or voltage detection 1 circuit disabled	R
b4	VW1F0	Sampling clock select bit ⁽⁶⁾		R/W
b5	VW1F1		0 0: fOCO-S divided by 1 0 1: fOCO-S divided by 2 1 0: fOCO-S divided by 4 1 1: fOCO-S divided by 8	R/W
b6	—	Reserved bit	Set to 0.	R/W
b7	VW1C7	Voltage monitor 1 interrupt generation condition select bit ⁽⁵⁾	0: When VCC reaches Vdet1 or above. 1: When VCC reaches Vdet1 or below.	R/W

Notes:

- The VW1C0 is enabled when the VCA26 bit in the VCA2 register is set to 1 (voltage detection 1 circuit enabled). Set the VW1C0 bit to 0 (disabled) when the VCA26 bit is set to 0 (voltage detection 1 circuit disabled). To set the VW0C0 bit to 1 (enabled), follow the procedure shown in Table 6.2 Procedure for Setting Bits Associated with Voltage Monitor 1 Interrupt.
- 2. When using the digital filter (while the VW1C1 bit is 0), set the CM14 bit in the CM1 register to 0 (low-speed onchip oscillator on).

To use the voltage monitor 1 interrupt to exit stop mode, set the VW1C1 bit in the VW1C register to 1 (digital filter disabled).

- 3. Bits VW1C2 and VW1C3 are enabled when the VCA26 bit in the VCA2 register is set to 1(voltage detection 1 circuit enabled).
- 4. Set the VW1C2 bit to 0 by a program. When 0 is written by a program, this bit is set to 0 (and remains unchanged even if 1 is written to it).
- 5. The VW1C7 bit is enabled when the VCAC1 bit in the VCAC register is set to 0 (one edge). After setting the VCAC1 bit to 0, set the VW1C7 bit.
- 6. When the VW1C0 bit is set to 1 (enabled), do not set the VW1C1 bit and bits VW1F1 and VW1F0 simultaneously (with one instruction).

Set the PRC3 bit in the PRCR register to 1 (write enabled) before writing the VW1C register. Rewriting the VW1C register may set the VW1C2 bit to 1. Set the VW1C2 bit to 0 after rewriting the VW1C register.

6.2.8 Voltage Monitor 2 Circuit Control Register (VW2C)

Address	003Ah							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	VW2C7		VW2F1	VW2F0	VW2C3	VW2C2	VW2C1	VW2C0
After Reset	1	0	0	0	0	0	1	0

Bit	Symbol	Bit Name	Function	R/W
b0	VW2C0	Voltage monitor 2 interrupt enable bit ⁽¹⁾	0: Disabled 1: Enabled	R/W
b1	VW2C1	Voltage monitor 2 digital filter disable mode select bit ^(2, 6)	 0: Digital filter enable mode (digital filter circuit enabled) 1: Digital filter disable mode (digital filter circuit disabled) 	R/W
b2	VW2C2	Voltage change detection flag ^(3, 4)	0: Not detected 1: Vdet2 passing detected	R/W
b3	VW2C3	WDT detection monitor flag ⁽⁴⁾	0: Not detected 1: Detected	R/W
b4 b5	VW2F0 VW2F1	Sampling clock select bit ⁽⁶⁾	 ^{b5 b4} 0 0: fOCO-S divided by 1 0 1: fOCO-S divided by 2 1 0: fOCO-S divided by 4 1 1: fOCO-S divided by 8 	R/W R/W
b6	—	Reserved bit	Set to 0.	R/W
b7	VW2C7	Voltage monitor 2 interrupt generation condition select bit ⁽⁵⁾	0: When VCC reaches Vdet2 or above. 1: When VCC reaches Vdet2 or below.	R/W

Notes:

1. The VW2C0 is enabled when the VCA27 bit in the VCA2 register is set to 1 (voltage detection 2 circuit enabled). Set the VW2C0 bit to 0 (disabled) when the VCA27 bit is set to 0 (voltage detection 2 circuit disabled).

To set the VW2C0 bit to 1 (enabled), follow the procedure shown in **Table 6.3 Procedure for Setting Bits Associated with Voltage Monitor 2 Interrupt**.

2. When using the digital filter (while the VW2C1 bit is 0), set the CM14 bit in the CM1 register to 0 (low-speed onchip oscillator on).

To use the voltage monitor 2 interrupt to exit stop mode, set the VW2C1 bit in the VW2C register to 1 (digital filter disabled).

- 3. The VW2C2 bit is enabled when the VCA27 bit in the VCA2 register is set to 1 (voltage detection 2 circuit enabled).
- 4. Set this bit to 0 by a program. When 0 is written by a program, this bit is set to 0 (and remains unchanged even if 1 is written to it).
- 5. The VW2C7 bit is enabled when the VCAC2 bit in the VCAC register is set to 0 (one edge). After setting the VCAC2 bit to 0, set the VW2C7 bit.
- 6. When the VW2C0 bit is set to 1 (enabled), do not set the VW2C1 bit and bits VW2F1 and VW2F0 simultaneously (with one instruction).

Set the PRC3 bit in the PRCR register to 1 (write enabled) before rewriting the VW2C register. Rewriting the VW2C register may set the VW2C2 bit to 1. After rewriting this register, set the VW2C2 bit to 0.

6.2.9 **Option Function Select Register (OFS)**

Address	Address 0FFFFh								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	CSPROINI	LVDAS	VDSEL1	VDSEL0	ROMCP1	ROMCR	_	WDTON	
After Reset			I	Iser Settin	a Value (1)			·	

User Setting Value

Bit	Symbol	Bit Name	Function	R/W
b0	WDTON	Watchdog timer start select bit	0: Watchdog timer automatically starts after reset.1: Watchdog timer is stopped after reset.	R/W
b1	—	Reserved bit	Set to 1.	R/W
b2	ROMCR	ROM code protect disable bit	0: ROM code protect disabled 1: ROMCP1 bit enabled	R/W
b3	ROMCP1	ROM code protect bit	0: ROM code protect enabled 1: ROM code protect disabled	R/W
b4	VDSEL0	Voltage detection 0 level select bit ⁽²⁾	b5 b4	R/W
b5	VDSEL1		0 0: 3.80 V selected (Vdet0_3) 0 1: 2.85 V selected (Vdet0_2) 1 0: 2.35 V selected (Vdet0_1) 1 1: 1.90 V selected (Vdet0_0)	R/W
b6	LVDAS	Voltage detection 0 circuit start bit ⁽³⁾	0: Voltage monitor 0 reset enabled after reset 1: Voltage monitor 0 reset disabled after reset	R/W
b7	CSPROINI	Count source protection mode after reset select bit	0: Count source protect mode enabled after reset 1: Count source protect mode disabled after reset	R/W

Notes:

1. The OFS register is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the OFS register. If the block including the OFS register is erased, the OFS register is set to FFh.

When blank products are shipped, the OFS register is set to FFh. It is set to the written value after written by the user.

When factory-programming products are shipped, the value of the OFS register is the value programmed by the user.

2. The same level of the voltage detection 0 level selected by bits VDSEL0 and VDESL1 is set in both functions of voltage monitor 0 reset and power-on reset.

3. To use power-on reset and voltage monitor 0 reset, set the LVDAS bit to 0 (voltage monitor 0 reset enabled after reset).

For a setting example of the OFS register, refer to 13.3.1 Setting Example of Option Function Select Area.

LVDAS Bit (Voltage Detection 0 Circuit Start Bit)

The Vdet0 voltage to be monitored by the voltage detection 0 circuit is selected by bits VDSEL0 and VDSEL1.

6.3 VCC Input Voltage

6.3.1 Monitoring Vdet0

Vdet0 cannot be monitored.

6.3.2 Monitoring Vdet1

Once the following settings are made, the comparison result of voltage monitor 1 can be monitored by the VW1C3 bit in the VW1C register after td(E-A) has elapsed (refer to **27. Electrical Characteristics**).

- (1) Set bits VD1S3 to VD1S0 in the VD1LS register (voltage detection 1 detection voltage).
- (2) Set the VCA26 bit in the VCA2 register to 1 (voltage detection 1 circuit enabled).

6.3.3 Monitoring Vdet2

Once the following settings are made, the comparison result of voltage monitor 2 can be monitored by the VCA13 bit in the VCA1 register after td(E-A) has elapsed (refer to **27. Electrical Characteristics**).

• Set the VCA27 bit in the VCA2 register to 1 (voltage detection 2 circuit enabled).

6.4 Voltage Monitor 0 Reset

To use voltage monitor 0 reset, set the LVDAS bit in the OFS register to 0 (voltage monitor 0 reset enabled after reset).

Figure 6.5 shows an Operating Example of Voltage Monitor 0 Reset.

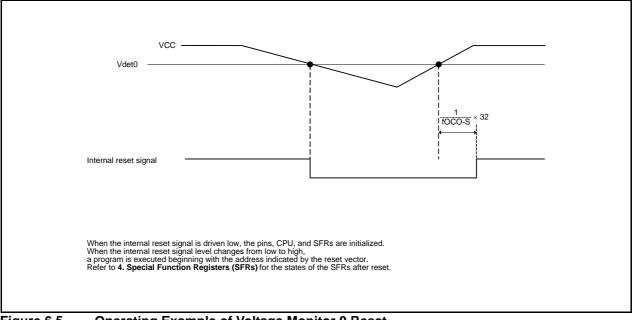


Figure 6.5 Operating Example of Voltage Monitor 0 Reset

6.5 Voltage Monitor 1 Interrupt

Table 6.2 lists the Procedure for Setting Bits Associated with Voltage Monitor 1 Interrupt. Figure 6.6 shows an Operating Example of Voltage Monitor 1 Interrupt.

To use the voltage monitor 1 interrupt to exit stop mode, set the VW1C1 bit in the VW1C register to 1 (digital filter disabled).

Step	When Using Digital Filter	When Using No Digital Filter				
1	Select the voltage detection 1 detection voltage register.	by bits VD1S3 to VD1S0 in the VD1LS				
2	Set the VCA26 bit in the VCA2 register to 1 (vo	Itage detection 1 circuit enabled).				
3	Wait for td(E-A).					
4	Set the COMPSEL bit in the CMPA register to 2	1.				
5 (1)	Select the interrupt type by the IRQ1SEL in the CMPA register.					
6	Select the sampling clock of the digital filter by bits VW1C1 bit in the VW1C register to (digital filter disabled).					
7 (2)	Set the VW1C1 bit in the VW1C register to 0 — (digital filter enabled).					
8	Select the interrupt request timing by the VCAC1 bit in the VCAC register and the VW1C7 bit in the VW1C register.					
9	Set the VW1C2 bit in the VW1C register to 0.					
10	Set the CM14 bit in the CM1 register to 0 (low-speed on-chip oscillator on)	—				
11	Wait for 2 cycles of the sampling clock of the digital filter	— (No wait time required)				
12 (3)	Set the VW1C0 bit in the VW1C register to 1 (voltage monitor 1 interrupt enabled)					

Notes:

1. When the VW1C0 bit is set to 0, steps 4 and 5 can be executed simultaneously (with one instruction).

2. When the VW1C0 bit is set to 0, steps 6 and 7 can be executed simultaneously (with one instruction).

3. When the voltage detection 1 circuit is enabled while the voltage monitor 1 interrupt is disabled, low voltage is detected and the VW1C2 bit becomes 1.

When low voltage is detected after the voltage detection 1 circuit is enabled until an interrupt is enabled for the setting procedure of bits associated with voltage monitor 1 interrupt, an interrupt is not generated. After an interrupt is enabled, read the VW1C2 bit. When the bit is read as 1, perform the process that occurs when low voltage is detected.

6.6 Voltage Monitor 2 Interrupt

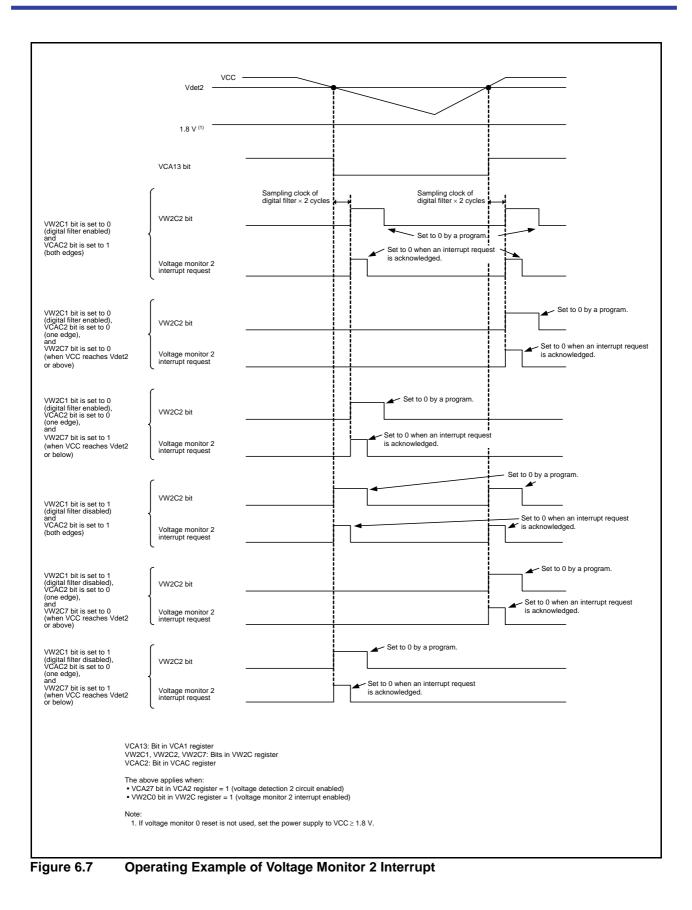
Table 6.3 lists the Procedure for Setting Bits Associated with Voltage Monitor 2 Interrupt. Figure 6.7 shows an Operating Example of Voltage Monitor 2 Interrupt.

To use the voltage monitor 2 interrupt to exit stop mode, set the VW2C1 bit in the VW2C register to 1 (digital filter disabled).

Table 6.3	Procedure for Setting Bits Associated with Voltage Monitor 2 Interrupt
	The second of a second of a second of a second of a second of a second of a second of a second of a second of a

Step	When Using Digital Filter	When Using No Digital Filter				
1	Set the VCA27 bit in the VCA2 register to 1 (voltage detection 2 circuit enabled).					
2	Wait for td(E-A).					
3	Set the COMPSEL bit in the CMPA register to 2	1.				
4 (1)	Select the interrupt type by the IRQ2SEL in the	CMPA register.				
5	Select the sampling clock of the digital filter by Set the VW2C1 bit in the VW2C register to 1 bits VW2F0 and VW2F1 in the VW2C register. (digital filter disabled).					
6 (2)	Set the VW2C1 bit in the VW2C register to 0 (digital filter enabled).	—				
7	Select the interrupt request timing by the VCAC the VW2C7 bit in the VW2C register.	2 bit in the VCAC register and				
8	Set the VW2C2 bit in the VW2C register to 0.					
9	Set the CM14 bit in the CM1 register to 0 (low-speed on-chip oscillator on).	—				
10	Wait for 2 cycles of the sampling clock of the digital filter.	— (No wait time required)				
11 ⁽³⁾	Set the VW2C0 bit in the VW2C register to 1 (v	oltage monitor 2 interrupt enabled).				

Notes:


1. When the VW2C0 bit is set to 0, steps 3 and 4 can be executed simultaneously (with one instruction).

2. When the VW2C0 bit is set to 0, steps 5 and 6 can be executed simultaneously (with one instruction).

When the voltage detection 2 circuit is enabled while the voltage monitor 2 interrupt is disabled, low voltage is detected and the VW2C2 bit becomes 1.
 When low voltage is detected after the voltage detection 2 circuit is enabled until an interrupt is

enabled for the setting procedure of bits associated with voltage monitor 2 interrupt, an interrupt is not generated. After an interrupt is enabled, read the VW2C2 bit. When the bit is read as 1, perform the process that occurs when low voltage is detected.

7. I/O Ports

There are 31 I/O ports P0, P1, P2_0 to P2_6, P3_1, P3_3 to P3_5, P3_7, and P4_5 to P4_7 (P4_6 and P4_7 can be used as I/O ports if the XIN clock oscillation circuit is not used).

If the A/D converter is not used, P4_2 can be used as an input-only port.

Table 7.1 lists an Overview of I/O Ports.

Ports	I/O	Type of Output	I/O Setting	Internal Pull-Up Resister	Drive Capacity Switch	Input Level Switch
P0	I/O	CMOS3 state	Set in 1-bit units	Set in 4-bit units (1)	Set in 4-bit units (3)	Set in 8-bit units (4)
P1	I/O	CMOS3 state	Set in 1-bit units	Set in 4-bit units (1)	Set in 1-bit units (2)	Set in 8-bit units (4)
P2_0 to P2_3	I/O	CMOS3 state	Set in 1-bit units	Set in 4-bit units (1)	Set in 1-bit units (2)	Set in 7-bit units (4)
P2_4 to P2_6	I/O	CMOS3 state	Set in 1-bit units	Set in 3-bit units (1)	Set in 1-bit units (2)	
P3_1, P3_3	I/O	CMOS3 state	Set in 1-bit units	Set in 2-bit units (1)	Set in 2-bit units (3)	Set in 5-bit units (4)
P3_4, P3_5, P3_7	I/O	CMOS3 state	Set in 1-bit units	Set in 3-bit units ⁽¹⁾	Set in 3-bit units (3)	
P4_5, P4_6 ⁽⁵⁾ , P4_7 ⁽⁵⁾	I/O	CMOS3 state	Set in 1-bit units	Set in 3-bit units (1)	Set in 3-bit units (3)	Set in 4-bit units (4)
P4_2 ⁽⁶⁾	Ι	(No output function)	None	None	None	

Table 7.1 Overview of I/O Ports

Notes:

1. In input mode, whether an internal pull-up resistor is connected or not can be selected by registers PUR0 and PUR1.

2. Whether the drive capacity of the output transistor is set to low or high can be selected using registers P1DRR and P2DRR.

- 3. Whether the drive capacity of the output transistor is set to low or high can be selected using registers DRR0 and DRR1.
- 4. The input threshold value can be selected among three voltage levels (0.35 VCC, 0.50 VCC, and 0.70 VCC) using registers VLT0 and VLT1.
- 5. When the XIN clock oscillation circuit is not used, these ports can be used as I/O ports.
- 6. When the A/D converter is not used, this port can be used as an input-only ports.

7.1 Functions of I/O Ports

The PDi_j (j = 0 to 7) bit in the PDi (i = 0 to 4) register controls I/O of the ports P0, P1, P2_0 to P2_2, P3_1, P3_3 to P3_5, P3_7, and P4_5 to P4_7. The Pi register consists of a port latch to hold output data and a circuit to read pin states.

Figures 7.1 to 7.10 show the Configurations of I/O Ports. Table 7.2 lists the Functions of I/O Ports.

Table 7.2Functions of I/O Ports

Operation When	Value of PDi_j Bit	in PDi Register ⁽¹⁾		
Accessing Pi Register	When PDi_j Bit is Set to 0 (Input Mode)	When PDi_j Bit is Set to 1 (Output Mode)		
Read	Read the pin input level.	Read the port latch.		
Write	Write to the port latch.	Write to the port latch. The value written to the port latch is output from the pin.		

i = 0 to 4, j = 0 to 7

Note:

1. Nothing is assigned to bits PD4_0 to PD4_2.

7.2 Effect on Peripheral Functions

I/O ports function as I/O ports for peripheral functions (refer to **Table 1.4 Pin Name Information by Pin Number**).

Table 7.3 lists the Setting of PDi_j Bit when Functioning as I/O Ports for Peripheral Functions (i = 0 to 4, j = 0 to 7).

Refer to the description of each function for information on how to set peripheral functions.

Table 7.3Setting of PDi_j Bit when Functioning as I/O Ports for Peripheral Functions
(i = 0 to 4, j = 0 to 7)

I/O of Peripheral Function	PDi_j Bit Settings for Shared Pin Function
Input	Set this bit to 0 (input mode).
Output	This bit can be set to either 0 or 1 (output regardless of the port setting).

7.3 Pins Other than I/O Ports

Figure 7.11 shows the Configuration of I/O Pins.

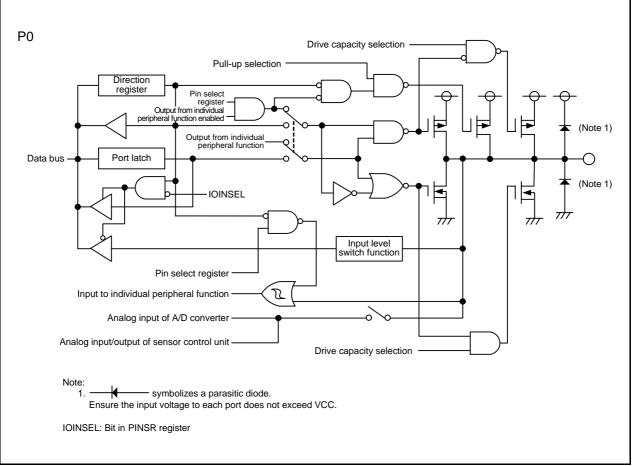


Figure 7.1Configuration of I/O Ports (1)

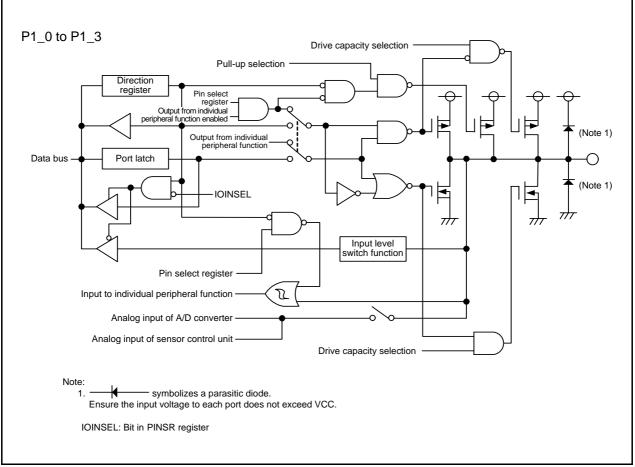


Figure 7.2Configuration of I/O Ports (2)

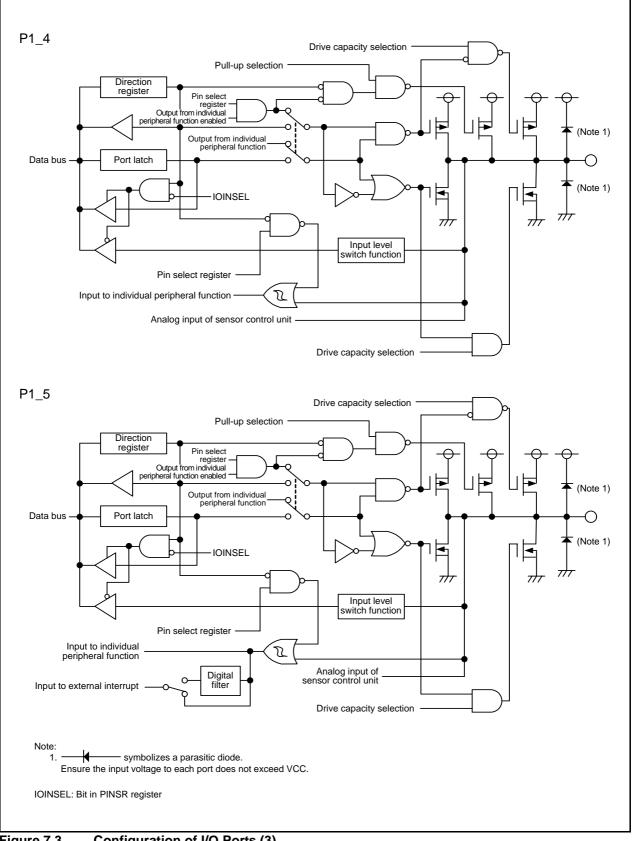


Figure 7.3 Configuration of I/O Ports (3)

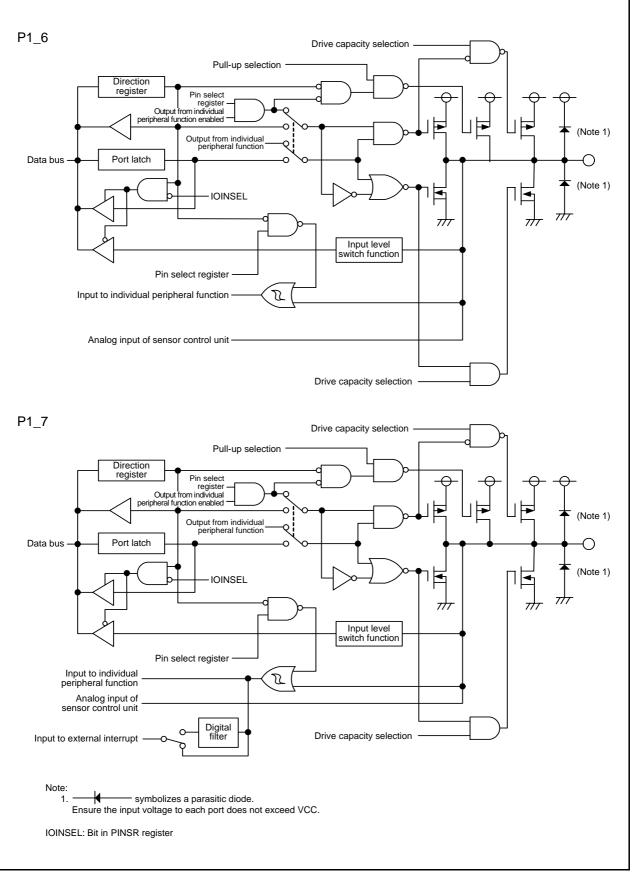
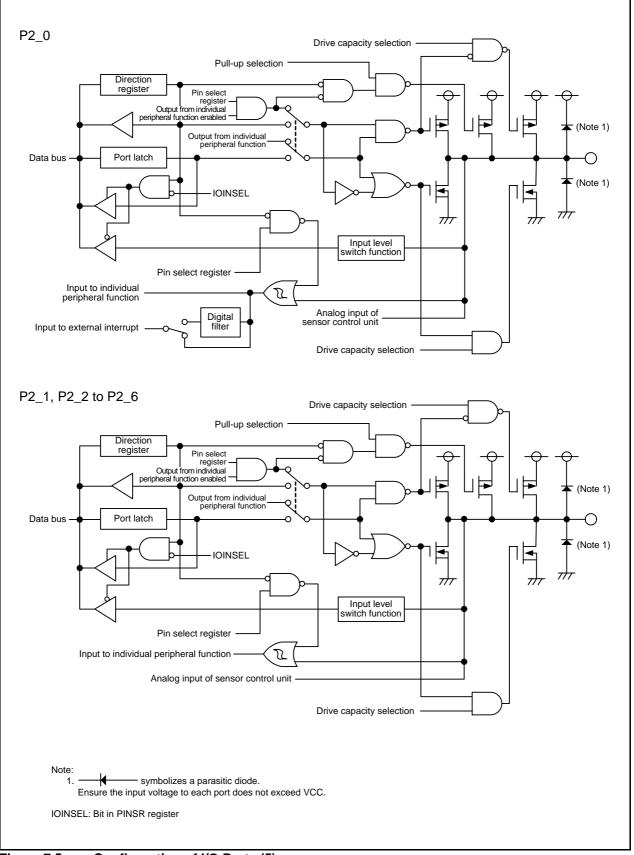
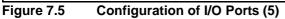




Figure 7.4 Configuration of I/O Ports (4)

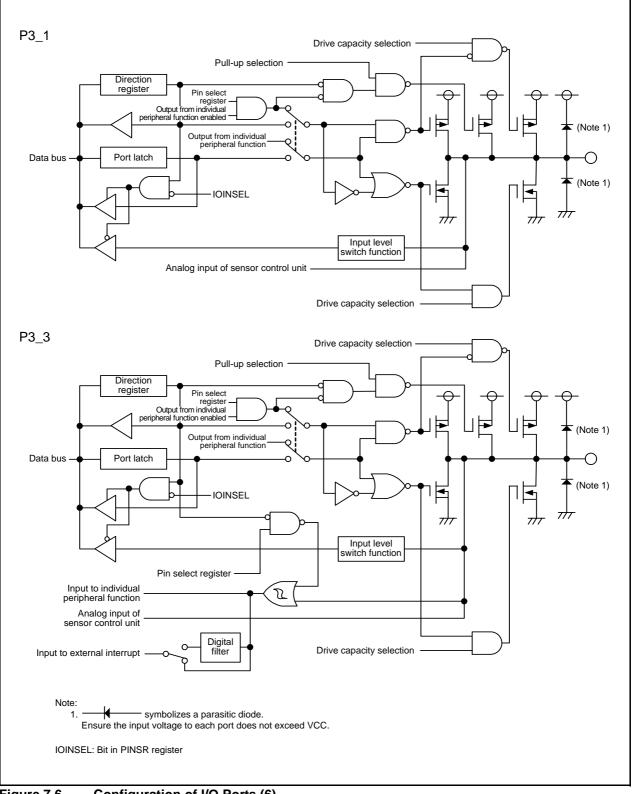


Figure 7.6 Configuration of I/O Ports (6)

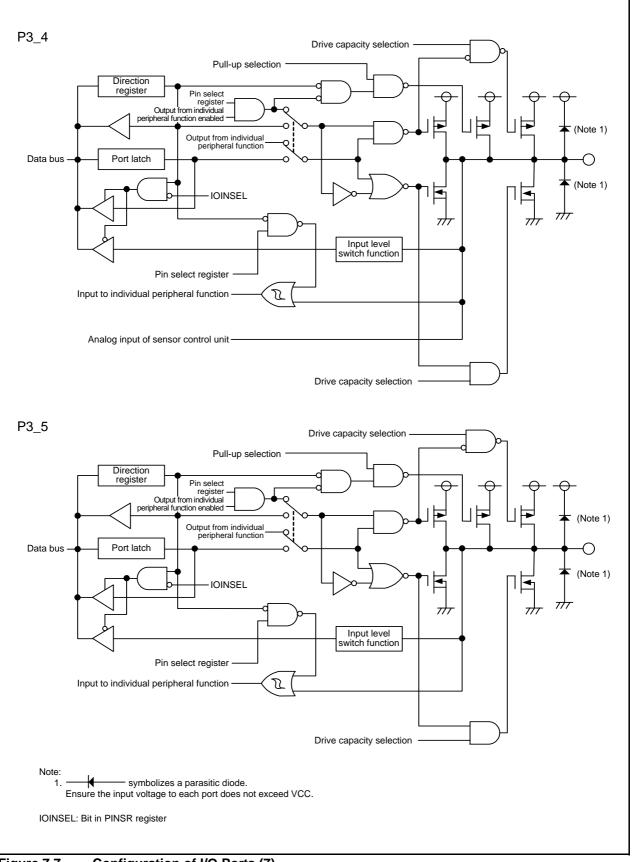
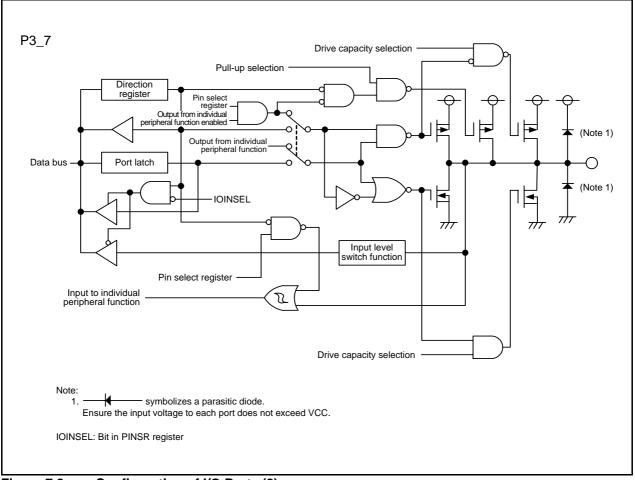
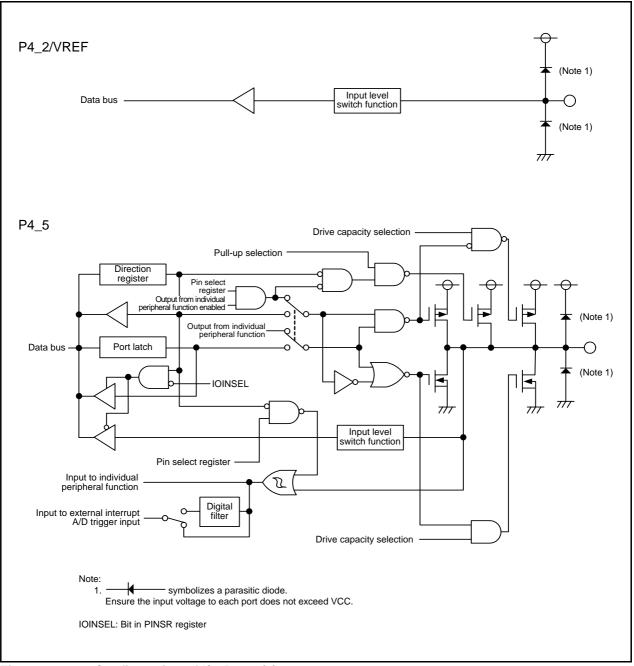
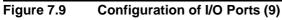
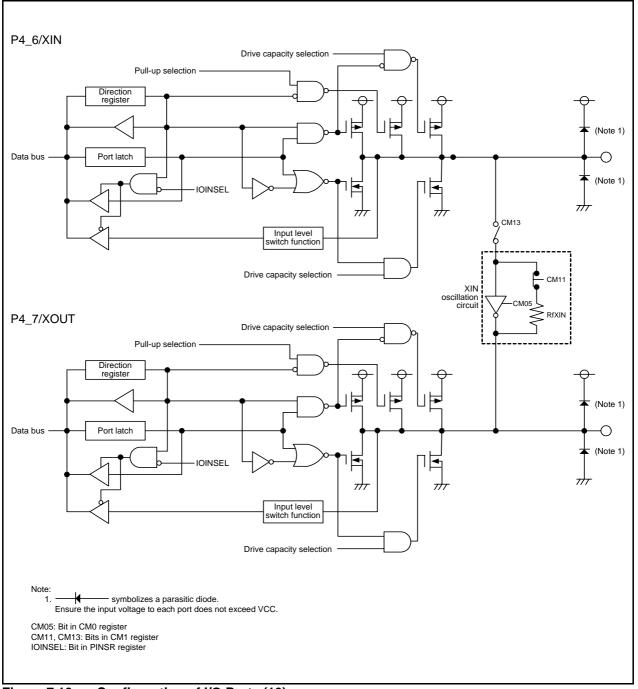
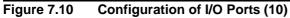


Figure 7.7 Configuration of I/O Ports (7)


Figure 7.8 Configuration of I/O Ports (8)



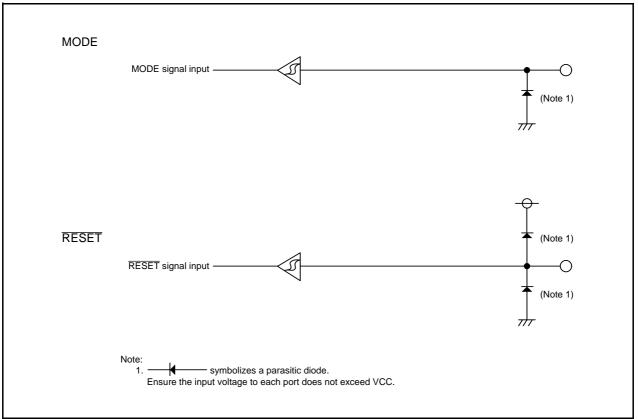


Figure 7.11 Configuration of I/O Pins

7.4 Registers

7.4.1 Port Pi Direction Register (PDi) (i = 0 to 4)

Address 00E2h (PD0 (1)), 00E3h (PD1), 00E6h (PD2 (2)), 00E7h (PD3 (3)), 00EAh (PD4 (4))

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	PDi_7	PDi_6	PDi_5	PDi_4	PDi_3	PDi_2	PDi_1	PDi_0
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	PDi_0	Port Pi_0 direction bit	0: Input mode (functions as an input port)	R/W
b1	PDi_1	Port Pi_1 direction bit	1: Output mode (functions as an output port)	R/W
b2	PDi_2	Port Pi_2 direction bit		R/W
b3	PDi_3	Port Pi_3 direction bit		R/W
b4	PDi_4	Port Pi_4 direction bit		R/W
b5	PDi_5	Port Pi_5 direction bit		R/W
b6	PDi_6	Port Pi_6 direction bit		R/W
b7	PDi_7	Port Pi_7 direction bit		R/W

Notes:

1. Write to the PD0 register with the next instruction after that used to set the PRC2 bit in the PRCR register to 1 (write enabled).

2. The PD2_7 bit in the PD2 register are reserved bits. If it is necessary to set the PD2_7 bit, set to 0. When read, the content is 0.

3. Bits PD3_0, PD3_2, and PD3_6 in the PD3 register are reserved bits. If it is necessary to set bits PD3_0, PD3_2 and PD3_6, set to 0. When read, the content is 0.

4. Bits PD4_0 to PD4_2 in the PD4 register are unavailable on this MCU. If it is necessary to set bits PD4_0 to PD4_2 set to 0. When read, the content is 0. Bits PD4_3 and PD4_4 are reserved bits. If it is necessary to set bits PD4_3 and PD4_4, set to 0. When read, the content is 0.

The PDi register selects whether I/O ports are used for input or output. Each bit in the PDi register corresponds to one port.

7.4.2 Port Pi Register (Pi) (i = 0 to 4)

Ade	dress 0	0E0h (F	0), 00E1h (P1), 00E4h	ı (P2 ⁽¹⁾), 0	0E5h (P3 ⁽	²⁾), 00E8h	(P4 ⁽³⁾)		
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	Pi_7	Pi_6	Pi_5	Pi_4	Pi_3	Pi_2	Pi_1	Pi_0	
After F	Reset	Х	Х	Х	Х	Х	Х	Х	Х	
Dit	Currente):t Nlove e				Function		
Bit	Symb	01		Bit Name				Function		R/W
b0	Pi_0) Por	Pi_0 bit			0: "L" lev				R/W
b1	Pi_1	Por	Pi_1 bit			1: "H" lev	vel			R/W
b2	Pi_2	Port	Pi_2 bit							R/W
b3	Pi_3	B Port	Pi_3 bit							R/W
b4	Pi_4	Por	Pi_4 bit							R/W
b5	Pi_5	Por	Pi_5 bit							R/W
b6	Pi_6	6 Por	Pi_6 bit			7				R/W
b7	Pi_7	Por	Pi_7 bit							R/W

Notes:

- 1. The P2_7 bit in the P2 register are reserved bits. If it is necessary to set the P2_7 bit, set to 0. When read, the content is 0.
- 2. Bits P3_0, P3_2, and P3_6 in the P3 register are reserved bits. If it is necessary to set bits P3_0, P3_2 and P3_6, set to 0. When read, the content is 0.
- 3. Bits P4_0 to P4_1 in the P4 register are unavailable on this MCU. If it is necessary to set bits P4_0 to P4_1 set to 0. When read, the content is 0. Bits P4_3 and P4_4 are reserved bits. If it is necessary to set bits P4_3 and P4_4, set to 0. When read, the content is 0.

Data input and output to and from external devices are accomplished by reading and writing to the Pi register. The Pi register consists of a port latch to retain output data and a circuit to read the pin status. The value written in the port latch is output from the pin. Each bit in the Pi register corresponds to one port.

Pi_j Bit (i = 0 to 4, j = 0 to 7) (Port Pi_j Bit)

The pin level of any I/O port which is set to input mode can be read by reading the corresponding bit in this register. The pin level of any I/O port which is set to output mode can be controlled by writing to the corresponding bit in this register.

7.4.3 Timer RA Pin Select Register (TRASR)

Ado	dress 0	180h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	_	—		—		TRAIOSEL2	2 TRAIOSEL1	TRAIOSEL0	
After F	Reset	0	0	0	0	0	0	0	0	
Bit	Sym	bol		Bit Name	2	-		Function		R/W
b0	,		TRAIO pin se			b2 b1 b0		1 dilotion		R/W
			TRAIC pill se				: TRAIO pin	not used		-
b1	TRAIO	-					P1_7 assig			R/W
b2	TRAIO	SEL2					: P1_5 assig			R/W
							: Do not set.			
							Do not set.			
							P3_5 assig	ned		
							than above:			
b3		_	Reserved bit	<u> </u>		Set to		20 1101 001.		R/W
		_	IVESEIVEU DI	5		Serio	0.			
b4		-		,						
b5		-	Nothing is as	signed. If r	necessary,	set to 0. W	hen read, the	e content is 0.		—
b6		-								
b7	_	-								

The TRASR register selects which pin is assigned to the timer RA I/O. To use the I/O pin for timer RA, set this register.

Set the TRASR register before setting the timer RA associated registers. Also, do not change the setting value in this register during timer RA operation.

7.4.4 Timer RB/RC Pin Select Register (TRBRCSR)

Address (0181h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	_		TRCCLKSEL1	TRCCLKSEL0	_		TRBOSEL1	TRBOSEL0
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0 b1	TRBOSEL0 TRBOSEL1	TRBO pin select bit	b1 b0 0 0: P1_3 assigned 0 1: P3_1 assigned 1 0: Do not set. 1 1: P3_3 assigned	R/W R/W
b2	—	Reserved bit	Set to 0.	R/W
b3	—	Nothing is assigned. If necessary, set	to 0. When read, the content is 0.	—
b4 b5	TRCCLKSEL0 TRCCLKSEL1	TRCCLK pin select bit	 b5 b4 0 0: TRCCLK pin not used 0 1: P1_4 assigned 1 0: P3_3 assigned 1 1: P3_7 assigned 	R/W R/W
b6	—	Reserved bit	Set to 0.	R/W
b7	—	Nothing is assigned. If necessary, set	to 0. When read, the content is 0.	—

The TRBRCSR register selects which pin is assigned to the timer RB and timer RC I/O. To use the I/O pin for timer RB and timer RC, set this register.

Set bits TRBOSEL0 and TRBOSEL1 before setting the timer RB associated registers. Set bits TRCCLKSEL0 and TRCCLKSEL1 before setting the timer RC associated registers. Also, do not change the setting values of bits TRBOSEL0 and TRBOSEL1 during timer RB operation. Do not change the setting values of bits TRCCLKSEL0 and TRCCLKSEL1 during timer RC operation.

RENESAS

Ado	dress (0182h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	mbol	—	TRCIOBSEL2 TRCIOBSEL1 TRCIOBSEL		L0 — TRCIOASEL2 TRCIOASEL1 TR			RCIOASEL0		
After R	Reset	0	0	0	0	0	0	0	0	
Bit	51	/mbol	<u> </u>	Bit Name			R/W			
b0		OASELO		CTRG pin sele	act hit	b2 b1 b0	Func		R/W	
b0 b1		OASEL0					CIOA/TRCTR	G pin not used	R/W	
b1 b2	-	OASEL1				0 0 1: P1	_1 assigned		R/W	
02	IKU	UASELZ					_0 assigned		K/ VV	
							_1 assigned			
						1 0 0: P0_2 assigned				
						1 0 1: Do				
							5_1 assigned			
						1 1 1: Do				
b3		<u> </u>	•	•	essary, set t		read, the cont	ent is 0.		
b4		OBSELO		select bit			RCIOB pin not u	ised	R/W	
b5	-	OBSEL1					_2 assigned		R/W	
b6	TRCI	OBSEL2					3 assigned		R/W	
							4 assigned			
							5 assigned			
						1 0 1: P2	2_0 assigned			
						Other tha	n above: Do no	ot set.		
b7		_	Reserved bit			Set to 0.			R/W	

7.4.5 Timer RC Pin Select Register 0 (TRCPSR0)

The TRCPSR0 register selects which pin is assigned to the timer RC I/O. To use the I/O pin for timer RC, set this register.

Set the TRCPSR0 register before setting the timer RC associated registers. Also, do not change the setting value in this register during timer RC operation.

7.4.6 Timer RC Pin Select Register 1 (TRCPSR1)

Ado	dress 0183h									
	Bit b7	b6	b5	b4	b3	b2	b1	b0		
Sy	mbol —	TRCIODSEL2	TRCIODSEL1	EL1 TRCIODSEL0 -		TRCIOCSEL2	TRCIOCSEL1	TRCIOCSEL0		
After F	Reset 0	0	0	0	0	0	0	0		
Bit	Symbol	Bit Name			Function					
b0 b1 b2	TRCIOCSEL0 TRCIOCSEL1 TRCIOCSEL2		select bit		0 0 0: TRCIOC pin not used 0 0 1: P1_3 assigned					
52	2 TRCIOCSEL2					0 1 0: P3_4 assigned 0 1 1: P0_7 assigned 1 0 0: P2_1 assigned Other than above: Do not set.				
b3	—	Nothing is as	ssigned. If nec	essary, set to	t to 0. When read, the content is 0.					
b4	TRCIODSELO		select bit		0 0 0: TRCIOD pin not used					
b5	TRCIODSEL1					1_0 assigned		R/W R/W		
b6	TRCIODSEL2				0 1 0: P3_5 assigned 0 1 1: P0_6 assigned 1 0 0: P2_2 assigned Other than above: Do not set.					
b7	—	Nothing is as	ssigned. If nec	essary, set to	0. Wher	n read, the conte	ent is 0.	—		

The TRCPSR1 register selects which pin is assigned to the timer RC I/O. To use the I/O pin for timer RC, set this register.

Set the TRCPSR1 register before setting the timer RC associated registers. Also, do not change the setting value in this register during timer RC operation.

7.4.7 UARTO Pin Select Register (U0SR)

Ade	dress 018	8h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol		—		CLK0SEL0		RXD0SEL0		TXD0SEL0	
After F	Reset	0	0	0	0	0	0	0	0	
Bit	Symbo			Bit Name)	1	F	unction		R/W
b0	TXDOSE	_0 TX	D0 pin seled	ct bit		0: TXD	0 pin not used			R/W
						1: P1_4	1 assigned			
b1	—	No	thing is assi	gned. If i	necessary, set t	to 0. Wh	en read, the co	ntent is	0.	—
b2	RXD0SE	L0 RX	D0 pin sele	ct bit			0 pin not used			R/W
						_	5 assigned			
b3	—	No	thing is assi	gned. If i	necessary, set t	to 0. Wh	en read, the co	ntent is	0.	—
b4	CLK0SEI	_0 CL	K0 pin selec	t bit		0: CLK	0 pin not used			R/W
						1: P1_6	6 assigned			
b5	—	No	thing is assi	gned. If i	necessary, set t	to 0. Wh	en read, the co	ntent is	0.	—
b6	—									
b7	—									

The U0SR register selects which pin is assigned to the UART0 I/O. To use the I/O pin for UART0, set this register.

Set the U0SR register before setting the UART0 associated registers. Also, do not change the setting value in this register during UART0 operation.

7.4.8 UART2 Pin Select Register 0 (U2SR0)

Add	ress	018Ah								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Syr	nbol	_	RXD2SEL2	RXD2SEL1	RXD2SEL0	_	TXD2SEL2	TXD2SEL1	TXD2SEL0	
After R	eset	0	0	0	0	0	0	0	0	
Bit b0 b1 b2	b0TXD2SEL0TXD2/SDA2 pin select bitb1TXD2SEL1					0 0 1: P3 0 1 0: P3 0 1 1: Do 1 0 0: P2 1 0 1: Do 1 1 0: Do	D2/SDA2 pin _7 assigned _4 assigned not set. _0 assigned not set.	nction not used		R/W R/W R/W
b3	_	_	Reserved bit			Set to 0.				R/W
b4 b5 b6	RXD2	2SEL0 2SEL1 2SEL2		n select bit	ł	00 05 b4 0 0 0: RX 0 0 1: P3 0 1 0: P3 0 1 1: P4 1 0 0: P2 1 0 1: D0 1 1 0: D0 1 1 1: P2		not used		R/W R/W R/W
b7	-	_	Reserved bit		:	Set to 0.				R/W

The U2SR0 register selects which pin is assigned to the UART2 I/O. To use the I/O pin for UART2, set this register.

Set the U2SR0 register before setting the UART2 associated registers. Also, do not change the setting value in this register during UART2 operation.

7.4.9 UART2 Pin Select Register 1 (U2SR1)

Addres	s 018Bh								
В	it b7	b6	b5	b4	b3	b2	b1	b0	
Symbo	ol —	—	CTS2SEL1	CTS2SEL0	_	CLK2SEL2	CLK2SEL1	CLK2SEL0	
After Rese	et 0	0	0	0	0	0	0	0	
b0 CL b1 CL	ymbol K2SEL0 K2SEL1 K2SEL2	CLK2 pin se	Bit Name elect bit		0 0 1: P 0 1 0: D 0 1 1: D 1 0 0: P	F LK2 pin not u 3_5 assigned o not set. o not set. 2_1 assigned an above: Do	I		R/W R/W R/W R/W
b3	_	Nothing is a	ssigned. If nec	cessary, set	to 0. Whe	n read, the co	ontent is 0.		—
	S2SEL0 S2SEL1	CTS2/RTS2	pin select bit		0 1: P3_	S2/RTS2 pin _3 assigned _1 assigned not set.	not used		R/W R/W
b6 b7	_	Nothing is a	ssigned. If nec	cessary, set t	to 0. Whe	n read, the co	ontent is 0.		

The U2SR1 register selects which pin is assigned to the UART2 I/O. To use the I/O pin for UART2, set this register.

Set the U2SR1 register before setting the UART2 associated registers. Also, do not change the setting value in this register during UART2 operation.

7.4.10 INT Interrupt Input Pin Select Register (INTSR)

Address	018Eh							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol		INT3SEL0			INT1SEL2	INT1SEL1	INT1SEL0	_
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	—	Nothing is assigned. If necessary, set t	o 0. When read, the content is 0.	—
b1 b2 b3	INT1SEL0 INT1SEL1 INT1SEL2	INT1 pin select bit	b3 b2 b1 0 0 0: P1_7 assigned 0 0 1: P1_5 assigned 0 1 0: P2_0 assigned 0 1 1: Do not set. 1 0 0: Do not set. 1 0 1: P3_5 assigned Other than above: Do not set.	R/W R/W R/W
b4	—	Reserved bit	Set to 0.	R/W
b5	—	Nothing is assigned. If necessary, set t	o 0. When read, the content is 0.	—
b6	INT3SEL0	INT3 pin select bit	0: P3_3 assigned 1: P3_7 assigned	R/W
b7	—	Reserved bit	Set to 0.	R/W

The INTSR register selects which pin is assigned to the \overline{INTi} (i = 1 or 3) input. To use \overline{INTi} , set this register. Set the INTSR register before setting the \overline{INTi} associated registers. Also, do not change the setting values in this register during \overline{INTi} operation.

7.4.11 I/O Function Pin Select Register (PINSR)

Ado	dress 01	I8Fh										
	Bit	b7		b6	b5	b4	b3	b2	b1	b0		
Sy	mbol			_	_		IOINSEL	_	—	—		
After F	Reset	0		0	0	0	0	0	0	0		
Bit	Symb			Bit	Name			Fur	nction		i	R/W
b0			Nothing			Nresser	set to 0. When					
b0 b1			Reserve	-	grieu. Il riec	-	Set to 0.	reau, the co				R/W
b1 b2					aned If ner		set to 0. When	read the co	ontent is 0			
b2 b3			•							o on the DDi	/:	R/W
		 IOINSEL I/O port input function select bit 0: The I/O port input function depends on the PDi (i = 0 to 4) register. When the PDi_j (j = 0 to 7) bit in the PDi register is set to 0 (input mode), the pin input level is read. When the PDi_j bit in the PDi register is set to 1 (output mode), the port latch is read. 1: The I/O port input function reads the pin input level regardless of the PDi register. 								K/ VV		
b4	—		Nothing is assigned. If necessary, set to 0. When read, the content is 0.								—	
b5												
b6												
b7	—											

IOINSEL Bit (I/O port input function select bit)

The IOINSEL bit is used to select the pin level of an I/O port when the PDi_j (j = 0 to 7) bit in the PDi (i = 0 to 4) register is set to 1 (output mode). When this bit is set to 1, the I/O port input function reads the pin input level regardless of the PDi register.

Table 7.4 lists I/O Port Values Read by Using IOINSEL Bit. The IOINSEL bit can be used to change the input function of all I/O ports except P4_2.

Table 7.4 I/O Port Values Read by Using IOINSEL Bit

PDi_j bit in PDi register	0 (inpu	t mode)	1 (outpu	ut mode)		
IOINSEL bit	0	1	0	1		
I/O port values read	Pin inp	ut level	Port latch value	Pin input level		

7.4.12 Low-Voltage Signal Mode Control Register (TSMR)

Address 0	190h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	I3LVM	I2LVM	I1LVM	IOLVM	U2LVM	—	UOLVM	LVMPR
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	LVMPR	Low-voltage signal mode protect bit	0: Write disabled	R/W
b1	UOLVM	UART0 low-voltage signal mode control bit ⁽¹⁾	1: Write enabled ⁽¹⁾ 0: Low-voltage signal mode disabled	R/W
	OOLVIN	OARTO low-voltage signal mode control bit (*)	1: Low-voltage signal mode enabled ⁽²⁾	
b2	—	Reserved bit	Set to 0.	R/W
b3	U2LVM	UART2 low-voltage signal mode control bit ⁽¹⁾	0: Low-voltage signal mode disabled	R/W
			1: Low-voltage signal mode enabled ⁽²⁾	
b4	IOLVM	INT0 low-voltage signal mode control bit ⁽¹⁾	0: Low-voltage signal mode disabled 1: Low-voltage signal mode enabled	R/W
b5	I1LVM	INT1 low-voltage signal mode control bit ⁽¹⁾		R/W
b6	I2LVM	INT2 low-voltage signal mode control bit ⁽¹⁾		R/W
b7	I3LVM	INT3 low-voltage signal mode control bit ⁽¹⁾		R/W

Notes:

 When the LVMPR bit is set to 1 (write enabled), writing to bits UiLVM (i = 0 or 2) and IjLVM (j = 0 to 3) is enabled. Rewrite bits UiLVM (i = 0 or 2) and IjLVM (j = 0 to 3) after setting the LVMPR bit to 1. When writing 1 to the LVMPR bit, write 0 and then 1 continuously.

2. When the UiLVM (i = 0 or 2) bit is set to 1, the TxDi (i = 0 or 2) pin is set to N-channel open-drain output regardless of the setting of the NCH bit in the UiC0 (i = 0 or 2) register.

7.4.13 Pull-Up Control Register 0 (PUR0)

Ado	dress 0	1E0h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	mbol	PU07	7 PU06	PU05	PU04	PU03	PU02	PU01	PU00	
After F	Reset	0	0	0	0	0	0	0	0	-
Dit	0		D:	4 N I		1		E		
Bit	Symb	001	BI	t Name				Function		R/W
b0	PU0	0 PC	0_0 to P0_3 p	ull-up		0: Not pull	ed up			R/W
b1	PU0	1 PC	_4 to P0_7 p	ull-up		1: Pulled u	лр ⁽¹⁾			R/W
b2	PU0	2 P1	_0 to P1_3 p	ull-up						R/W
b3	PU0	3 P1	_4 to P1_7 p	ull-up						R/W
b4	PU0	4 P2	2_0 to P2_3 p	ull-up						R/W
b5	PU0	5 P2	2_4 to P2_6 p	ull-up						R/W
b6	PU0	6 P3	3_1, P3_3 pul	l-up		0: Not pull				R/W
b7	PU0	7 P3	8_4, P3_5, P3	_7 pull-up		1: Pulled u	ир ⁽¹⁾			R/W

Note:

1. When this bit is set to 1 (pulled up), the pin whose port direction bit is set to 0 (input mode) is pulled up.

For pins used as input, the setting values in the PUR0 register are valid.

7.4.14 Pull-Up Control Register 1 (PUR1)

Address	01E1h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol					_		PU11		
After Reset	0	0	0	0	0	0	0	0	•

Bit	Symbol	Bit Name	Function	R/W
b0		Nothing is assigned. If necessary, se	t to 0. When read, the content is undefined.	—
b1	PU11	P4_5 to P4_7 pull-up	0: Not pulled up	R/W
			1: Pulled up ⁽¹⁾	
b2	—	Nothing is assigned. If necessary, se	t to 0. When read, the content is undefined.	— —
b3				
b4				
b5	—			
b6				
b7	—			

Note:

1. When this bit is set to 1 (pulled up), the pin whose port direction bit is set to 0 (input mode) is pulled up.

For pins used as input, the setting values in the PUR1 register are valid.

7.4.15 Port P1 Drive Capacity Control Register (P1DRR)

Ad	dress	01F0h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	ymbol	P1DR	R7 P1DRR6	P1DRR5	P1DRR4	P1DRR3	P1DRR2	P1DRR1	P1DRR0	
After I	Reset	0	0	0	0	0	0	0	0	
Bit	Sym	bol		Bit Name				Function		R/W
	,		-					FUNCTION		-
b0			1_0 drive cap	•		0: Low				R/W
b1			1_1 drive cap	-		1: High ⁽¹⁾				R/W
b2	P1DF	RR2 P	1_2 drive cap	acity						R/W
b3	P1DF	RR3 P	1_3 drive cap	acity						R/W
b4	P1DF	RR4 P	1_4 drive cap	acity						R/W
b5	P1DF	RR5 P	1_5 drive cap	acity						R/W
b6	P1DF	RR6 P	1_6 drive cap	acity						R/W
b7	P1DF	RR7 P	1_7 drive cap	bacity						R/W

Note:

1. Both "H" and "L" output are set to high drive capacity.

The P1DRR register selects whether the drive capacity of the P1 output transistor is set to low or high. The P1DRRi bit (i = 0 to 7) is used to select whether the drive capacity of the output transistor is set to low or high for each pin.

For pins used as output, the setting values in the P1DRR register are valid.

7.4.16 Port P2 Drive Capacity Control Register (P2DRR)

Ado	dress	01F1	h								
	Bit	b	7	b6	b5	b4	b3	b2	b1	b0	
Sy	mbol	-	_	P2DRR6	P2DRR5	P2DRR4	P2DRR3	P2DRR2	P2DRR1	P2DRR0	
After F	Reset		0	0	0	0	0	0	0	0	
Bit	Sym	hol		Bi	t Name				Function		R/W
	,								FUNCTION		-
b0	P2DF	RK0	P2_0	drive capa	icity		0: Low				R/W
b1	P2DF	RR1	P2_1	drive capa	ncity		1: High ⁽¹⁾				R/W
b2	P2DF	RR2	P2_2	drive capa	ncity						R/W
b3	P2DF	RR3	P2_3	drive capa	acity						R/W
b4	P2DF	RR4	P2_4	drive capa	ncity						R/W
b5	P2DF	RR5	P2_5	drive capa	icity						R/W
b6	P2DF	RR6	P2_6	drive capa	icity		1				R/W
b7		-	Nothi	ng is assig	ned. If nec	essary, set	to 0. When	n read, the	content is	undefined.	—

Note:

1. Both "H" and "L" output are set to high drive capacity.

The P2DRR register selects whether the drive capacity of the P2_0 to P2_6 output transistor is set to low or high. The P2DRRi bit (i = 0 to 6) is used to select whether the drive capacity of the output transistor is set to low or high for each pin.

For pins used as output, the setting values in the P2DRR register are valid.

7.4.17 Drive Capacity Control Register 0 (DRR0)

Add	dress (01F2	2h								
	Bit	b	07	b6	b5	b4	b3	b2	b1	b0	
Sy	mbol	DR	R07	DRR06		—	_		DRR01	DRR00	
After F	Reset		0	0	0	0	0	0	0	0	
Bit	Syml	bol		B	it Name		1		Function		R/W
b0	DRR		P0_0	to P0_3 dr		ity	0: Low		i unotion		R/W
b1	DRR	01	P0_4	to P0_7 dr	ive capaci	ity	1: High (1)			R/W
b2		-	Nothi	ng is assig	ned. If neo	cessary, set	to 0. Whe	n read, the	e content is	0.	—
b3		-									
b4		-									
b5		-									
b6	DRR			, P3_3 driv			0: Low				R/W
b7	DRR	07	P3_4	, P3_5, P3_	_7 drive ca	apacity	1: High (1)			R/W

Note:

1. Both "H" and "L" output are set to high drive capacity.

For pins used as output, the setting values in the DRR0 register are valid.

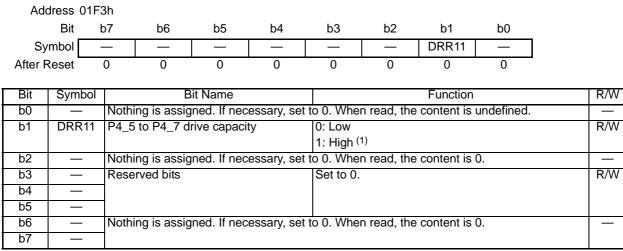
DRR00 Bit (P0_0 to P0_3 drive capacity)

The DRR00 bit selects whether the drive capacity of the P0_0 to P0_3 output transistors is set to low or high. This bit is used to select whether the drive capacity of the output transistors is set to low or high for four pins.

DRR01 Bit (P0_4 to P0_7 drive capacity)

The DRR01 bit selects whether the drive capacity of the P0_4 to P0_7 output transistors is set to low or high. This bit is used to select whether the drive capacity of the output transistors is set to low or high for four pins.

DRR06 Bit (P3_1, P3_3 drive capacity)


The DRR06 bit selects whether the drive capacity of the P3_1, P3_3 output transistors is set to low or high. This bit is used to select whether the drive capacity of the output transistors is set to low or high for two pins.

DRR07 Bit (P3_4, P3_5, P3_7 drive capacity)

The DRR07 bit selects whether the drive capacity of the P3_4, P3_5, P3_7 output transistors is set to low or high. This bit is used to select whether the drive capacity of the output transistors is set to low or high for three pins.

7.4.18 Drive Capacity Control Register 1 (DRR1)

Note:

1. Both "H" and "L" output are set to high drive capacity.

For pins used as output, the setting values in the DRR1 register are valid.

DRR11 Bit (P4_5 to P4_7 drive capacity)

The DRR11 bit selects whether the drive capacity of the P4_5 to P4_7 output transistors is set to low or high. This bit is used to select whether the drive capacity of the output transistors is set to low or high for three pins.

b2

b3

b4

b5

b6

b7

VLT03

VLT04

VLT05

VLT06

VLT07

R/W R/W R/W

R/W

R/W

R/W

R/W

R/W

R/W

7.4.19 Input Threshold Control Register 0 (VLT0)

VLT02 P1 input level select bit

select bit

levels (0.35 VCC, 0.50 VCC, and 0.70 VCC).

Ade	dress C)1F5h									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Sy	/mbol	VLT07	VLT06	VLT05	VLT04	VLT03	VLT02	VLT01	VLT00		
After F	Reset	0	0	0	0	0	0	0	0	-	
D:4	0			4 N I							
Bit	Symb	001	В	it Name				Function			
b0	VLTO	00 P0	input level se	b1 b0							
b1	VLTO)1				0 0: 0.50 × VCC					
						0 1: 0.3	0 1: 0.35 × VCC				

		1 1: Do not set.	
Т	he VLT0 re	gister selects the voltage level of the input threshold values for ports P0, P1, P2_0 to P2_6,	P3_1,
Р	3_3 to P3_5	5, P3_7. Bits VLT00 to VLT07 are used to select the input threshold values among three vo	oltage

1 0: 0.70 × VCC 1 1: Do not set.

0 0: 0.50 × VCC

0 1: 0.35 × VCC 1 0: 0.70 × VCC 1 1: Do not set.

0 0: 0.50 × VCC

0 1: 0.35 × VCC 1 0: 0.70 × VCC 1 1: Do not set.

0 0: 0.50 × VCC

0 1: 0.35 × VCC 1 0: 0.70 × VCC

b3 b2

b5 b

b7 b6

7.4.20 Input Threshold Control Register 1 (VLT1)

P2_0 to P2_6 input level select bit

P3_1, P3_3 to P3_5, P3_7 input level

Address	Address 01F6h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol					—	—	VLT11	VLT10	
After Reset	0	0	0	0	0	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0			^{b1 b0} 0 0: 0.50 × VCC	R/W
b1	VLT11	bit	0 1: 0.35 × VCC 1 0: 0.70 × VCC 1 1: Do not set.	R/W
b2	—	Nothing is assigned. If necessary, set to	o 0. When read, the content is undefined.	—
b3	_			
b4	—			
b5				
b6	—			
b7	—			

The VLT1 register selects the voltage level of the input threshold values for ports P4_2 and P4_5 to P4_7. Bits VLT10 and VLT11 are used to select the input threshold values among three voltage levels (0.35 VCC, 0.50 VCC, and 0.70 VCC).

7.5 **Port Settings**

Tables 7.5 to 7.41 list the port settings.

Register	PD0		A		ISEL		S	CUCR0	U2SMR	TR	CPS	R0	Timer RC Setting	
	-		CH		-	SEL						-		Function
Bit	PD0_0	2	1	0	1	0	SCUE	BCSHORT	IICM	2	1	0		
	0	х	х	х	х	х	0	х	х		her th 010b		х	Input port ⁽¹⁾
	1	х	х	х	х	х	0	х	х		her th 010b		х	Output port ⁽²⁾
	0	1	1	1	0	0	0	х	х		her th 010b		х	A/D converter input (AN7) ⁽¹⁾
Setting Value	х	x	x	x	x	х	1	1	х	x	х	х	Х	CHxC input, CHxC forced "H" output ^(2, 4, 5)
Value	х	х	х	х	х	х	1	0	х	х	х	х	х	CHxC forced "H" output ^(2, 4)
	0	x	x	x	x	х	0	х	х	0	1	0	Refer to Table 7.38 TRCIOA Pin Setting	TRCIOA input ⁽¹⁾
	Х	x	x	x	х	х	0	Х	х	0	1	0	Refer to Table 7.38 TRCIOA Pin Setting	TRCIOA output ⁽²⁾

Port P0_0/AN7/CHxC/TRCIOA/TRCTRG Table 7.5

X: 0 or 1 Notes:

1. Pulled up by setting the PU00 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the DRR00 bit in the DRR0 register to 1.

3. N-channel open-drain output by setting the NCH bit in the U2C0 register to 1.

4. After the sensor control unit operates, "H" is forcibly output from CHxC in Status 2.

5. After the sensor control unit operates, CHxC is set to input in Status 6 to 10 and 15 to 20.

Register	PD0			ווח	NSEL		5	CUCR0	ТС	CPS	Þ٨	Timer RC Setting	
Register	FDU		'	וושא	-		3	50000			-	Timer KC Setting	
Bit	PD0_1		CH		ADG	SEL	SCUE	BCSHORT	TRO	CIOA	SEL	—	Function
Dit	1 00_1	2	1	0	1	0	COOL	Decilion	2	1	0		
	0	х	х	х	х	х	0	Х		her th 011b		х	Input port ⁽¹⁾
	1	х	х	х	х	х	0	х		her th 011b		х	Output port ⁽²⁾
0	0	1	1	0	0	0	0	х		her th 011b		х	A/D converter input (AN6) ⁽¹⁾
Setting Value	х	х	х	х	х	х	1	1	х	х	х	х	CHxB input, CHxB forced "L" output ^(2, 3, 4)
	Х	Х	Х	Х	Х	Х	1	0	Х	Х	Х	Х	CHxB forced "L" output (2, 3)
	0	х	х	х	х	х	0	Х	0	1	1	Refer to Table 7.38 TRCIOA Pin Setting	TRCIOA input ⁽¹⁾
	х	х	х	х	х	х	0	х	0	1	1	Refer to Table 7.38 TRCIOA Pin Setting	TRCIOA output ⁽²⁾

Table 7.6 Port P0_1/AN6/CHxB/TRCIOA/TRCTRG

X: 0 or 1 Notes:

1. Pulled up by setting the PU00 bit in the PUR0 register to 1. 2. Output drive capacity high by setting the DRR00 bit in the DRR0 register to 1.

3. After the sensor control unit operates, "L" is forcibly output from CHxB in Status 5 and 14.

4. After the sensor control unit operates, CHxB is set to input in Status 6 to 10 and 15 to 20.

Register	PD0		A	DINSI	EL		SCUCR0	TI	RCPSF	20	Timer RC Setting	
Bit	PD0 2		СН		ADG	SEL	SCUE	TR	CIOAS	SEL		Function
DIL	FD0_2	2	1	0	1	0	SCOL	2	1	0	—	
	0	Х	Х	Х	Х	Х	0	Othe	r than	100b	Х	Input port ⁽¹⁾
	1	Х	Х	Х	Х	Х	0	Othe	r than	100b	Х	Output port (2)
	0	1	0	1	0	0	0	Othe	r than	100b	Х	A/D converter input (AN5) (1)
Setting Value	х	х	х	х	х	х	1	Х	Х	х	Х	CHxA input, CHxA forced "L" output ^(2, 3)
	0	Х	Х	х	х	х	0	1	0	0	Refer to Table 7.38 TRCIOA Pin Setting	TRCIOA input ⁽¹⁾
	х	х	х	х	х	х	0	1	0	0	Refer to Table 7.38 TRCIOA Pin Setting	TRCIOA output ⁽²⁾

Table 7.7 Port P0_2/AN5/CHxA/TRCIOA/TRCTRG

X: 0 or 1

Notes:

Pulled up by setting the PU00 bit in the PUR0 register to 1.
 Output drive capacity high by setting the DRR00 bit in the DRR0 register to 1.

3. After the sensor control unit operates, "L" is forcibly output from CHXA in Status 4, 5, 13, and 14.

Register	PD0		ŀ		ISEL		SCUCR0	TSIER0		S	СНС	CR		TR	CPS	R0	Timer RC Setting	Function
Bit	PD0_3		СН		ADG	SEL	SCUE	CH00E		(СНС	2		TRO	CIOB	SEL		Function
Dit	1 D0_5	2	1	0	1	0	SCOL	CHOOL	4	3	2	1	0	2	1	0		
	0	х	х	х	х	Х	0	х	х	Х	х	х	х		her th 010b		Х	Input port ⁽¹⁾
	1	х	х	х	х	х	0	х	х	х	х	х	Х		her th 010b		х	Output port ⁽²⁾
	0	1	0	0	0	0	0	х	х	х	х	х	х		her th 010b		х	A/D converter input (AN4) ⁽¹⁾
	Х	Х	Х	Х	Х	Х	1	1	0	0	0	0	0	Х	Х	Х	Х	CH0 input
Setting Value	х	х	х	х	х	х	1	1			er t	han Ob		х	х	х	х	CH0 forced "H" output ⁽²⁾
	0	x	x	x	x	x	0	х	x	х	х	x	x	0	1	0	Refer to Table 7.39 TRCIOB Pin Setting	TRCIOB input ⁽¹⁾
	х	x	x	x	х	х	0	х	x	х	х	x	x	0	1	0	Refer to Table 7.39 TRCIOB Pin Setting	TRCIOB output ⁽²⁾

Table 7.8 Port P0_3/AN4/CH0/TRCIOB

X: 0 or 1

Notes:

1. Pulled up by setting the PU00 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the DRR00 bit in the DRR0 register to 1.

Register Bit

	9 I	20	rt	P)_4//	AN3/	CH1/TRC	CIOB										
r	PD0		/	٩D	INSEI	L	SCUCR0	TSIER0	Ĩ	SC	Ю	CR		TR	CPS	R0	Timer RC Setting	
	PD0_4		СН		ADG	SEL	SCUE	CH01E		(ЭН	С		TRO	CIOB	SEL		Function
	FD0_4	2	1	0	1	0	SCOL	CHUIL	4	3	2	1	0	2	1	0	—	
	0	х	х	х	х	х	х	0	х	х	х	х	х		her th 011b		х	Input port ⁽¹⁾
	1	х	х	х	х	х	х	0	х	х	х	х	х		her th 011b		х	Output port ⁽²⁾
	0	0	1	1	0	0	0	х	x	х	х	х	х		her th 011b		Х	A/D converter input (AN3) ⁽¹⁾
	Х	Х	Х	Х	Х	Х	1	1	0	0	0	0	1	Х	Х	Х	Х	CH1 input
	Х	Х	Х	х	х	х	1	1	C			tha 1b		х	х	х	Х	CH1 forced "H" output ⁽²⁾
	0	х	х	х	х	x	х	0	x	x	x	x	х	0	1	1	Refer to Table 7.39 TRCIOB Pin Setting	TRCIOB input ⁽¹⁾

0

1

1

Refer to Table 7.39

TRCIOB Pin

Setting

Table 7.

X: 0 or 1 Notes:

Х

Х

Setting Value

1. Pulled up by setting the PU01 bit in the PUR0 register to 1.

Х

Х

Х

Х

2. Output drive capacity high by setting the DRR01 bit in the DRR0 register to 1.

Х

0

Х Х Х Х Х

Table 7.10 Port P0_5/AN2/CH2/TRCIOB

Register	PD0		/	٩DI	NSEL		SCUCR0	TSIER0		S	СНС	CR		TI	RCPS	R0	Timer RC Setting	
Bit	PD0_5		СН		ADG	SEL	SCUE	CH02E		(СН	С		TR	CIOB	SEL		Function
Dit	FD0_3	2	1	0	1	0	SCOL	CIIUZE	4	3	2	1	0	2	1	0	—	
	0	х	х	х	х	х	х	0	х	х	х	х	х	0	ther th 100b		Х	Input port ⁽¹⁾
	1	х	х	х	х	х	х	0	х	х	х	х	х	0	ther th 100b		х	Output port (2)
	0	0	1	0	0	0	0	х	х	х	х	х	х	0	ther th 100b		х	A/D converter input (AN2) ⁽¹⁾
Setting	Х	Х	Х	Х	Х	Х	1	1	0	0	0	1	0	Х	Х	Х	Х	CH2 input
Value	Х	х	х	х	х	х	1	1			er 1 001	thai 0b	า	х	х	х	Х	CH2 forced "H" output ⁽²⁾
	0	х	x	x	x	х	х	0	x	x	x	x	x	1	0	0	Refer to Table 7.39 TRCIOB Pin Setting	TRCIOB input ⁽¹⁾
	х	x	x	x	x	х	х	0	x	x	x	x	x	1	0	0	Refer to Table 7.39 TRCIOB Pin Setting	TRCIOB output ⁽²⁾

X: 0 or 1

Notes:

1. Pulled up by setting the PU01 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the DRR01 bit in the DRR0 register to 1.

TRCIOB output (2)

Register	PD0		1	AD	INSEI	L	SCUCR0	TSIER0		S	CH	IC	R		TR	CPS	SR	21	Timer RC Setting	
Bit	PD0 6		C⊦	ł	ADG	SEL	SCUE	CH03E		(Cŀ	IC			TRO	CIOD	S	EL		Function
Dit	FD0_0	2	1	0	1	0	SCOL	CHUSE	4	3	2	2	1	0	2	1		0	—	
	0	х	х	х	х	х	х	0	х	х		X	х	х		her tl 011t		an	х	Input port ⁽¹⁾
	1	х	х	х	х	х	х	0	Х	х		X	х	Х		her tl 011t		an	Х	Output port ⁽²⁾
	0	0	0	1	0	0	0	х	х	х		X	х	Х		her tl 011t		an	Х	A/D converter input (AN1) ⁽¹⁾
Setting	Х	Х	Х	Х	Х	Х	1	1	0	0	()	1	1	Х	Х		Х	Х	CH3 input
Value	Х	х	х	х	х	х	1	1	C			⁻ th 11		n	х	х		Х	Х	CH3 forced "H" output ⁽²⁾
	0	x	x	x	х	x	х	0	х	х		×	х	х	0	1		1	Refer to Table 7.41 TRCIOD Pin Setting	TRCIOD input ⁽¹⁾
	х	x	x	x	х	x	х	0	х	х	()	x :	х	x	0	1		1	Refer to Table 7.41 TRCIOD Pin Setting	TRCIOD output ⁽²⁾

Table 7.11 Port P0_6/AN1/CH3/TRCIOD

X: 0 or 1 Notes:

1. Pulled up by setting the PU01 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the DRR01 bit in the DRR0 register to 1.

Port P0_7/AN0/CH4/TRCIOC Table 7.12

Register	PD0			AD	INSE	L	SCUCR0	TSIER0		SC	Ю	CF	ł	TR	CPSI	R 1	Timer RC Setting	
Bit	PD0_7		C⊦	ł	ADG	SEL	SCUE	CH04E		(ЭН	С		TRC	SOOL	SEL		Function
Dit	FD0_/	2	1	0	1	0	SCOL	CI 104L	4	3	2	1	0	2	1	0		
	0	х	х	х	х	х	х	0	х	Х	х	х	x		ner th 011b	an	Х	Input port ⁽¹⁾
	1	х	х	х	х	х	х	0	х	Х	х	х	x		ner th 011b	an	Х	Output port ⁽²⁾
	0	0	0	0	0	0	0	х	х	х	х	х	x		ner th 011b	an	Х	A/D converter input (AN0) ⁽¹⁾
Setting	Х	Х	Х	Х	Х	Х	1	1	0	0	1	0	0	Х	Х	Х	Х	CH4 input
Value	Х	х	х	х	х	х	1	1	-		er)10			х	х	Х	Х	CH4 forced "H" output ⁽²⁾
	0	x	x	x	х	х	х	0	х	Х	x	x	x	0	1	1	Refer to Table 7.40 TRCIOC Pin Setting	TRCIOC input ⁽¹⁾
	Х	x	x	x	x	x	х	0	х	Х	x	×	x	0	1	1	Refer to Table 7.40 TRCIOC Pin Setting	TRCIOC output ⁽²⁾

X: 0 or 1

Notes:

Pulled up by setting the PU01 bit in the PUR0 register to 1.
 Output drive capacity high by setting the DRR01 bit in the DRR0 register to 1.

Register	PD1	KIEN	CH ADGSEL			-	SCUCR0	TSIER0		SC	н	CF	२		TR	CPS	R1	Timer RC Setting	Function	
Bit	PD1_0	KI0EN	(СН		ADG	SEL	SCUE	CH05E		(Ж	С			TRO	CIOD	SEL		Function
Dit	1 D1_0	RIULIN	2	1	0	1	0	SCOL	CHOSE	4	3	2	1	I	0	2	1	0		
	0	Х	х	х	х	Х	х	х	0	х	Х	х)	<	х		her th 001b		Х	Input port ⁽¹⁾
	1	х	х	х	х	х	х	х	0	х	х	х)	<	х		her th 001b		х	Output port ⁽²⁾
	0	1	х	Х	х	х	х	х	0	х	х	х	>	<	х		her th 001b		х	KI0 input ⁽¹⁾
Setting	0	0	0	0	0	0	1	0	х	x	х	х)	<	х		her th 001b		х	A/D converter input (AN8) ⁽¹⁾
Value	Х	Х	Х	Х	Х	Х	Х	1	1	0	0	1	0)	1	Х	Х	Х	Х	CH5 input
Value	Х	Х	Х	Х	Х	х	х	1	1	C	Oth OC				۱	х	х	х	Х	CH5 forced "H" output ⁽²⁾
	0	х	х	х	х	х	х	х	0	x	х	x	>	<	x	0	0	1	Refer to Table 7.41 TRCIOD Pin Setting	TRCIOD input ⁽¹⁾
	Х	х	x	х	x	х	х	х	0	x	x	х)	<	x	0	0	1	Refer to Table 7.41 TRCIOD Pin Setting	TRCIOD output ⁽²⁾

Port P1_0/KI0/AN8/CH5/TRCIOD Table 7.13

X: 0 or 1 Notes:

Pulled up by setting the PU02 bit in the PUR0 register to 1.
 Output drive capacity high by setting the P1DRR0 bit in the P1DRR register to 1.

Register	PD1	KIEN		ADINSEL CH ADGSEL			_	SCUCR0	TSIER0		SC	СН	CR	1	TF	RCPS	R0	Timer RC Setting	Function
Bit	PD1 1	KI1EN		C⊦	ł	ADG	SEL	SCUE	CH06E		(СН	С		TR	CIOA	SEL		FUNCTION
Dit	י_רטי_ו		2	1	0	1	0	OCOL	OTIOOL	4	3	2	1	0	2	1	0		
	0	х	х	х	х	Х	Х	х	0	Х	х	х	х	x	Ot	her th 001b		х	Input port ⁽¹⁾
	1	х	х	х	х	Х	х	х	0	Х	х	х	х	Х	Ot	her th 001b		х	Output port ⁽²⁾
	0	1	х	х	х	Х	х	х	0	Х	х	х	х	x	Ot	her th 001b		Х	KI1 input ⁽¹⁾
Catting	0	0	0	0	1	0	1	0	х	х	х	х	х	x	Ot	her th 001b		х	A/D converter input (AN9) ⁽¹⁾
Setting Value	Х	Х	Х	Х	Х	Х	Х	1	1	0	0	1	1	0	Х	Х	Х	Х	CH6 input
Value	Х	х	х	х	х	х	х	1	1	C		er)11			х	х	х	х	CH6 forced "H" output ⁽²⁾
	0	х	x	x	x	х	х	х	0	х	x	x	x	x	0	0	1	Refer to Table 7.38 TRCIOA Pin Setting	TRCIOA input ⁽¹⁾
	Х	х	x	x	x	х	х	х	0	х	x	x	x	x	0	0	1	Refer to Table 7.38 TRCIOA Pin Setting	TRCIOA output ⁽²⁾

Port P1_1/KI1/AN9/CH6/TRCIOA/TRCTRG Table 7.14

X: 0 or 1

Notes:

1. Pulled up by setting the PU02 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the P1DRR1 bit in the P1DRR register to 1.

Register	PD1	KIEN		ļ	٩D	INSEL	-	SCUCR0	TSIER0		S	СН	CF	ł		TR	CPS	R0	Timer RC Setting	Function
Bit	PD1 2	KI2EN	-	СН		ADG	SEL	SCUE	CH07E		(СН	С			TRC	CIOB	SEL	_	Function
Dit	101_2		2	1	0	1	0	OOOL		4	3	2	1	0)	2	1	0		
	0	Х	х	х	х	Х	Х	х	0	Х	Х	x	х	X	(ner th 001b	an	х	Input port ⁽¹⁾
	1	Х	х	х	х	Х	х	х	0	Х	Х	x	х	X	(ner th 001b		Х	Output port ⁽²⁾
	0	1	х	х	х	Х	Х	х	0	х	х	x	х	X	(ner th 001b		Х	KI2 input ⁽¹⁾
Cotting	0	0	0	1	0	0	1	0	х	х	х	х	х	X	(ner th 001b		Х	A/D converter input (AN10) ⁽¹⁾
Setting Value	Х	Х	Х	Х	Х	Х	Х	1	1	0	0	1	1	1		Х	Х	Х	Х	CH7 input
Value	Х	Х	Х	Х	Х	х	х	1	1	C		er D11				х	х	х	Х	CH7 forced "H" output ⁽²⁾
	0	х	х	х	х	х	х	х	0	х	х	x	x	×	<	0	0	1	Refer to Table 7.39 TRCIOB Pin Setting	TRCIOB input ⁽¹⁾
	х	х	x	х	x	х	х	х	0	х	x	x	x	×	¢	0	0	1	Refer to Table 7.39 TRCIOB Pin Setting	TRCIOB output ⁽²⁾

Port P1_2/KI2/AN10/CH7/TRCIOB Table 7.15

X: 0 or 1

Notes:

Pulled up by setting the PU02 bit in the PUR0 register to 1.
 Output drive capacity high by setting the P1DRR2 bit in the P1DRR register to 1.

Register	PD1	KIEN	ľ		AD	INSEI	L	SCUCR0	TSIER1		s	СН	CR		TRBF	RCSR	TR	CPS	R1	Timer RB Setting	Timer RC Setting	
Bit	PD1_3	KI3EN		Cŀ			SEL	SCUE	CH08E			СН			TRB			CIOC			_	Function
		_	2	1	0	1	0			4	3	2	1	0		0 r than 0b	2	1	0	х		Input port ⁽¹⁾
	0	х	x	x	x	Х	х	х	0	x	x	x	x	х	х	x		ner tl 001b		Other than TRBO usage conditions	х	
																r than Ob				х		Output port ⁽²⁾
	1	х	x	x	x	Х	x	x	0	x	x	x	x	х		x		ner ti 001b		Other than TRBO usage conditions	х	
																r than Ob				х		KI3 input ⁽¹⁾
	0	1	x	x	x	Х	х	х	0	x	х	x	x	х		x		ner ti 001t		Other than TRBO usage conditions	х	input (*)
																r than Ob				х		A/D converter
Setting Value	0	0	0	1	1	0	1	0	х	х	х	x	X	х	х	x		ner ti 001b		Other than TRBO usage conditions	х	input (AN11) ⁽¹⁾
	Х	Х	Х	X	Х	Х	Х	1	1	0	1	0	0	0	Х	Х	Х	Х	Х	Х	Х	CH8 input
	х	х	x	x	x	х	х	1	1			ier 100		n	х	х	х	х	х	х	х	CH8 forced "H" output ⁽²⁾
	х	х	x	x	x	х	x	х	0	x	х	x	x	х	0	0	х	х	x	Refer to Table 7.37 TRBO Pin Setting	х	TRBO output ⁽²⁾
																r than Ob				х	Refer to	TRCIOC input ⁽¹⁾
	0	Х	x	x	X	Х	×	х	0	х	х	x	Х	х	х	х	0	0	1	Other than TRBO usage conditions	TRCIOC Pin Setting	
															Other 00					х	Refer to Table 7.40	TRCIOC output ⁽²⁾
	х	х	х	x	x	х	х	х	0	х	х	x	Х	х	x	x	0	0	1	Other than TRBO usage conditions	TRCIOC Pin Setting	

Table 7.16	Port P1_3/KI3/AN11/CH8/TRBO/TRCIOC
------------	------------------------------------

Notes:

Pulled up by setting the PU02 bit in the PUR0 register to 1.
 Output drive capacity high by setting the P1DRR3 bit in the P1DRR register to 1.

Register	PD1	SCUCR0	TSIER1		SC	CH	CR		TSMR	U0SR	U	JOM	R	TRBF	RCSR	TF	RCC	R1	
Bit	PD1 4	SCUE	CH09E		(СН	С		UOLVM	TXD0SEL0	3	SMI	D	TRCC	LKSEL		TCK		Function
DIL	PD1_4	SCUE	CHU9E	4	3	2	1	0	UULVIVI	TADUSELU	2	1	0	1	0	2	1	0	
	0	Х	0	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Х	Х	Х	Х	Input port (1)
	1	Х	0	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Х	Х	Х	Х	Output port (2)
	Х	1	1	0	1	0	0	1	Х	0	Х	Х	Х	Х	Х	Х	Х	Х	CH9 input
	х	1	1	(Oth	er	tha	n	х	0	х	v	х	х	х	х	х	х	CH9 forced "H
	^	1	1		01	00	1b		^	0	^	^	^	^	^	^	^	^	output ⁽²⁾
											0		1						TXD0
Setting	х	х	0	х	Y	x	x	х	0	1		0	0	x	х	х	x	х	output ^(2, 3)
Value	^	~	0	^	^	^	^		U	1	1		1	^	~	^	^	^	
, and c												1	0						
											0		1						TXD0
	х	х	0	х	v	v	v	x	1	1		0	0	x	х	х	х	х	N-channel
	^	^	0	^	^	^	^	^	1	I	1		1	^	^	^	^	^	open-drain
												1	0						output
	0	х	0	х	v	v	v	х	х	0	х	v	х	0	1	1	0	1	TRCCLK
	0	^	0	^	^	^	^	^	^	0	^	^	^	0			0		input ⁽¹⁾

Table 7.17 Port P1_4/CH9/TXD0/TRCCLK

X: 0 or 1 Notes:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the P1DRR4 bit in the P1DRR register to 1.

3. N-channel open-drain output by setting the NCH bit in the U0C0 register to 1. However, when the U0LVM bit in the TSMR register is set to 1 (low-voltage signal mode enabled), the setting of the NCH bit is disabled. Refer to **7.6 Low-Voltage Signal Mode** for details.

Table 7.18 Port P1_5/CH10/RXD0/INT1/TRAIO

Register	PD1	SCUCR0	TSIER1		SC	Э	CF	2	TSI	ИR	U0SR	Т	RAS	R	TRAIOC	TF	RAM	ЛR	11	NTS	R	INTEN	
Dit		00115			C	Э	С					TR	AIO	SEL	TOPCR	Т	MC	D	IN	T1S	EL		Function
Bit	PD1_5	SCUE	CH10E	4	3	2	1	0	UULVIN	TILVIVI	RXD0SEL0	2	1	0	TOPCR	2	1	0	2	1	0	INT1EN	
	0	х	0	х	х	х	х	x	х	0	Х		nert 010		х	Х	х	х	х	х	х	х	Input port (1)
	1	х	0	х	х	х	х	x	х	х	Х		ner t 010l		х	Х	х	х	х	х	х	х	Output port (2)
	Х	1	1	0	1	0	1	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	CH10 input
	х	1	1	-	01 01				х	х	х	х	х	х	х	х	х	х	х	х	х	х	CH10 forced "H" output ⁽²⁾
	0	х	0	х	х	х	х	x	0	0	1		nert 010	han ว	х	х	х	х	х	х	х	х	RXD0 input ⁽¹⁾
Setting Value	0	х	0	х	х	х	х	x	1	х	1		nert 010		х	х	х	х	х	х	х	х	RXD0 CMOS input ^(1, 3)
Value	0	х	0	х	х	х	х	x	0	0	х		nert 010		х	х	х	х	0	0	1	1	INT1 input ⁽¹⁾
	0	х	0	х	х	х	х	x	0	1	х		nert 010		х	х	х	х	0	0	1	1	INT1 CMOS input ^(1, 3)
	0	х	0	x	x	х	х	x	0	0	х	0	1	0	0	Ċ	0th tha 1001	n b,	0	0	1	1	TRAIO input ⁽¹⁾
	х	х	0	х	х	х	х	х	х	х	х	0	1	0	0	0	0	1	х	х	х	Х	TRAIO pulse output ⁽²⁾

X: 0 or 1

Notes: 1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

Output drive capacity high by setting the P1DRR5 bit in the P1DRR register to 1.

3. Schmitt input is switched to CMOS input.

Register	PD1	SCUCR0	TSIER1		S	СНС	R		TSMR	U0SR		l	JON	/IR	
Bit	PD1 6	SCUE	CH11E		(СНС)		UOLVM	CLK0SEL0		SME)	CKDIR	Function
Dit	1 D1_0	300L	CITIL	4	3	2	1	0		CEROSEE0	2	1	0	CINDIN	
	0	Х	0	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Input port ⁽¹⁾
	1	Х	0	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Output port ⁽²⁾
	Х	1	1	0	1	0	1	1	Х	0	Х	Х	Х	Х	CH11 input
	х	1	1			ier t 101'			х	0	х	х	х	х	CH11 forced "H" output ⁽²⁾
Setting	0	Х	0	Х	Х	Х	Х	Х	0	1	Х	Х	Х	1	CLK0 (external clock) input (1)
Value	0	х	0	х	х	х	х	х	1	1	х	х	х	1	CLK0 (external clock) CMOS input ^(1, 3)
	Х	х	0	х	х	х	х	х	0	1	0	0	1	0	CLK0 (internal clock) output ⁽²⁾
	Х	Х	0	х	х	х	х	х	1	1	0	0	1	0	CLK0 (internal clock) N-channel open-drain output

Table 7.19 Port P1_6/CH11/CLK0

X: 0 or 1

Notes:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

Output drive capacity high by setting the P1DRR6 bit in the P1DRR register to 1.
 Schmitt input is switched to CMOS input.

Port P1_7/CH12/INT1/TRAIO Table 7.20

Register	PD1	SCUCR0	TSIER1		SC	СН	CR	2	TSMR	Т	RAS	R	TRAIOC	TF	RAN	ЛR	11	NTS	R	INTEN	
Bit	PD1 7	SCUE	CH12E		(СН	С		11LVM	TR	AIOS	SEL	TOPCR	Т	MC	D	IN	T1S	EL	INT1EN	Function
Dit	101_7	SCOL	OHIZE	4	3	2	1	0		2	1	0		2	1	0	2	1	0		
	0	Х	0	х	Х	х	х	X	0		ner th 001b		х	х	х	х	х	х	х	х	Input port ⁽¹⁾
	1	х	0	х	х	х	х	Х	х		ner ti 001k		х	х	х	х	х	х	х	х	Output port ⁽²⁾
	Х	1	1	0	1	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	CH12 input
	х	1	1	C		er 10			х	х	Х	х	х	х	х	х	х	х	х	х	CH12 forced "H" output ⁽²⁾
Setting Value	0	х	0	х	Х	х	х	Х	0		ner ti 001b		х	х	х	х	0	0	0	1	INT1 input ⁽¹⁾
Value	0	х	0	х	х	х	х	х	1		ner ti 001b		х	х	х	х	0	0	0	1	INT1 CMOS input ^(1, 3)
	0	х	0	x	х	х	x	x	0	0	0	1	0	Ċ	Dthe thai 0001	า ว,	0	0	0	1	TRAIO input ⁽¹⁾
	Х	х	0	х	Х	х	х	Х	х	0	0	1	0	0	0	1	х	х	х	х	TRAIO pulse output ⁽²⁾

X: 0 or 1

Notes:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the P1DRR7 bit in the P1DRR register to 1.

3. Schmitt input is switched to CMOS input.

Register	PD2	SCUCR0	TSIER1	;	sc	нс	R		TSI	MR	IN	ITS	SR	INTEN			U2	SRO)		U	2M	R	U2SMR	TR	CPS	SR0	Timer RC Setting	
Bit	PD2_0	SCUE	CH15E	4		HC) 1 (1.	J2 /M	l1 LVM	S	NT SE		INT1 EN		TXD SEL			RXE 2SE 1		s 2	МГ 1		IICM		RCIO SEL		_	Function
	0	х	0				x		x	0	-	-	x		C	Dthe	er	() Othe an 10	r		X		х	Oth		han	х	Input port ⁽¹⁾
	1	х	0	х	х	х	x	< :	x	х	х	х	х	х		Dthe			Othe an 1(х	х	х	х		ner t 1011	han b	х	Output port ⁽²⁾
	х	1	1	0	1	1	1	1	x	х	х	х	х	х	tha		00b	tha	Othe an 1(00b	х	х	х	х	х	х	х	х	CH15 input
	х	1	1		the 01		har Ib	' :	x	х	х	х	х	х	tha		00b	tha	Othe an 1(00b	х	х	х	Х	х	х	х	х	CH15 forced "H" output ⁽²⁾
	0	x	0	Х	х	х	x	< :	x	0	0	1	0	1	tha		00b	tha	Othe an 10	00b	х	х	х	Х		101		х	INT1 input ⁽¹⁾
	0	х	0	х	х	х	x	< 3	x	1	0	1	0	1		Dthe n 10			Othe an 1(х		Х		ner t 1011	han b	х	INT1 CMOS input ^(1, 4)
	х	х	0	x	x	x	x	< (0	Х	х	х	x	х	1	0	0	x	x	х	0	0	1 0 1 0	х	x	x	x	х	TXD2 output ^(2, 3)
	х	х	0	x	x	x	x	(1	х	x	x	x	х	1	0	0	x	x	х	0	0	1 0 1 0	х	x	x	x	х	TXD2 N-channel open-drain output
	0	х	0	х	х	х	x	< (0	0	х	х	х	х	1	0	0	х	х	х	0	1	0	1	x	х	х	х	SDA2 input/ output ^(2, 3)
Setting Value	0	x	0	x	x	x	x	<	1	x	x	x	x	x	1	0	0	x	x	x	0	1	0	1	x	x	x	x	SDA2 CMOS input, N-channel open-drain output ^(4, 5)
	0	х	0	х	х	х	x	()	0	0	х	х	х	х		Dthe		1	0	0	х	х	х	х		ner t 101I	han b	х	RXD2 input ⁽¹⁾
	0	х	0	х	х	х	x	(1	х	х	х	х	х		Dthe n 10		1	0	0	х	х	х	Х		ner t 1011	han b	х	RXD2 CMOS input ^(1, 4)
	0	х	0	х	х	х	x	()	0	0	х	х	х	х		Dthe n 10		1	0	0	0	1	0	1	х	х	х	х	SCL2 input/ output ^(2, 3)
	0	x	0	x	x	x	x	(1	х	x	x	x	x		Dthe n 10		1	0	0	0	1	0	1	x	x	x	x	SCL2 CMOS input, N-channel open-drain output ^(4, 5)
	0	x	0	x	x	x	x	< 2	x	0	x	x	x	x		Othe			Othe an 10		x	x	x	0	1	0	1	Table 7.39 TRCIOB Pin Setting	TRCIOB input ⁽¹⁾
	x	х	0	x	x	x	x	< :	x	0	x	x	x	x		Othe n 10			Othe an 10		x	x	x	0	1	0	1	Refer to Table 7.39 TRCIOB Pin Setting	TRCIOB output ⁽²⁾

Table 7.21	Port P2_0/CH15/INT1/TXD2/SDA2/RXD2/SCL2/TRCIOB
------------	--

X: 0 or 1 Notes:

Pulled up by setting the PU04 bit in the PUR0 register to 1.
 Output drive capacity high by setting the P2DRR0 bit in the P2DRR register to 1.

3. N-channel open-drain output by setting the NCH bit in the U2C0 register to 1. However, when the U2LVM bit in the TSMR register is set to 1 (lowvoltage signal mode enabled), the setting of the NCH bit is disabled. Refer to 7.6 Low-Voltage Signal Mode for details.

4. Schmitt input is switched to CMOS input.

5. SDA2/SCL2 N-channel open-drain output is set.

Register	PD2	SCUCR0	TSIER2			ЭН			TSMR		2SF					MR		CPS		Timer RC Setting	Function
Bit	PD2_1	SCUE	CH16E	4		2		0	U2LVM	CL 2	K2S 1	EL 0	2	SМ 1	D 0	CKDIR	TRO 2		SEL 0	-	
	0	х	0					х	х		Othe		х	х	х	х	Ot	her th 100b		х	Input port ⁽¹⁾
	1	х	0	х	х	х	х	х	х	tha	Othe In 10)0b	х	х	х	х	Ot	her th 100b		х	Output port ⁽²⁾
	Х	1	1	1	0	0	0	0	х		Othe		х	х	х	х	Х	Х	х	х	CH16 input
	х	1	1	C		er 1 000			х		Othe		x	x	x	х	х	х	х	х	CH16 forced "H" output ⁽²⁾
	0	х	0	x	x	x	x	x	0	1	0	0	x	x	x	1	Ot	her th 100b		х	CLK2 (external clock) input ⁽¹⁾
	0	х	0	x	x	x	x	x	1	1	0	0	x	x	x	1	Ot	her th 100b		Х	CLK2 (external clock) CMOS input ^(1, 4)
Setting Value	х	х	0	x	х	х	x	x	0	1	0	0	0	0	1	0	Х	х	х	х	CLK2 (internal clock) output ^(2, 3)
	х	х	0	x	x	x	x	x	1	1	0	0	0	0	1	0	х	х	х	x	CLK2 (internal clock) N-channel open-drain output
	0	Х	0	x	х	x	x	x	х		Othe n 10		x	x	x	х	1	0	0	Refer to Table 7.40 TRCIOC Pin Setting	TRCIOC input ⁽¹⁾
X: 0 or 1	х	х	0	x	x	x	x	x	x		Othe		x	x	x	x	1	0	0	Refer to Table 7.40 TRCIOC Pin Setting	TRCIOC output ⁽²⁾

Table 7.22 Port P2_1/CH16/CLK2/TRCIOC

X: 0 or 1 Notes:

1. Pulled up by setting the PU04 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the P2DRR1 bit in the P2DRR register to 1.

3. N-channel open-drain output by setting the NODC bit in the U2SMR3 register to 1.

4. Schmitt input is switched to CMOS input.

Register	PD2	SCUCR0	TSIER2		sc	н	CR	ł	TSMR			U2	SR0			U	I2M	R	U2SMR	TF	CPS	R1	Timer RC Setting	Function
Bit	PD2_2	SCUE	CH17E	4		2		0	U2LVM	ТХ 2	D28	EL 0	R> 2	(D28	SEL 0	ې 2	5МI 1) 0	IICM	TRO 2	CIOD	SEL 0		T UNOLOH
	0	х	0	Х							Othe an 1'			Othe an 1		х	х	х	х	Ot	her th 100b		х	Input port ⁽¹⁾
	1	х	0	х	х	х	х	x	x		Othe an 1'			Othe an 1		х	х	х	х	Ot	her th 100b		х	Output port (2)
	х	1	1	1	0	0	0	1	х		Othe an 1'			Othe an 1		х	х	х	х	х	х	х	Х	CH17 input
	х	1	1	C			tha 1b		х		Othe an 1'			Othe an 1		х	х	х	х	х	х	х	х	CH17 forced "H" output ⁽²⁾
	x	х	0	х	x	х	x	x	¢ 0	1	1	1	x	x	x	0	0	1 0 1 0	х	х	x	x	х	TXD2 output ^(2, 3)
	x	x	0	x	x	х	x	x	(1	1	1	1	x	x	x	0	0	0 1 0 1	х	x	x	x	х	TXD2 N-channel open-drain output
	0	х	0	х	х	х	x	x	0	1	1	1	х	х	х	0	1	0	1	Х	х	х	х	SDA2 input/ output ^(2, 3)
Setting Value	0	x	0	х	x	х	x	x	(1	1	1	1	x	x	x	0	1	0	1	x	x	x	х	SDA2 CMOS input, N-channel open-drain output ^(4, 5)
value	0	х	0	х	х	х	x	x	0		Dthe an 1'		1	1	1	х	х	х	х	Ot	her th 100b		х	RXD2 input ⁽¹⁾
	0	х	0	х	х	х	х	x	1		Othe an 1'		1	1	1	х	х	х	х	Ot	her th 100b		х	RXD2 CMOS input ^(1, 4)
	0	х	0	х	х	х	x	x	0		Othe an 1'		1	1	1	0	1	0	1	х	х	х	х	SCL2 input/ output ^(2, 3)
	0	x	0	х	x	х	x	x	(1		Othe an 1'		1	1	1	0	1	0	1	x	x	x	х	SCL2 CMOS input, N-channel open-drain output ^(4, 5)
	0	x	0	x	x	x	x	×	x		Othe an 1'			Othe an 1		x	x	x	х	1	0	0	Refer to Table 7.41 TRCIOD Pin Setting	TRCIOD input ⁽¹⁾
	x	x	0	х	x	x	x	×	x		Othe an 1'			Othe an 1		x	x	x	х	1	0	0	Refer to Table 7.41 TRCIOD Pin Setting	TRCIOD output ⁽²⁾

Notes:

1. Pulled up by setting the PU04 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the P2DRR2 bit in the P2DRR register to 1.

N-channel open-drain output by setting the NCH bit in the U2C0 register to 1. However, when the U2LVM bit in the TSMR register is set to 1 (low-voltage signal mode enabled), the setting of the NCH bit is disabled. Refer to 7.6 Low-Voltage Signal Mode for details.

4. Schmitt input is switched to CMOS input.

5. SDA2/SCL2 N-channel open-drain output is set.

Table 7.24Port P2_3/CH18

Register	PD2	SCUCR0	TSIER2		S	СНС	R		
Bit	PD2 3	SCUE	CH18E			СНС	;		Function
Dit	1 D2_3	300L	CITIOL	4	3	2	1	0	
	0	Х	0	Х	Х	Х	Х	Х	Input port ⁽¹⁾
Setting	1	Х	0	Х	Х	Х	Х	Х	Output port ⁽²⁾
Value	Х	1	1	1	0	0	1	0	CH18 input
	Х	1	1	0	ther t	han	1001	0b	CH18 forced "H" output ⁽²⁾

X: 0 or 1

Notes:

1. Pulled up by setting the PU04 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the P2DRR3 bit in the P2DRR register to 1.

Table 7.25 Port P2_4/CH19

Register	PD2	SCUCR0	TSIER2	Function
Bit	PD2_4	SCUE	CH19E	Function
	0	Х	0	Input port ⁽¹⁾
Setting	1	Х	0	Output port ⁽²⁾
Value	Х	1	1	CH19 input
	Х	1	1	CH19 forced "H" output ⁽²⁾

X: 0 or 1 Notes:

es:

1. Pulled up by setting the PU05 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the P2DRR4 bit in the P2DRR register to 1.

Table 7.26Port P2_5/CH20

Register	PD2	SCUCR0	TSIER2	Function
Bit	PD2_5	SCUE	CH20E	Function
	0	Х	0	Input port ⁽¹⁾
Setting	1	Х	0	Output port ⁽²⁾
Value	Х	1	1	CH20 input
	Х	1	1	CH20 forced "H" output ⁽²⁾

X: 0 or 1

Notes:

1. Pulled up by setting the PU05 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the P2DRR5 bit in the P2DRR register to 1.

Table 7.27 Port P2_6/CH21

Register	PD2	SCUCR0	TSIER2	Function
Bit	PD2_6	SCUE	CH21E	Function
	0	Х	0	Input port ⁽¹⁾
Setting	1	Х	0	Output port ⁽²⁾
Value	Х	1	1	CH21 input
	Х	1	1	CH21 forced "H" output ⁽²⁾

X: 0 or 1

Notes:

1. Pulled up by setting the PU05 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the P2DRR6 bit in the P2DRR register to 1.

Register	PD3	SCUCR0	TSIER1		sc	н	CR		TSMR	TRBF	RCSR	TR	CPS	R0	U28	SR1	U2	MF	ł	U2	C0	Timer RB Setting	Timer RC Setting	Function		
Bit	PD3_1	SCUE	CH14E	4	С 3	:Н(2		0	U2LVM	TRB0	OSEL 0	TRC 2	LIOA	SEL 0	CTS: 1	2SEL 0	SN 2 1		_ (CRS	CRD		_			
	0	х	0		х				х	Other 0'			ner th 110b			her 10b	x >	< >	×	х	х	Х	Х	Input port ⁽¹⁾		
	1	х	0	х	х	х	х	х	х	Other 0 ²			ner th 110b		Otl than	her 10b	x >	< >	×	х	х	Х	Х	Output port ⁽²⁾		
	х	1	1	0	1	1	1	0	х	х	х	x x x		Other than 10b		х >	< >	×	х	х	х	х	CH14 input			
	х	1	1	C	01 01			n	х	х	х	x x x		x	Other than 10b		x>	< >	×	х	х	х	х	CH14 forced "H" output ⁽²⁾		
	x	x	0	x	x	x	x	x	x	0	1	х	x	x	Otl than	her 10b	x>	< >	×	x	x	Refer to Table 7.37 TRBO Pin Setting	х	TRBO output ⁽²⁾		
	0	х	0	x	x	х	х	x	0	Other than 01b			ner th 110b		1	0	Oth tha 00	an		0	0	х	х	CTS2 input ⁽¹⁾		
Setting Value	х	х	0	x	x	x	х	x	0	х	x x		x	х	1	0	Oth tha 00	an		1	0	х	х	RTS2 output ⁽²⁾		
	0	х	0	x	x	x	х	x	1	Other than 01b			her than 110b		1	1 0		Other than 000b		an 0		0	0	х	х	CTS2 CMOS input ^(1, 3)
	x	x	0	x	x	x	х	x	1	x x		x	x	x	1	0	000b Other than 000b		er n 1		0	х	х	RTS2 N-channel open- drain output		
	0	х	0	x	x	x	x	x	x	Other than 01b		1	1	0		her 10b	x>	< >	×	x	x	x	Refer to Table 7.38 TRCIOA Pin Setting	TRCIOA input ⁽¹⁾		
	x	х	0	x	x	x	x	x	x		Other than 01b		1 1 0		Other than 10b		x>	< >	×	x	x	x	Refer to Table 7.38 TRCIOA Pin Setting	TRCIOA output ⁽²⁾		

Table 7.28	Port P3_1/CH14/TRBO/CTS2/RTS2/TRCIOA/TRCTRG

X: 0 or 1 Notes:

Pulled up by setting the PU06 bit in the PUR0 register to 1.
 Output drive capacity high by setting the DRR06 bit in the DRR0 register to 1.
 Schmitt input is switched to CMOS input.

Register	PD3	TSM	ИR	INTSR	INTEN	Т	RBR	CSR		TR	CC	R1	U2S	SR1	Uź	2M	R	U2	C0	SCI	JMR	Timer RB Setting	Function
Bit	PD3_3	U2LVM	13LVM	INT3SEL0	INT3EN		CLK EL	SE	EL		TCK		CTS2	2SEL	-	ME		CRS	CRD		CAP	-	Function
						1	0	1	0	2	1	0	1	0	2	1	0			1	0		
	0	х	0	х	х	x	x	Oth tha 11	an	x	х	х	Other 01		x	x	х	х	х	х	x	х	Input port ⁽¹⁾
	1	х	х	х	х	x	x	Oth tha 11	an	х	х	х	Other 01		x	x	x	х	х	х	x	х	Output port ⁽²⁾
	0	х	0	0	1	x	x	Oth tha 11	an	x	х	х	Other 01		x	x	х	х	х	x	x	х	INT3 input ⁽¹⁾
	0	х	1	0	1	x	x	Oth tha 11	an	x	х	х	Other 01		x	x	x	х	х	x	x	х	INT3 CMOS input ^(1, 3)
Outline	x	x	х	Х	х	x	x	1	1	x	х	x	Other 01		x	x	x	x	х	x	x	Refer to Table 7.37 TRBO Pin Setting	TRBO output ⁽²⁾
Setting Value	0	0	0	х	х	х	x	Oth tha 11	an	х	х	х	0	1	tł	the nar 00l	n	0	0	х	х	х	CTS2 input ⁽¹⁾
	х	0	0	х	х	x	x	x	х	x	х	х	0	1	tł	the nar 00l	n	1	0	х	x	х	RTS2 output ⁽²⁾
	0	1	0	х	х	x	x	Oth tha 11	an	x	х	х	0	1	tł	the nar 00l	n	0	0	x	x	х	CTS2 CMOS input ^(1, 3)
	х	1	0	х	х	х	x	x	x	x	х	х	0	1	tł	the nar 00l	n	1	0	х	х	х	RTS2 N-channel open-drain output
	0	х	0	х	х	1	0	Oth tha 11	an	1	0	1	Other 01		x	x	x	х	х	x	x	х	TRCCLK input ⁽¹⁾
	х	х	0	0	1	х	x	Oth tha 11	an	x	х	х	Other 01		x	x	x	х	х	1	1	х	SCUTRG input ⁽¹⁾

Table 7.29	Port P3 3/INT3/TRBO/CTS2/RTS2/TRCCLK/SCUTRG
Table 1.29	FUIL F3_3/INT3/IRBO/CT32/RT32/IRCCLR/3CUIRG

Notes:
1. Pulled up by setting the PU06 bit in the PUR0 register to 1.
2. Output drive capacity high by setting the DRR06 bit in the DRR0 register to 1.
3. Schmitt input is switched to CMOS input.

Register	PD3	TSM	٨R	INTEN	TR	CPS	R1			U28	SR0			U	2M	IR	U2SMR	Timer RC Setting	Function
Bit	PD3_4	U2LVM	I2LVM	INT2EN	TRO 2	CIOC 1	SEL 0	TX 2	D2S 1	SEL 0	RX 2	D2S 1	EL 0		MI 1		IICM	_	
	0	х	0	х		her th 010b			Dthe n 0'			Othe n 00		Х	Х	х	Х	х	Input port ⁽¹⁾
	1	Х	Х	Х		her th 010b		tha	Dthe n 0'	10b	tha	Othe n 00)1b	Х	х	х	Х	Х	Output port ⁽²⁾
	0	х	0	1		her th 010b			Dthe n 0'			Othe n 00		Х	Х	х	х	х	INT2 input ⁽¹⁾
	0	Х	1	1		her th 010b			Dthe n 0'			Othe In 00		Х	Х	х	Х	х	INT2 CMOS input ^(1, 3)
	0	х	0	х	0	1	0		Dthe n 0'			Othe n 00		х	х	x	х	Refer to Table 7.40 TRCIOC Pin Setting	TRCIOC input ⁽¹⁾
	х	х	x	х	0	0 1 0		Other than 010b				Othe n 00		x	x	x	х	Refer to Table 7.40 TRCIOC Pin Setting	TRCIOC output ⁽²⁾
Setting Value	х	0	0	х	х	x	x	0 1 0		0	x	x x		0	0	1 0 1	х	х	TXD2 output ^(2, 4)
	х	1	0	х	x	x	x	0	1	0	x	x	x	0		1 0 1 0	х	х	TXD2 N-channel open-drain output
	0	0	0	Х	х	х	х	0	1	0	х	х	х	0	1	0	1	х	SDA2 input/ output ^(2, 4)
	0	1	0	х	x x		x	0	1	0	х	x	x	0	1	0	1	х	SDA2 CMOS input, N-channel open-drain output ^(3, 5)
	0	0	0	х		her th 010b			Dthe n 0'		0	0	1	Х	Х	х	х	х	RXD2 input ⁽¹⁾
	0	1	0	Х		her th 010b			Dthe n 0'		0	0	1	х	х	х	Х	Х	RXD2 CMOS input ^(1, 3)
	0	0	0	х	х	х	х		Dthe n 0'		0	0	1	0	1	0	1	х	SCL2 input/ output ^(2, 4)
	0	1	0	х	x x x		x	than 010b Other than 010b		0	0	1	0	1	0	1	х	SCL2 CMOS input, N-channel open-drain output ^(3, 5)	

Table 7.30	Port P3_4/INT2/TRCIOC/TXD2/SDA2/RXD2/SCL2
------------	---

Notes:

Pulled up by setting the PU07 bit in the PUR0 register to 1.
 Output drive capacity high by setting the DRR07 bit in the DRR0 register to 1.

3. Schmitt input is switched to CMOS input.

4. N-channel open-drain output by setting the NCH bit in the U2C0 register to 1. However, when the U2LVM bit in the TSMR register is set to 1 (low-voltage signal mode enabled), the setting of the NCH bit is disabled. Refer to 7.6 Low-Voltage Signal Mode for details.

5. SDA2/SCL2 N-channel open-drain output is set.

Register	PD3	TSM	MR	т	RAS	R	TRAIOC	TF	RAN	ИR	I	NTS	R	INTEN	TR	CPS	R1	U	I2SF	R1			U2	MR	Timer RC Setting	Function
Bit	PD3_5	U2LVM	I2LVM	TR. 2	AIOS 1	SEL 0	TOPCR	Т 2	MC		IN 2	T1S	EL 0	INT1EN	TRC 2	CIOD	SEL 0	CL 2	K25			SM 1	D 0	CKDIR	_	
	0	Х	0		ner ti 101t		х	х	х	х	х	х	х	х		her th 010b			Othe an O		х	х	х	х	Х	Input port ⁽¹⁾
	1	х	х		ner ti 101t		х	х	х	х	х	х	х	х		ner th 010b			Othe an O		х	х	х	х	х	Output port ⁽²⁾
	0	Х	0		ner tl 101b		х	х	х	x	(101		1	1	Other than 010b		Other than 001b		х	х	х	х	х	INT1 input ⁽¹⁾		
	0	х	1		ner ti 101t		х	x x x		x	1	0	1	1		her th 010b			Othe an O		x	x	x	х	х	INT1 CMOS input (1, 3)
	0	х	0	1 0 1			0	t C	2the tha 0001	n b,	x	x	x	x		Other than 010b			Other than 001b			x	x	х	х	TRAIO input ⁽¹⁾
	х	х	х	1 0 1			0	0	0	1	x	x	x	х	х	x x x		Other than 001b		x	x	x	х	Х	TRAIO pulse output ⁽²⁾	
Setting Value	0	х	0		Other than 101b		x	x	x	x	x	x	x	x	0	1	0		Othe an O		x	x	x	x	Refer to Table 7.41 TRCIOD Pin Setting	TRCIOD input ⁽¹⁾
	x	x	х		Other than 101b		x	x	x	x	x	x	x	x	0	1	0		Othe an O		x	x	x	x	Refer to Table 7.41 TRCIOD Pin Setting	TRCIOD output ⁽²⁾
	0	0	0	Other than 101b		х	х	х	х	х	х	х	х		her th 010b		0	0	1	х	х	х	1	х	CLK2 input ⁽²⁾	
	0	1	0	Other than 101b		x	x	x	x	x	x	x	x		her th 010b		0	0	1	x	x	x	1	х	CLK2 CMOS input (2, 3)	
	х	0	0	х	x x x		х	x	x	x	x	x	x	х	х	x	х	0	0	1	0	0	1	0	х	CLK2 output (2, 4)
	х	1	0	x	x x x		х	x	x	x	x	x	x	x	x	x	x	0	0	1	0	0	1	0	х	CLK2 N- channel open- drain output

Table 7.31	Port P3_5/INT1/TRAIO/TRCIOD/CLK2
------------	----------------------------------

Notes:

Pulled up by setting the PU07 bit in the PUR0 register to 1.
 Output drive capacity high by setting the DRR07 bit in the DRR0 register to 1.

Schmitt input is switched to CMOS input.
 N-channel open-drain output by setting the NODC bit in the U2SMR3 register to 1.

Register	PD3	TSM	٨R	Ì		U28	SR0			U	2N	1R	U2SMR	TRAIOC	INTSR	INTEN	TRB	RCSR	TF	RCC	R1	
Bit	PD3 7	U2LVM	121.\/M	ТΧ	D2S	EL	RX	D2S	SEL	-	SM		IICM	TOENA	INT3SEL0		TRCC	LKSEL		TC	(Function
DIL	PD3_/	UZLVIVI		2	1	0	2	1	0	2	1	0	IICIVI	IOENA	IN I SSELU	INTSEN	1	0	2	1		
	0	Х	0		Othe n 00		(tha	Othe n 01		х	х	х	х	0	х	х		r than 1b	х	х	х	Input port ⁽¹⁾
	1	х	х		Othe n 00		(tha	Othe n 01		х	х	х	x	0	х	х		r than 1b	х	х		Output port (2)
	0	Х	0		Othe n 00		(tha	Othe n 01		х	х	х	х	0	1	1	х	х	х	х	х	INT3 input ⁽¹⁾
	0	Х	1		Othe n 00		(tha	Othe n 01		х	х	х	х	0	1	1	х	х	х	х	х	INT3 CMOS input ^(1, 3)
	х	х	х		Othe n 00		(tha	Othe n 01		х	х	х	х	1	х	х	х	х	х	х	х	TRAO output ⁽²⁾
	х	0	х	0	0	1	x	х	x	0	0	1	x	х	х	х	х	x	x	x	x	TXD2 output ^(2, 4)
Setting	х	1	х	0	0	1	x	x	x	0	0	1	x	х	х	х	х	x	x	x	x	TXD2 N-channel open-drain output
Value	0	0	0	0	0	1	х	х	х	0	1	0	1	х	х	х	х	х	х	х	х	SDA2 input/ output ^(2, 4)
	0	1	0	0	0	1	x	х	x	0	1	0	1	х	х	х	х	x	х	x		SDA2 CMOS input, N-channel open-drain output ^(3, 5)
	0	0	0		Othe n 00		0	1	0	х	х	х	х	0	х	х	х	х	х	х	х	RXD2 input ⁽¹⁾
	0	1	0		Othe n 00		0	1	0	х	х	х	х	0	х	х	х	х	х	х	х	RXD2 CMOS input ^(1, 3)
	0	0	0		Othe n 00		0	1	0	0	1	0	1	х	х	х	х	х	х	х	х	SCL2 input/ output ^(2, 4)
	0	1	0		Othe n 00		0	1	0	0	1	0	1	х	х	х	х	x	х	x	x	SCL2 CMOS input, N-channel open-drain output ^(3, 5)
	0	х	Х		Othe n 00		(tha	Othe n 01		х	х	х	х	0	х	х	1	1	1	0	1	TRCCLK input ⁽¹⁾

Table 7.32 Port P3_7/INT3/TRAO/TXD2/SDA2/RXD2/SCL2/TRCCLK

X: 0 or 1

Notes:

1. Pulled up by setting the PU07 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the DRR07 bit in the DRR0 register to 1.

3. Schmitt input is switched to CMOS input.

Verify the source of the owner of the owner of the owner of the owner of the owner of the owner of the owner of the owner of the owner of the owner o

5. SDA2/SCL2 N-channel open-drain output is set.

Table 7.33Port P4_2/VREF

Register	ADCON1	Function
Bit	ADSTBY	Function
Setting	0	Input port
Value	1	Input port/VREF input

Table 7.34 Port P4_5/CH13/INT0/RXD2/SCL2/ADTRG

Register	PD4	SCUCR0	TSIER1		SC	Ю	CR		TS	ИR	INTEN	U	2SF	20	U	2N	IR	U2SMR	ADN	10D	
Bit	PD4 5	SCUE	CH13E			ЭН			U2LVM		INTOEN		D28			SM		IICM	ADO		Function
	1 04_0	OOOL	OTTIOE	4	3	2	1	0	0220101	1020101	INTOLIN	2	1	0	2	1	0	nom	1	0	
	0	0	х	х	х	х	х	х	х	0	х		Othe an Oʻ		х	х	х	х	х	х	Input port ⁽¹⁾
	1	0	Х	х	х	х	х	х	Х	Х	Х		Othe an 0'		х	х	х	Х	х	х	Output port ⁽²⁾
	х	1	1	0	1	1	0	1	х	Х	х		Othe an 0'		х	х	х	х	х	х	CH13 input
	х	1	1	C	Oth 01	er 10		IN	х	х	х	х	х	х	х	x	x	х	x	х	CH13 forced "H" output ⁽²⁾
	0	0	Х	х	х	х	х	х	х	0	1		Othe an 0'		х	x	х	Х	х	х	INT0 input ⁽¹⁾
Setting	0	0	х	х	х	х	x	x	х	1	1		Othe an 0'		х	x	x	х	х	х	INT0 CMOS input ^(1, 4)
Value	0	0	х	х	х	х	х	х	0	0	х	0	1	1	х	х	х	х	х	х	RXD2 input ⁽¹⁾
	0	0	х	х	х	x	x	x	1	0	х	0	1	1	х	x	x	Х	х	х	RXD2 CMOS input ^(1, 4)
	0	0	х	х	х	х	х	х	0	0	х	0	1	1	0	1	0	1	х	х	SCL2 input/ output ^(2, 3)
	0	0	х	x	x	x	x	x	1	0	х	0	1	1	0	1	0	1	x	x	SCL2 CMOS input, N-channel open-drain output ^(4, 5)
	0	0	Х	х	х	х	х	х	х	0	1		Othe an 0'		х	x	х	Х	1	1	ADTRG input ⁽¹⁾

X: 0 or 1

Notes:

1. Pulled up by setting the PU11 bit in the PUR1 register to 1.

2. Output drive capacity high by setting the DRR11 bit in the DRR1 register to 1.

3. N-channel open-drain output by setting the NCH bit in the U2C0 register to 1. However, when the U2LVM bit in the TSMR register is set to 1 (low-voltage signal mode enabled), the setting of the NCH bit is disabled. Refer to **7.6 Low-Voltage Signal Mode** for details.

4. Schmitt input is switched to CMOS input.

5. SCL2 N-channel open-drain output is set.

Register	PD4	CM0		CM1		Circuit spe	cifications	
Bit	PD4_6	CM05	CM10	CM11	CM13	Oscillation buffer	Feedback resistor	Function
	0	1	0	Х	0	OFF	_	Input port ⁽¹⁾
	1	1	0	Х	0	OFF	-	Output port ⁽²⁾
	Х	0	0	0	1	ON	ON	XIN-XOUT oscillation (on-chip feedback resistor enabled)
Setting Value	х	0	0	1	1	ON	OFF	XIN-XOUT oscillation (on-chip feedback resistor disabled)
Value	х	1	0	0	1	OFF	ON	XIN-XOUT oscillation stop (on-chip feedback resistor enabled)
	х	1	0	1	1	OFF	OFF	XIN-XOUT oscillation stop (on-chip feedback resistor disabled)
	Х	1	1	Х	1	OFF	OFF	XIN-XOUT oscillation stop (STOP mode)

Table 7.35 Port P4_6/XIN

X: 0 or 1

Notes:

1. Pulled up by setting the PU11 bit in the PUR1 register to 1.

2. Output drive capacity high by setting the DRR11 bit in the DRR1 register to 1.

Table 7.36 Port P4_7/XOUT

Register	PD4	CM0		CM1		Circuit spe	cifications	
Bit	PD4_7	CM05	CM10	CM11	CM13	Oscillation buffer	Feedback resistor	Function
	0	1	0	Х	0	OFF	—	Input port ⁽¹⁾
	1	1	0	Х	0	OFF	_	Output port ⁽²⁾
	х	0	0	0	1	ON	ON	XIN-XOUT oscillation (on-chip feedback resistor enabled)
Setting Value	Х	0	0	1	1	ON	OFF	XIN-XOUT oscillation (on-chip feedback resistor disabled)
Value	Х	1	0	0	1	OFF	ON	XIN-XOUT oscillation stop (on-chip feedback resistor enabled)
	х	1	0	1	1	OFF	OFF	XIN-XOUT oscillation stop (on-chip feedback resistor disabled)
	Х	1	1	Х	1	OFF	OFF	XIN-XOUT oscillation stop (STOP mode)

X: 0 or 1

Notes:

Pulled up by setting the PU11 bit in the PUR1 register to 1.
 Output drive capacity high by setting the DRR11 bit in the DRR1 register to 1.

Register	TRBIOC	TRE	BMR	Function		
Bit	TOCNT	TMOD1	TMOD0	Function		
	0	0	1	Programmable waveform generation mode (pulse output)		
Setting	1	0	1	Programmable waveform generation mode (programmable output)		
Value	0	1	0	Programmable one-shot generation mode		
	0	1	1	Programmable wait one-shot generation mode		

Table 7.37 TRBO Pin Setting

Table 7.38 TRCIOA Pin Setting

Register	TRCOER	TRCMR		TRCIOR0		TRC	CR2	Function	
Bit	EA	PWM2	IOA2	IOA1	IOA0	TCEG1	TCEG0		
	0	1	0	0	1	x	х	Timer waveform output (output compare	
	U	I	0	1	Х			function)	
Setting	0	4	1	х	х	х	х	Timer mode (input capture function)	
Value	lue 1	I	1	~	^				
	0	0	х	х	V	0	1	PWM2 mode TRCTRG input	
	1	0	^	^	Х	1	Х		

X: 0 or 1

Table 7.39 TRCIOB Pin Setting

Register	TRCOER	TRC	CMR		TRCIOR0)	Function
Bit	EB	PWM2	PWMB	IOB2 IOB1 IOB0		Function	
	0	0	Х	Х	Х	Х	PWM2 mode waveform output
	0	1	1	Х	Х	Х	PWM mode waveform output
Setting	0	1	0	0	0	1	Timer waveform output (output compare function)
Value	0	1	0	0	1	Х	
	0	1	0 1		х	х	Timer mode (input capture function)
	1		0	I	^	^	

X: 0 or 1

Table 7.40 TRCIOC Pin Setting

Register	TRCOER	TRC	CMR		TRCIOR1		Function
Bit	EC	PWM2	PWMC	IOC2	IOC1	IOC0	Fullction
	0	1	1	Х	Х	Х	PWM mode waveform output
0	0 1	0	0	0	1	Timer waveform output (output compare function)	
Value	Setting 0	1	0	0	1	Х	
value	0 1 0		1	х	X	Timer mode (input capture function)	
			0	1	^	^	

X: 0 or 1

Table 7.41 TRCIOD Pin Setting

Register	TRCOER	TRC	CMR		TRCIOR1		Function
Bit	ED	PWM2	PWMD	IOD2	IOD1	IOD0	Function
	0	1	1	Х	Х	Х	PWM mode waveform output
	1	0	0	0	1	Timer waveform output (output compare function)	
Value	Setting 0		0	1	Х		
Value	0	1	0	1	х	~	Timer mode (input capture function)
	1	I	0	I	^	~	

X: 0 or 1

7.6 Low-Voltage Signal Mode

Serial interface (UART0 and UART2) communication and the INT input for the INT interrupt can be performed using a low-voltage signal. Table 7.42 lists the Pins Usable for Inputting and Outputting Low-Voltage Signal. Depending on the setting of the TSMR register, the pins enabled for low-voltage signal mode is switched from

schmitt input to CMOS input when they are used as input.

Set the input threshold values for CMOS input using registers VLT0 and VLT1.

When low-voltage signal mode is used, all inputs are set to CMOS input. Since schmitt input is disabled, always take countermeasures against noise.

Table 7.42	Pins Usable for Inputting and Outputting Low-Voltage Signal
------------	---

	Peripheral Function Name	Pin
Serial interface	UART0 Clock synchronous serial I/O Clock asynchronous serial I/O	CLK0, RXD0, TXD0
	UART2 Clock synchronous serial I/O Clock asynchronous serial I/O Special mode 1 (I ² C mode) Special mode 2 (SSU mode) Multiprocessor communication function	<u>CLK2, RXD2,</u> TXD2, CTS2, RTS2, SCL2, SDA2
INT	INTO to INT3	INT0 to INT3

7.7 Unassigned Pin Handling

Table 7.43 lists Unassigned Pin Handling. Figure 7.12 shows the Unassigned Pin Handling.

Table 7.43	Unassigned Pin Handling
------------	-------------------------

Pin Name	Connection
Ports P0, P1, P2_0 to P2_6, P3_1, P3_3 to P3_5, P3_7, P4_5 to P4_7	 After setting to input mode, connect each pin to VSS via a resistor (pull-down) or connect each pin to VCC via a resistor (pull-up). ⁽²⁾ After setting to output mode, leave these pins open. ^(1, 2)
Port P4_2/VREF	Connect to VCC
RESET ⁽³⁾	Connect to VCC via a pull-up resistor ⁽²⁾

Notes:

1. If these ports are set to output mode and left open, they remain in input mode until they are switched to output mode by a program. The voltage level of these pins may be undefined and the power current may increase while the ports remain in input mode.

The content of the direction registers may change due to noise or program runaway caused by noise. In order to enhance program reliability, the program should periodically repeat the setting of the direction registers.

- 2. Connect these unassigned pins to the MCU using the shortest wire length (2 cm or less) possible.
- 3. When the power-on reset function is in use.

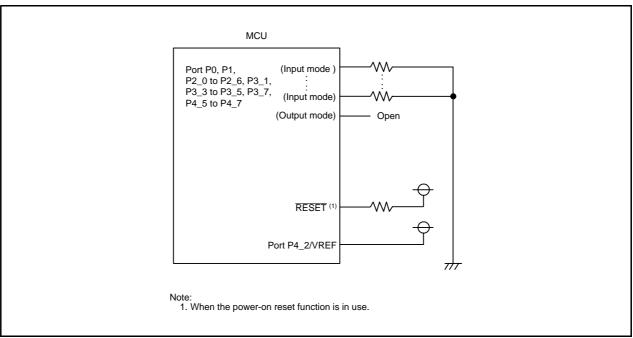


Figure 7.12 Unassigned Pin Handling

8. Bus

The bus cycles differ when accessing ROM, RAM, DTC vector area, DTC control data and when accessing SFR. Table 8.1 lists Bus Cycles by Access Area of R8C/3JT Group.

ROM, RAM, DTC vector area, DTC control data and SFR are connected to the CPU by an 8-bit bus. When accessing in word (16-bit) units, these areas are accessed twice in 8-bit units.

Table 8.2 lists Access Units and Bus Operations.

Table 8.1	Bus Cycles by Access Area of R8C/3JT Group
-----------	--

Access Area	Bus Cycle		
SFR, Data flash	2 cycles of CPU clock		
Program ROM, RAM	1 cycle of CPU clock		

Table 8.2 Access Units and Bus Operations

Area	SFR, Data flash	ROM (program ROM), RAM, DTC vector area, DTC control data
Even address Byte access	CPU clock	
	Address X Even X	Address X Even X
	Data X Data X	Data X Data
Odd address Byte access	CPU clock	CPU clock
	Address X Odd X	Address X Odd X
	Data X Data X	Data X Data
Even address Word access		CPU clock
	Address X Even X Even + 1 X	Address X Even X Even + 1 X
	Data X Data X Data X	Data
Odd address Word access		
	Address X Odd X Odd + 1 X	Address X Odd X Odd + 1 X
	Data X Data X Data X	Data X Data X Data X

However, only the following SFRs are connected with the 16-bit bus:

Interrupts: Each interrupt control register

Timer RC: Registers TRC, TRCGRA, TRCGRB, TRCGRC, and TRCGRD

UART2: Registers U2MR, U2BRG, U2TB, U2C0, U2C1, U2RB, U2SMR5, U2SMR4, U2SMR3, U2SMR2, and U2SMR

A/D converter: Registers AD0, AD1, AD2, AD3, AD4, AD5, AD6, AD7, ADMOD, ADINSEL, ADCON0, and ADCON1

Address match interrupt: Registers RMAD0, AIER0, RMAD1, and AIER1

Therefore, they are accessed once in 16-bit units. The bus operation is the same as "Area: SFR, Data flash, Even address Byte access" in Table 8.2 Access Units and Bus Operations, and 16-bit data is accessed at a time.

9. Clock Generation Circuit

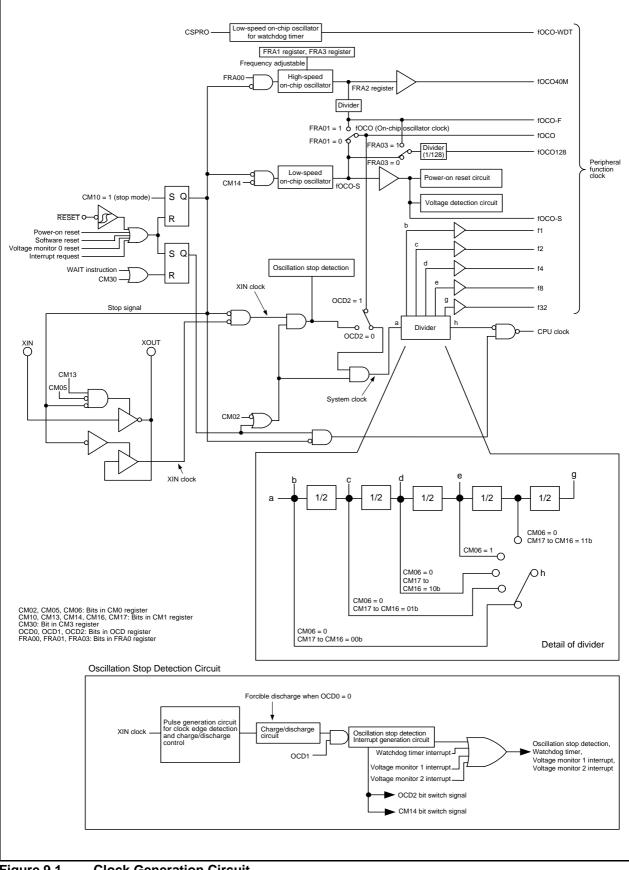
The following four circuits are incorporated in the clock generation circuit:

- XIN clock oscillation circuit
- Low-speed on-chip oscillator
- High-speed on-chip oscillator
- Low-speed on-chip oscillator for watchdog timer

9.1 Overview

Table 9.1 lists the Specification Overview of Clock Generation Circuit. Figure 9.1 shows a Clock Generation Circuit. Figure 9.2 shows a Peripheral Function Clock and Figure 9.3 shows a Procedure for Reducing Internal Power Consumption Using VCA20 bit.

	XIN Clock Oscillation	On-Chip	Oscillator	Low-Speed On-Chip
Item	Circuit	High-Speed On-Chip Oscillator	Low-Speed On-Chip Oscillator	Oscillator for Watchdog Timer
Applications		 CPU clock source Peripheral function clock source CPU and peripheral function clock source when XIN clock stops oscillating 	 CPU clock source Peripheral function clock source CPU and peripheral function clock source when XIN clock stops oscillating 	Watchdog timer clock source
Clock frequency	0 to 20 MHz	Approx. 40 MHz ⁽³⁾	Approx. 125 kHz	Approx. 125 kHz
Connectable oscillator	Ceramic resonator Crystal oscillator	—	—	—
Oscillator connect pins	XIN, XOUT ⁽¹⁾	(1)	(1)	—
Oscillation stop, restart function	Usable	Usable	Usable	Usable
Oscillator status after reset	Stop	Stop	Oscillate	Stop ⁽⁴⁾ Oscillate ⁽⁵⁾
Others	Externally generated clock can be input ⁽²⁾	—	—	—


 Table 9.1
 Specification Overview of Clock Generation Circuit

Notes:

1. These pins can be used as P4_6 or P4_7 when using the on-chip oscillator clock as the CPU clock while the XIN clock oscillation circuit is not used.

- 2. To input an external clock, set the CM05 bit in the CM0 register to 1 (XIN clock stops), the CM11 bit in the CM1 register to 1 (internal feedback resistor disabled), and the CM13 bit to 1 (XIN-XOUT pin).
- 3. The clock frequency is automatically set to up to approx. 20 MHz by a divider when using the high-speed onchip oscillator as the CPU clock source.
- 4. This applies when the CSPROINI bit in the OFS register is set to 1 (count source protection mode disabled after reset).
- 5. This applies when the CSPROINI bit in the OFS register is set to 0 (count source protection mode enabled after reset).

RENESAS

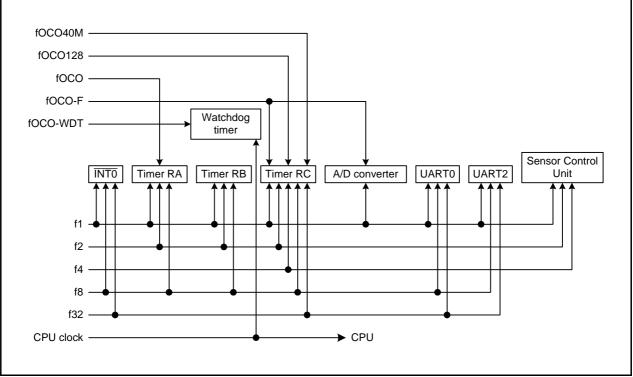
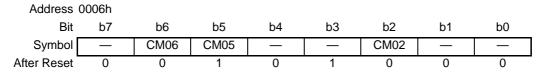



Figure 9.2 Peripheral Function Clock

9.2 Registers

9.2.1 System Clock Control Register 0 (CM0)

Bit	Symbol	Bit Name	Function	R/W
b0	—	Reserved bits	Set to 0.	R/W
b1	—			
b2	CM02	Wait mode peripheral function clock stop bit	0: Peripheral function clock does not stop in wait mode1: Peripheral function clock stops in wait mode	R/W
b3	—	Reserved bits	Set to 0.	R/W
b4	—			
b5	CM05	XIN clock (XIN-XOUT) stop bit ^(1, 3)	0: XIN clock oscillates 1: XIN clock stops ⁽²⁾	R/W
b6	CM06	CPU clock division select bit 0 ⁽⁴⁾	0: Bits CM16 and CM17 in CM1 register enabled 1: Divide-by-8 mode	R/W
b7	—	Reserved bit	Set to 0.	R/W

Notes:

- 1. The CM05 bit stops the XIN clock when the high-speed on-chip oscillator mode or low-speed on-chip oscillator mode is selected. This bit cannot be used to detect whether the XIN clock has stopped. To stop the XIN clock, set the bits in the following order:
 - (1) Set bits OCD1 to OCD0 in the OCD register to 00b.
 - (2) Set the OCD2 bit to 1 (on-chip oscillator clock selected).
- 2. During external clock input, only the clock oscillation buffer stops and clock input is acknowledged.
- 3. Only when the CM05 bit is set to 1 (XIN clock stops) and the CM13 bit in the CM1 register is set to 0 (P4_6 and P4_7), P4_6 and P4_7 can be used as I/O ports.
- 4. When the MCU enters stop mode, the CM06 bit is set to 1 (divide-by-8 mode).

Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the CM0 register.

9.2.2 System Clock Control Register 1 (CM1)

Address	Address 0007h									
Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Symbol	CM17	CM16	—	CM14	CM13	_	CM11	CM10		
After Reset	0	0	1	0	0	0	0	0		

Bit	Symbol	Bit Name	Function	R/W
b0	CM10	All clock stop control bit ^(2, 6)	0: Clock oscillates 1: All clocks stop (stop mode)	R/W
b1	CM11	XIN-XOUT on-chip feedback resistor select bit	0: On-chip feedback resistor enabled 1: On-chip feedback resistor disabled	R/W
b2	—	Reserved bit	Set to 0.	R/W
b3	CM13	Port/XIN-XOUT switch bit ⁽⁵⁾	0: I/O ports P4_6 and P4_7 1: XIN-XOUT pin	R/W
b4	CM14	Low-speed on-chip oscillator stop bit ^(3, 4)	0: Low-speed on-chip oscillator on 1: Low-speed on-chip oscillator off	R/W
b5		Reserved bit	Set to 1.	R/W
b6	CM16	CPU clock division select bit 1 ⁽¹⁾	b7 b6	R/W
b7	CM17		0 0: No division mode 0 1: Divide-by-2 mode 1 0: Divide-by-4 mode 1 1: Divide-by-16 mode	R/W

Notes:

- 1. When the CM06 bit is set to 0 (bits CM16 and CM17 enabled), bits CM16 and CM17 are enabled.
- 2. If the CM10 bit is set to 1 (stop mode), the on-chip feedback resistor is disabled.
- 3. When the OCD2 bit is set to 0 (XIN clock selected), the CM14 bit can be set to 1 (low-speed on-chip oscillator off). When the OCD2 bit is set to 1 (on-chip oscillator clock selected), the CM14 bit is set to 0 (low-speed on-chip oscillator on). It remains unchanged even if 1 is written to it.
- 4. To use the voltage monitor 1 interrupt or voltage monitor 2 interrupt (when the digital filter is used), set the CM14 bit to 0 (low-speed on-chip oscillator on).
- 5. Once the CM13 bit is set to 1 by a program, it cannot be set to 0.
- 6. Do not set the CM10 bit to 1 (stop mode) when the VCA20 bit in the VCA2 register to 1 (low consumption enabled).

Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the CM1 register.

9.2.3 System Clock Control Register 3 (CM3)

Address	Address 0009h									
Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Symbol	CM37	CM36	CM35			—		CM30		
After Reset	0	0	0	0	0	0	0	0		

Bit	Symbol	Bit Name	Function	R/W				
b0	CM30	Wait control bit ⁽¹⁾	0: Other than wait mode 1: MCU enters wait mode	R/W				
b1 b2		Nothing is assigned. If necessary, s	lothing is assigned. If necessary, set to 0. When read, the content is 0.					
b3 b4	—	Reserved bits	Set to 0.	R/W				
b5	CM35	CPU clock division when exiting wait mode select bit ⁽²⁾	0: Following settings are enabled: CM06 bit in CM0 register Bits CM16 and CM17 in CM1 register 1: No division	R/W				
b6 b7	CM36 CM37	System clock when exiting wait mode or stop mode select bit	 ^{b7 b6} 0 0: MCU exits with the CPU clock immediately before entering wait or stop mode. 0 1: Do not set. 1 0: High-speed on-chip oscillator clock selected ⁽³⁾ 1 1: XIN clock selected ⁽⁴⁾ 	R/W R/W				

Notes:

- 1. When the MCU exits wait mode by a peripheral function interrupt, the CM30 bit is set to 0 (other than wait mode).
- Set the CM35 bit to 0 in stop mode. When the MCU enters wait mode, if the CM35 bit is set to 1 (no division), the CM06 bit in the CM0 register is set to 0 (bits CM16 and CM17 enabled) and bits CM17 and CM16 in the CM1 register is set to 00b (no division mode).
- 3. When bits CM37 and CM36 are set to 10b (high-speed on-chip oscillator clock selected), the following will be set when the MCU exits wait mode or stop mode.
 - OCD2 bit in OCD register = 1 (on-chip oscillator selected)
 - FRA00 bit in FRA0 register = 1 (high-speed on-chip oscillator on)
 - FRA01 bit in FRA0 register = 1 (high-speed on-chip oscillator selected)
- 4. When bits CM37 and CM36 are set to 11b (XIN clock selected), the following will be set when the MCU exits wait mode or stop mode.
 - OM05 bit in OM0 register = 0 (XIN clock oscillates)
 - OM13 bit in OM1 register = 1 (XIN-XOUT pin)
 - OCD2 bit in OCD register = 0 (XIN clock selected)

When the MCU enters wait mode while the CM05 bit in the CM0 register is 1 (XIN clock stops), if the XIN clock is selected as the CPU clock when exiting wait mode, set the CM06 bit to 1 (divide-by-8 mode) and the CM35 bit to 0.

However, if an externally generated clock is used as the XIN clock, do not set bits CM37 to CM36 to 11b (XIN clock selected).

Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the CM3 register.

CM30 bit (Wait Control Bit)

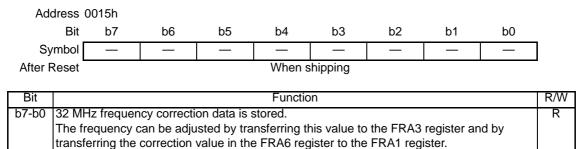
When the CM30 bit is set to 1 (MCU enters wait mode), the CPU clock stops (wait mode). Since the XIN clock and the on-chip oscillator clock do not stop, the peripheral functions using these clocks continue operating. To set the CM30 bit to 1, set the I flag to 0 (maskable interrupt disabled).

The MCU exits wait mode by a reset or peripheral function interrupt. When the MCU exits wait mode by a peripheral function interrupt, it resumes executing the instruction immediately after the instruction to set the CM30 bit to 1.

When the MCU enters wait mode with the WAIT instruction, make sure to set the I flag to 1 (maskable interrupt enabled). With this setting, interrupt handling is performed by the CPU when the MCU exits wait mode.

9.2.4 Oscillation Stop Detection Register (OCD)

Address	Address 000Ch									
Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Symbol					OCD3	OCD2	OCD1	OCD0		
After Reset	0	0	0	0	0	1	0	0		


Bit	Symbol	Bit Name	Function	R/W
b0	OCD0	Oscillation stop detection enable bit ⁽⁶⁾	0: Oscillation stop detection function disabled ⁽¹⁾ 1: Oscillation stop detection function enabled	R/W
b1	OCD1	Oscillation stop detection interrupt enable bit	0: Disabled ⁽¹⁾ 1: Enabled	R/W
b2	OCD2	System clock select bit ⁽³⁾	0: XIN clock selected ⁽⁶⁾ 1: On-chip oscillator clock selected ⁽²⁾	R/W
b3	OCD3	Clock monitor bit ^(4, 5)	0: XIN clock oscillates 1: XIN clock stops	R
b4	—	Reserved bits	Set to 0.	R/W
b5	—]		
b6	—]		
b7	—			

Notes:

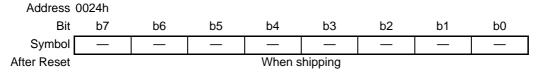
- 1. Set bits OCD1 to OCD0 to 00b before the MCU enters stop mode, high-speed on-chip oscillator mode, or lowspeed on-chip oscillator mode (XIN clock stops).
- 2. If the OCD2 bit is set to 1 (on-chip oscillator clock selected), the CM14 bit is set to 0 (low-speed on-chip oscillator on).
- 3. The OCD2 bit is automatically set to 1 (on-chip oscillator clock selected) if XIN clock oscillation stop is detected while bits OCD1 to OCD0 are set to 11b. If the OCD3 bit is set to 1 (XIN clock stops), the OCD2 bit remains unchanged even when set to 0 (XIN clock selected).
- 4. The OCD3 bit is enabled when the OCD0 bit is set to 1 (oscillation stop detection function enabled). In addition, the OCD3 bit cannot be used to confirm whether the XIN clock oscillation is stable.
- 5. The OCD3 bit remains 0 (XIN clock oscillates) if bits OCD1 to OCD0 are set to 00b.
- 6. Refer to Figure 9.9 Procedure for Switching from Low-Speed On-Chip Oscillator to XIN Clock when Oscillation Stop is Detected for the switching procedure when the XIN clock re-oscillates after detecting oscillation stop.

Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the OCD register.

9.2.5 High-Speed On-Chip Oscillator Control Register 7 (FRA7)

9.2.6 High-Speed On-Chip Oscillator Control Register 0 (FRA0)

Address	Address 0023h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	_	—		—	FRA03		FRA01	FRA00	
After Reset	0	0	0	0	0	0	0	0	


Bit	Symbol	Bit Name	Function	R/W
b0	FRA00	High-speed on-chip oscillator enable bit	0: High-speed on-chip oscillator off 1: HIgh-speed on-chip oscillator on	R/W
b1	FRA01	High-speed on-chip oscillator select bit ⁽¹⁾	0: Low-speed on-chip oscillator selected ⁽²⁾ 1: High-speed on-chip oscillator selected ⁽³⁾	R/W
b2	—	Reserved bit	Set to 0.	R/W
b3	FRA03	fOCO128 clock select bit	0: fOCO-S divided by 128 selected 1: fOCO-F divided by 128 selected	R/W
b4	—	Nothing is assigned. If necessary, set to 0.	When read, the content is 0.	—
b5	—			
b6	—			
b7	—			

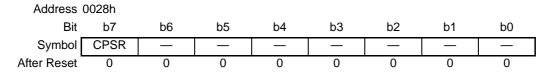
Notes:

- 1. Change the FRA01 bit in the following conditions.
 - FRA00 = 1 (high-speed on-chip oscillator on)
 - The CM14 bit in the CM1 register = 0 (low-speed on-chip oscillator on)
 - Bits FRA22 to FRA20 in the FRA2 register:
 - All division mode can be set when VCC = 2.7 V to 5.5 V000b to 111bDivide ratio of 8 or more when VCC = 1.8 V to 5.5 V110b to 111b (divide-by-8 or more)
- 2. When setting the FRA01 bit to 0 (low-speed on-chip oscillator selected), do not set the FRA00 bit to 0 (high-speed on-chip oscillator off) at the same time. Set the FRA00 bit to 0 after setting the FRA01 bit to 0.
- 3. When setting the FRA01 bit to 1 (high-speed on-chip oscillator selected) and stopping the low-speed on-chip oscillator, wait for one or more cycles of the low-speed on-chip oscillator and then set the CM14 bit in the CM1 register to 1 (low-speed on-chip oscillator off).

Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the FRA0 register.

9.2.7 High-Speed On-Chip Oscillator Control Register 1 (FRA1)

Bit	Function	R/W
b7-b0	The frequency of the high-speed on-chip oscillator can be adjusted by setting as follows:	R/W
	40 MHz: FRA1 = value after reset, FRA3 = value after reset	
	36.864 MHz: Transfer the value in the FRA4 register to the FRA1 register and the value in	
	the FRA5 register to the FRA3 register.	
	32 MHz: Transfer the value in the FRA6 register to the FRA1 register and the value in	
	the FRA7 register to the FRA3 register.	


Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the FRA1 register. Also, rewrite the FRA1 register when the FRA00 bit in the FRA0 register is set 0 (high-speed on-chip oscillator off).

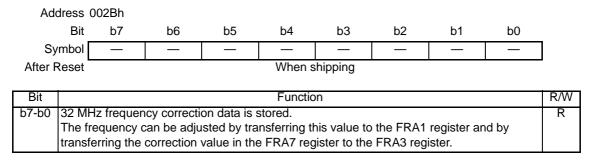
9.2.8 High-Speed On-Chip Oscillator Control Register 2 (FRA2)

Ad	dress 002	25h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	_	—	—	—	—	FRA22	FRA21	FRA20	
After F	Reset	0	0	0	0	0	0	0	0	
Dit	O make al								-	
Bit	Symbol			Bit Name				Functio	n	R/W
b0	FRA20	High-	speed on-c	hip oscillat	tor frequen	cy Divi	sion selectio	n		R/W
b1	FRA21	switcl	ning bit			The	se bits selec	t the division	on ratio for the high-	R/W
b2	FRA22						ed on-chip o	scillator clo	ock.	R/W
						b2 b1		2 mode		
							0: Divide-by			
							1: Divide-by			
							0: Divide-by			
							1: Divide-by			
						10	0: Divide-by	-6 mode		
						10	1: Divide-by	-7 mode		
						11	0: Divide-by	-8 mode		
							1: Divide-by			
b3	—	Rese	rved bits			Set	to 0.			R/W
b4	—									
b5	—									
b6	—									
b7	—	7								

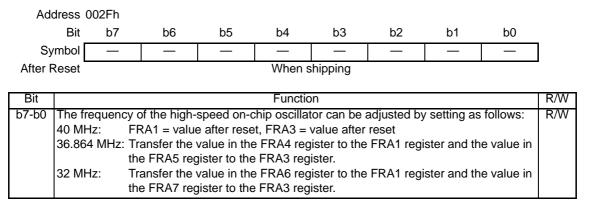
Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the FRA2 register.

9.2.9 Clock Prescaler Reset Flag (CPSRF)

Bit	Symbol	Bit Name	Function	R/W
b0	—	Reserved bits	Set to 0.	R/W
b1	—			
b2	—			
b3	—			
b4	—			
b5	—			
b6	—			
b7	CPSR	Clock prescaler reset flag	Setting this bit to 1 initializes the clock prescaler. (When read, the content is 0)	R/W


9.2.10 High-Speed On-Chip Oscillator Control Register 4 (FRA4)

Ad	dress 0	029h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol		—	—	—	—	—	—	—	1
After I	Reset		•		When s	shipping	•		•	_
	•									
Bit					Functio					R/W
b7-b0	36.864	MHz free	quency cor	rection dat	a is stored.					R
			•	•	•		the FRA1	÷	nd by	
	transfe	erring the	correction	value in the	e FRA5 rec	nister to the	e FRA3 rea	ster.		


9.2.11 High-Speed On-Chip Oscillator Control Register 5 (FRA5)

Ado	dress 0	02Ah									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Sy	mbol		_								
After Reset When shipping										-	
5.										R/W	
Bit	Function										
b7-b0	36.864 MHz frequency correction data is stored.										
	The fre	equency of	can be adju	isted by tra	nsferring th	nis value to	the FRA3	register an	id by		
		• •	correction	•	•			•			

9.2.12 High-Speed On-Chip Oscillator Control Register 6 (FRA6)

9.2.13 High-Speed On-Chip Oscillator Control Register 3 (FRA3)

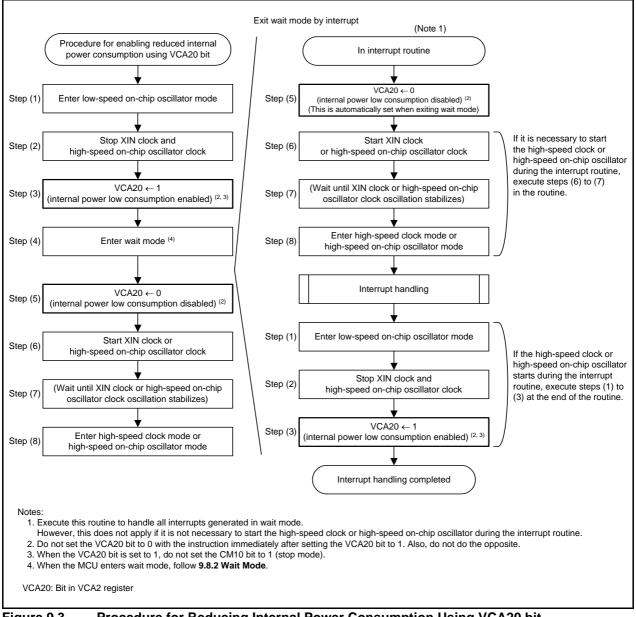
Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the FRA3 register. Also, rewrite the FRA3 register when the FRA00 bit in the FRA0 register is set 0 (high-speed on-chip oscillator off).

RENESAS

9.2.14 Voltage Detect Register 2 (VCA2)

Address 0034h										
Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Symbol	VCA27	VCA26	VCA25	—	—	—	—	VCA20		
After Reset	0	0	0	0	0	0	0	0		
	The above	applies wl	hen the LV	DAS bit in t	the OFS re	gister is se	t to 1.			
After Reset	0	0	1	0	0	0	0	0		
The above applies when the LVDAS bit in the OFS register is set to 0.										

Bit	Symbol	Bit Name	Function	R/W
b0	VCA20	Internal power low consumption	0: Low consumption disabled	R/W
		enable bit ⁽¹⁾	1: Low consumption enabled ⁽²⁾	
b1	—	Reserved bits	Set to 0.	R/W
b2	—			
b3	—			
b4	—			
b5	VCA25	Voltage detection 0 enable bit (3)	0: Voltage detection 0 circuit disabled	R/W
			1: Voltage detection 0 circuit enabled	
b6	VCA26	Voltage detection 1 enable bit ⁽⁴⁾	0: Voltage detection 1 circuit disabled	R/W
			1: Voltage detection 1 circuit enabled	
b7	VCA27	Voltage detection 2 enable bit ⁽⁵⁾	0: Voltage detection 2 circuit disabled	R/W
			1: Voltage detection 2 circuit enabled	


Notes:

1. Use the VCA20 bit only when the MCU enters wait mode. To set the VCA20 bit, follow the procedure shown in Figure 9.3 Procedure for Reducing Internal Power Consumption Using VCA20 bit.

- 2. When the VCA20 bit is set to 1 (low consumption enabled), do not set the CM10 bit in the CM1 register to 1 (stop mode).
- 3. When writing to the VCA25 bit, set a value after reset.
- To use the voltage detection 1 interrupt or the VW1C3 bit in the VW1C register, set the VCA26 bit to 1. After the VCA26 bit is set to 1 from 0, allow td(E-A) to elapse before the voltage detection 1 circuit starts operation.
- To use the voltage detection 2 interrupt or the VCA13 bit in the VCA1 register, set the VCA27 bit to 1. After the VCA27 bit is set to 1 from 0, allow td(E-A) to elapse before the voltage detection 2 circuit starts operation.

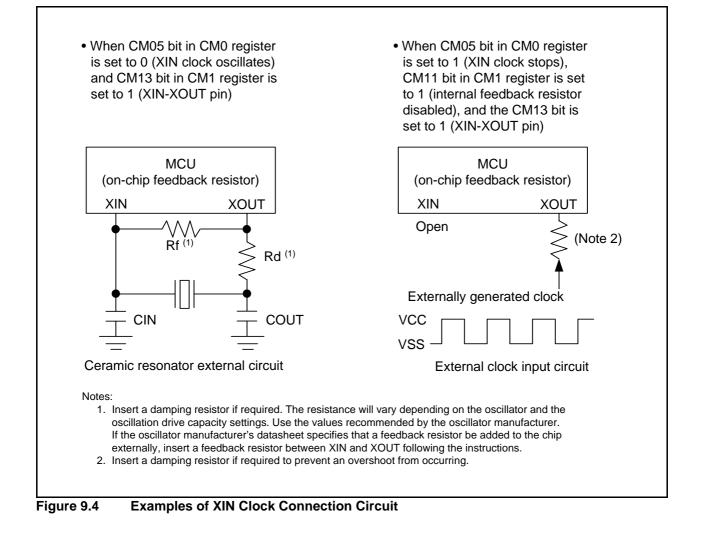
Set the PRC3 bit in the PRCR register to 1 (write enabled) before rewriting the VCA2 register.

The clocks generated by the clock generation circuits are described below.

9.3 XIN Clock

The XIN clock is supplied by the XIN clock oscillation circuit. This clock is used as the clock source for the CPU and peripheral function clocks. The XIN clock oscillation circuit is configured by connecting a resonator between pins XIN and XOUT. The XIN clock oscillation circuit includes an on-chip feedback resistor, which is disconnected from the oscillation circuit in stop mode in order to reduce the amount of power consumed by the chip. The XIN clock oscillation circuit may also be configured by feeding an externally generated clock to the XOUT pin.

Figure 9.4 shows Examples of XIN Clock Connection Circuit.


During and after a reset, the XIN clock stops.

After setting the CM13 bit in the CM1 register to 1 (XIN-XOUT pin), the XIN clock starts oscillating when the CM05 bit in the CM0 register is set to 0 (XIN clock oscillates). After the XIN clock oscillation stabilizes, the XIN clock is used as the CPU clock source when the OCD2 bit in the OCD register is set to 0 (XIN clock selected).

The power consumption can be reduced by setting the CM05 bit in the CM0 register to 1 (XIN clock stops) if the OCD2 bit is set to 1 (on-chip oscillator clock selected).

When an externally generated clock is input to the XOUT pin, the XIN clock does not stop even if the CM05 bit is set to 1. If necessary, use an external circuit to stop the clock.

In stop mode, all clocks including the XIN clock stop. Refer to **9.6 Power Control** for details.

9.4 On-Chip Oscillator Clock

The on-chip oscillator clock is supplied by the on-chip oscillator (high-speed on-chip oscillator or low-speed on-chip oscillator). This clock is selected by the FRA01 bit in the FRA0 register.

9.4.1 Low-Speed On-Chip Oscillator Clock

The clock generated by the low-speed on-chip oscillator is used as the clock source for the CPU clock, peripheral function clock, fOCO, fOCO-S, and fOCO128.

After a reset, the on-chip oscillator clock generated by the low-speed on-chip oscillator divided by 1 (no division) is selected as the CPU clock.

If the XIN clock stops oscillating when bits OCD1 to OCD0 in the OCD register are set to 11b, the low-speed on-chip oscillator automatically starts operating and supplies the necessary clock for the MCU.

The frequency of the low-speed on-chip oscillator varies depending on the supply voltage and the operating ambient temperature. Application products must be designed with sufficient margin to allow for frequency changes.

9.4.2 High-Speed On-Chip Oscillator Clock

The clock generated by the high-speed on-chip oscillator is used as the clock source for the CPU clock, peripheral function clock, fOCO, fOCO-F, fOCO40M, and fOCO128.

To use the high-speed on-chip oscillator clock as the clock source for the CPU clock, peripheral clock, fOCO, and fOCO-F, set bits FRA20 to FRA22 in the FRA2 register as follows:

• All division mode can be set when VCC = 2.7 V to 5.5 V 000b to 111b

• Divide ratio of 8 or more when VCC = 1.8 V to 5.5 V 110b to 111b (divide by 8 or more)

After a reset, the on-chip oscillator clock generated by the high-speed on-chip oscillator stops. Oscillation is started by setting the FRA00 bit in the FRA0 register to 1 (high-speed on-chip oscillator on).

Frequency correction data is stored in registers FRA4 to FRA7.

To adjust the frequency of the high-speed on-chip oscillator clock to 36.864 MHz, first transfer the correction value in the FRA4 register to the FRA1 register and the correction value in the FRA5 register to the FRA3 register before using the values. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode (refer to **Tables 20.8 and 21.8 Bit Rate Setting Example in UART Mode (Internal Clock Selected)**).

To adjust the frequency of the high-speed on-chip oscillator clock to 32 MHz, first transfer the correction value in the FRA6 register to the FRA1 register and the correction value in the FRA7 register to the FRA3 register before using the values.

9.5 CPU Clock and Peripheral Function Clock

There are a CPU clock to operate the CPU and a peripheral function clock to operate the peripheral functions. Refer to **Figure 9.1 Clock Generation Circuit**.

9.5.1 System Clock

The system clock is the clock source for the CPU and peripheral function clocks. The XIN clock or the on-chip oscillator clock can be selected.

9.5.2 CPU Clock

The CPU clock is an operating clock for the CPU and the watchdog timer.

The system clock divided by 1 (no division), 2, 4, 8, or 16 is used as the CPU clock. Use the CM06 bit in the CM0 register and bits CM16 and CM17 in the CM1 register to select the value of the division.

After a reset, the low-speed on-chip oscillator clock divided by 1 (no division) is used as the CPU clock.

When the MCU enters stop mode, the CM06 bit is set to 1 (divide-by-8 mode). To enter stop mode, set the CM35 bit in the CM3 register to 0 (settings of CM06 in CM0 register and bits CM16 and CM17 in CM1 register enabled).

9.5.3 Peripheral Function Clock (f1, f2, f4, f8, and f32)

The peripheral function clock is an operating clock for the peripheral functions.

The fi (i = 1, 2, 4, 8, and 32) clock is generated by the system clock divided by i. It is used for timers RA, RB, RC, the serial interface, and the A/D converter.

If the MCU enters wait mode after the CM02 bit in the CM0 register is set to 1 (peripheral function clock stops in wait mode), the fi clock stops.

9.5.4 fOCO

fOCO is an operating clock for the peripheral functions.

The frequency of fOCO is the frequency of the on-chip oscillator clock selected by the FRA01 bit in the FRA0 register. For the high-speed on-chip oscillator, its frequency is the frequency divided by the divide ratio selected by bits FRA20 to FRA22 in the FRA2 register. fOCO can be used for timer RA. In wait mode, the fOCO clock does not stop.

9.5.5 fOCO40M

fOCO40M is used as the count source for timer RC. This clock is generated by the high-speed on-chip oscillator and supplied by setting the FRA00 bit to 1. In wait mode, the fOCO40M clock does not stop. This clock can be used with supply voltage VCC = 2.7 V to 5.5 V.

9.5.6 fOCO-F

fOCO-F is used as the count source for timer RC and the A/D converter.

fOCO-F is a clock generated by the high-speed on-chip oscillator and divided by i (i = 2, 3, 4, 5, 6, 7, 8, and 9; divide ratio selected by the FRA2 register). This clock is supplied by setting the FRA00 bit to 1. In wait mode, the fOCO-F clock does not stop.

9.5.7 fOCO-S

fOCO-S is an operating clock for the voltage detection circuit.

This clock is generated by the low-speed on-chip oscillator and supplied by setting the CM14 bit to 0 (low-speed on-chip oscillator on).

In wait mode, the fOCO-S clock does not stop.

9.5.8 fOCO128

fOCO128 is a clock generated by dividing fOCO-S or fOCO-F by 128. When the FRA03 bit is set to 0, fOCO-S divided by 128 is selected. When this bit is set to 1, fOCO-F divided by 128 is selected. fOCO128 is configured as the capture signal used in the TRCGRA register for timer RC.

9.5.9 fOCO-WDT

fOCO-WDT is an operating clock for the watchdog timer.

This clock is generated by the low-speed on-chip oscillator for the watchdog timer and supplied by setting the CSPRO bit in the CSPR register to 1 (count source protect mode enabled).

In count source protection mode for the watchdog timer, the fOCO-WDT clock does not stop.

9.6 Power Control

There are three power control modes. All modes other than wait mode and stop mode are referred to as standard operating mode.

9.6.1 Standard Operating Mode

Standard operating mode is further separated into four modes.

In standard operating mode, the CPU and peripheral function clocks are supplied to operate the CPU and the peripheral functions. Power consumption control is enabled by controlling the CPU clock frequency. The higher the CPU clock frequency, the more processing power increases. The lower the CPU clock frequency, the more power consumption decreases. If unnecessary oscillator circuits stop, power consumption is further reduced. Before the clock sources for the CPU clock can be switched over, the new clock source needs to be oscillating and stable. Allow sufficient wait time in a program until oscillation stabilizes before switching the clock.

Ma	odes	OCD Register	CM1	Register		CM0 R	egister	FRA0 F	Register
IVIC	Jues	OCD2	CM17, CM16	CM14	CM13	CM06	CM05	FRA01	FRA00
High-speed	No division	0	00b	_	1	0	0	—	—
clock mode	Divide-by-2	0	01b	_	1	0	0	—	—
	Divide-by-4	0	10b	_	1	0	0	—	—
	Divide-by-8	0	—	_	1	1	0	—	—
	Divide-by-16	0	11b	_	1	0	0	—	—
High-speed	No division	1	00b	_	_	0	—	1	1
on-chip	Divide-by-2	1	01b	_	_	0	—	1	1
oscillator	Divide-by-4	1	10b	_	_	0		1	1
mode	Divide-by-8	1	—	_	_	1	—	1	1
	Divide-by-16	1	11b	_	_	0	—	1	1
Low-speed	No division	1	00b	0	—	0	_	0	—
on-chip	Divide-by-2	1	01b	0	_	0	—	0	—
oscillator	Divide-by-4	1	10b	0	_	0	—	0	—
mode	Divide-by-8	1	—	0	_	1	—	0	—
	Divide-by-16	1	11b	0		0	—	0	—

Table 9.2 Settings and Modes of Clock Associated Bits

-: Indicates that either 0 or 1 can be set.

9.6.1.1 High-Speed Clock Mode

The XIN clock divided by 1 (no division), 2, 4, 8, or 16 is used as the CPU clock. If the CM14 bit is set to 0 (low-speed on-chip oscillator on) or the FRA00 bit in the FRA0 register is set to 1 (high-speed on-chip oscillator on), fOCO can be used for timer RA.

Also, if the FRA00 bit is set to 1, fOCO40M can be used for timer RC.

If the CM14 bit is set to 0 (low-speed on-chip oscillator on), fOCO-S can be used for the voltage detection circuit.

9.6.1.2 High-Speed On-Chip Oscillator Mode

The high-speed on-chip oscillator is used as the on-chip oscillator clock when the FRA00 bit in the FRA0 register is set to 1 (high-speed on-chip oscillator on) and the FRA01 bit in the FRA0 register is set to 1. The on-chip oscillator divided by 1 (no division), 2, 4, 8, or 16 is used as the CPU clock. If the FRA00 bit is set to 1, fOCO40M can be used for timer RC.

Also, if the CM14 bit is set to 0 (low-speed on-chip oscillator on), fOCO-S can be used for the voltage detection circuit.

9.6.1.3 Low-Speed On-Chip Oscillator Mode

If the CM14 bit in the CM1 register is set to 0 (low-speed on-chip oscillator on) and the FRA01 bit in the FRA0 register is set to 0, the low-speed on-chip oscillator is used as the on-chip oscillator clock. At this time, the on-chip oscillator clock divided by 1 (no division), 2, 4, 8 or 16 is used as the CPU clock. The on-chip oscillator clock is also the clock source for the peripheral function clocks. If the FRA00 bit is set to 1, fOCO40M can be used for timer RC.

Also, if the CM14 bit is set to 0 (low-speed on-chip oscillator on), fOCO-S can be used for the voltage detection circuit.

In this mode, low consumption operation is enabled by stopping the XIN clock and the high-speed on-chip oscillator, and by setting the FMR27 bit in the FMR2 register to 1 (low-current-consumption read mode enabled). When the CPU clock is set to the low-speed on-chip oscillator clock divided by 4, 8, or 16, low-current-consumption read mode can be used. When divided by 1 (no division) or divided by 2 is set, do not use low-current-consumption read mode. After setting the divide ratio of the CPU clock, set the FMR27 bit to 1. To enter wait mode from low-speed on-chip oscillator mode, lower consumption current in wait mode is enabled by setting the VCA20 bit in the VCA2 register to 1 (internal power low consumption enabled). To reduce the power consumption, refer to **26. Reducing Power Consumption**.

9.6.2 Wait Mode

Since the CPU clock stops in wait mode, the CPU operating with the CPU clock and the watchdog timer when count source protection mode is disabled stop. Since the XIN clock and on-chip oscillator clock do not stop, the peripheral functions using these clocks continue operating.

9.6.2.1 Peripheral Function Clock Stop Function

If the CM02 bit is set to 1 (peripheral function clock stops in wait mode), the f1, f2, f4, f8, and f32 clocks stop in wait mode. This reduces power consumption.

9.6.2.2 Entering Wait Mode

The MCU enters wait mode by executing the WAIT instruction or setting the CM30 bit in the CM3 register to 1 (MCU enters wait mode).

When the OCD2 bit in the OCD register is set to 1 (on-chip oscillator selected as system clock), set the OCD1 bit in the OCD register to 0 (oscillation stop detection interrupt disabled) before executing the WAIT instruction or setting the CM30 bit in the CM3 register to 1 (MCU enters wait mode).

If the MCU enters wait mode while the OCD1 bit is set to 1 (oscillation stop detection interrupt enabled), current consumption is not reduced because the CPU clock does not stop.

Enter wait mode after setting the FMR27 bit in the FMR2 register to 0 (low-current-consumption read mode disabled). Do not enter wait mode while the FMR27 bit is 1 (low-current-consumption read mode enabled).

9.6.2.3 Pin Status in Wait Mode

The I/O port retains the status immediately before the MCU enters wait mode.

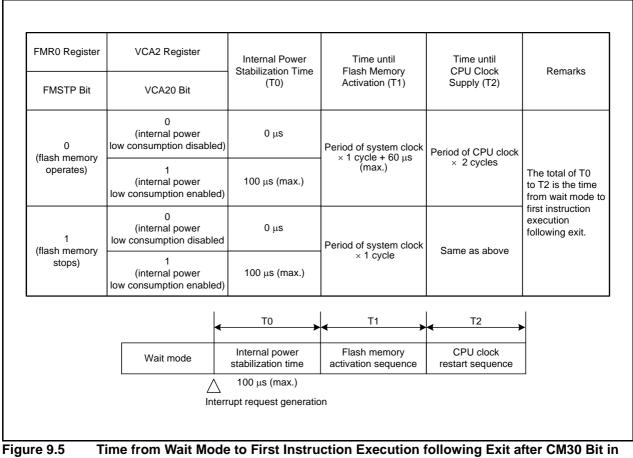
9.6.2.4 Exiting Wait Mode

The MCU exits wait mode by a reset or peripheral function interrupt.

The peripheral function interrupts are affected by the CM02 bit. When the CM02 bit is set to 0 (peripheral function clock does not stop in wait mode), the peripheral function interrupts other than A/D conversion interrupts can be used to exit wait mode. When the CM02 bit is set to 1 (peripheral function clock stops in wait mode), the peripheral functions using the peripheral function clock stop and the peripheral functions operating with external signals or the on-chip oscillator clock can be used to exit wait mode. Table 9.3 lists Interrupts to Exit Wait Mode and Usage Conditions.

Interrupt	CM02 = 0	CM02 = 1
Serial interface interrupt	Usable when operating with internal or external clock	Usable when operating with external clock
Key input interrupt	Usable	Usable
A/D conversion interrupt	(Do not enter wait mode during A/D conversion)	(Do not enter wait mode during A/D conversion)
Timer RA interrupt	Usable in all modes	Usable if there is no filter in event counter mode. Usable by selecting fOCO as count source.
Timer RB interrupt	Usable in all modes	Usable by selecting fOCO as timer RA count source and timer RA underflow as timer RB count source
Timer RC interrupt	Usable in all modes	(Do not use)
INT interrupt	Usable	Usable (INT0 to INT3 can be used if there is no filter.)
Voltage monitor 1 interrupt	Usable	Usable
Voltage monitor 2 interrupt	Usable	Usable
Oscillation stop detection interrupt	Usable	(Do not use)

Table 9.3 Interrupts to Exit Wait Mode and Usage Conditions


Figure 9.5 shows the Time from Wait Mode to First Instruction Execution following Exit after CM30 Bit in CM3 Register is Set to 1 (MCU Enters Wait Mode).

To use a peripheral function interrupt to exit wait mode, set up the following before setting the CM30 bit to 1.

- (1) Set the I flag to 0 (maskable interrupt disabled)
- (2) Set the interrupt priority level in bits ILVL2 to ILVL0 in the interrupt control registers of the peripheral function interrupts to be used for exiting wait mode. Set bits ILVL2 to ILVL0 of the peripheral function interrupts that are not to be used for exiting wait mode to 000b (interrupt disabled).
- (3) Operate the peripheral function to be used for exiting wait mode.

When the MCU exits by a peripheral function interrupt, the time (number of cycles) between interrupt request generation and interrupt routine execution is determined by the settings of the FMSTP bit in the FMR0 register and the VCA20 bit in the VCA2 register, as shown in Figure 9.5.

The clock set by bits CM35, CM36, and CM37 in the CM3 register is used as the CPU clock when the MCU exits wait mode by a peripheral function interrupt. At this time, the CM06 bit in the CM0 register and bits CM16 and CM17 in the CM1 register automatically change.

CM3 Register is Set to 1 (MCU Enters Wait Mode)

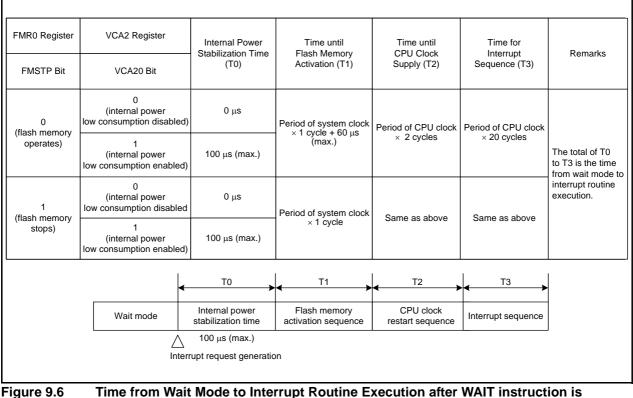


Figure 9.6 shows the Time from Wait Mode to Interrupt Routine Execution after WAIT instruction is Executed. To use a peripheral function interrupt to exit wait mode, set up the following before executing the WAIT instruction.

- (1) Set the interrupt priority level in bits ILVL2 to ILVL0 of the peripheral function interrupts to be used for exiting stop mode. Set bits ILVL2 to ILVL0 of the peripheral function interrupts that are not to be used for exiting stop mode to 000b (interrupt disabled).
- (2) Set the I flag to 1.
- (3) Operate the peripheral function to be used for exiting stop mode.

When the MCU exits by a peripheral function interrupt, the time (number of cycles) between interrupt request generation and interrupt routine execution is determined by the settings of the FMSTP bit in the FMR0 register and the VCA20 bit in the VCA2 register, as shown in Figure 9.6.

The clock set by bits CM35, CM36, and CM37 in the CM3 register is used as the CPU clock when the MCU exits wait mode by a peripheral function interrupt. At this time, the CM06 bit in the CM0 register and bits CM16 and CM17 in the CM1 register automatically change.

Executed

9.6.3 Stop Mode

Since all oscillator circuits except fOCO-WDT stop in stop mode, the CPU and peripheral function clocks stop and the CPU and the peripheral functions operating with these clocks also stop. The least power required to operate the MCU is in stop mode. If the voltage applied to the VCC pin is VRAM or more, the contents of internal RAM is retained.

The peripheral functions clocked by external signals continue operating. Table 9.4 lists Interrupts to Exit Stop Mode and Usage Conditions.

Table 9.4	Interrupts to Exit Stop Mode and Usage Conditions
-----------	---

Interrupt	Usage Conditions
Key input interrupt	Usable
INT0 to INT3 interrupt	Usable if there is no filter
Timer RA interrupt	Usable if there is no filter when external pulse is counted in event counter mode
Serial interface interrupt	When external clock selected
Voltage monitor 1 interrupt	Usable in digital filter disabled mode (VW1C1 bit in VW1C register is set to 1)
Voltage monitor 2 interrupt	Usable in digital filter disabled mode (VW2C1 bit in VW2C register is set to 1)

9.6.3.1 Entering Stop Mode

The MCU enters stop mode when the CM10 bit in the CM1 register is set to 1 (all clocks stop). At the same time, the CM06 bit in the CM0 register is set to 1 (divide-by-8 mode).

To use stop mode, set the following before the MCU enters stop mode:

- Bits OCD1 to OCD0 in the OCD register = 00b
- CM35 bit in CM3 register = 0 (settings of CM06 bit in CM0 register and bits CM16 and CM17 in CM1 register enabled)

Enter stop mode after setting the FMR27 bit in the FMR2 register to 0 (low-current-consumption read mode disabled). Do not enter stop mode while the FMR27 bit is 1 (low-current-consumption read mode enabled).

9.6.3.2 Pin Status in Stop Mode

The I/O port retains the status before the MCU enters stop mode.

However, when the CM13 bit in the CM1 register is set to 1 (XIN-XOUT pin), the XOUT(P4_7) pin is held "H". When the CM13 bit is set to 0 (input ports P4_6 and P4_7), the P4_7(XOUT pin) is held in an input status.

9.6.3.3 Exiting Stop Mode

The MCU exits stop mode by a reset or peripheral function interrupt.

Figure 9.7 shows the Time from Stop Mode to Interrupt Routine Execution.

To use a peripheral function interrupt to exit stop mode, set up the following before setting the CM10 bit to 1.

- (1) Set the interrupt priority level in bits ILVL2 to ILVL0 of the peripheral function interrupts to be used for exiting stop mode. Set bits ILVL2 to ILVL0 of the peripheral function interrupts that are not to be used for exiting stop mode to 000b (interrupt disabled).
- (2) Set the I flag to 1.
- (3) Operate the peripheral function to be used for exiting stop mode.

When the MCU exits stop mode by a peripheral function interrupt, the interrupt sequence is executed when an interrupt request is generated and the CPU clock supply starts.

The clock used immediately before stop mode divided by 8 is used as the CPU clock when the MCU exits stop mode by a peripheral function interrupt. To enter stop mode, set the CM35 bit in the CM3 register to 0 (settings of CM06 bit in CM0 register and bits CM16 and CM17 in CM1 register enabled)

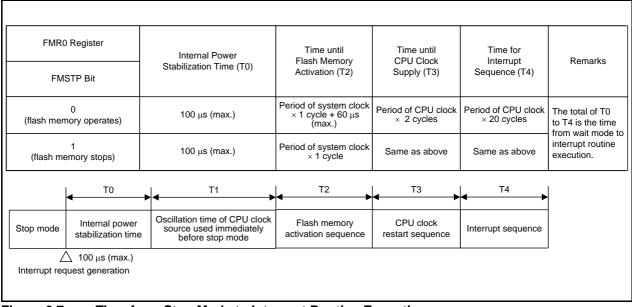
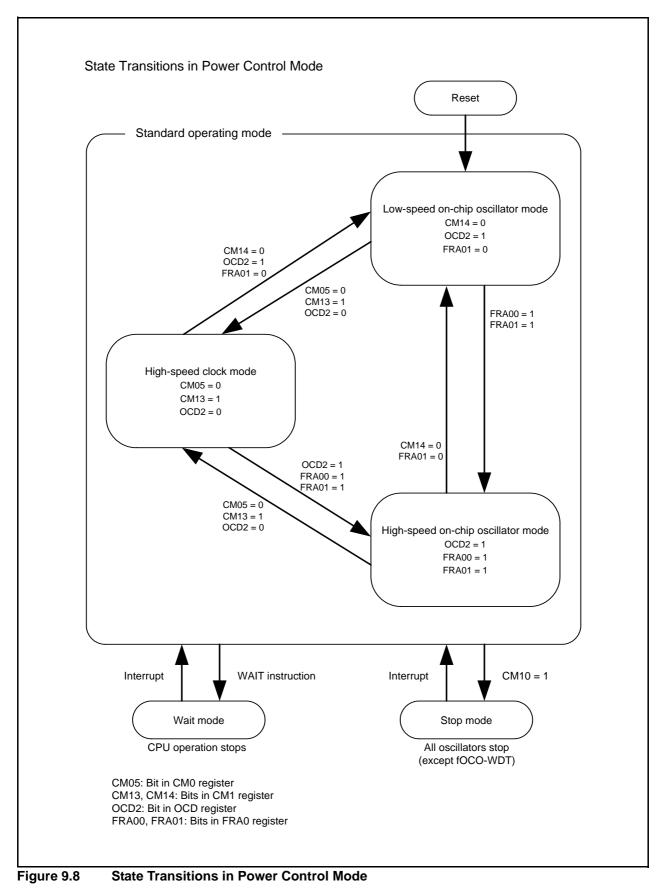



Figure 9.7 Time from Stop Mode to Interrupt Routine Execution

Figure 9.8 shows the State Transitions in Power Control Mode.

9.7 Oscillation Stop Detection Function

The oscillation stop detection function detects the stop of the XIN clock oscillating circuit.

The oscillation stop detection function can be enabled and disabled by the OCD0 bit in the OCD register.

Table 9.5 lists the Specifications of Oscillation Stop Detection Function.

When the XIN clock is the CPU clock source and bits OCD1 to OCD0 are set to 11b, the MCU is placed in the following state if the XIN clock stops.

- OCD2 bit in OCD register = 1 (on-chip oscillator clock selected)
- OCD3 bit in OCD register = 1 (XIN clock stops)
- CM14 bit in CM1 register = 0 (low-speed on-chip oscillator oscillates)
- Oscillation stop detection interrupt request is generated

Table 9.5 Specifications of Oscillation Stop Detection Function

Item	Specification
Oscillation stop detection clock and frequency bandwidth	$f(XIN) \ge 2 MHz$
Enabled condition for oscillation stop detection function	Bits OCD1 to OCD0 set to 11b
Operation at oscillation stop detection	Oscillation stop detection interrupt generated

9.7.1 How to Use Oscillation Stop Detection Function

• The oscillation stop detection interrupt shares a vector with the voltage monitor 1 interrupt, the voltage monitor 2 interrupt, and the watchdog timer interrupt. To use the oscillation stop detection interrupt and watchdog timer interrupt, the interrupt source needs to be determined.

Table 9.6 lists the Determination of Interrupt Sources for Oscillation Stop Detection, Watchdog Timer, Voltage Monitor 1, or Voltage Monitor 2 Interrupt. Figure 9.10 shows an Example of Determining Interrupt Sources for Oscillation Stop Detection, Watchdog Timer, Voltage Monitor 1, or Voltage Monitor 2 Interrupt.

- When the XIN clock restarts after oscillation stop, switch the XIN clock to the clock source for the CPU clock and the peripheral functions by a program.
 Figure 9.9 shows the Procedure for Switching from Low-Speed On-Chip Oscillator to XIN Clock when Oscillation Stop is Detected.
- To enter wait mode while the oscillation stop detection function is used, set the CM02 bit to 0 (peripheral function clock does not stop in wait mode).
- Since the oscillation stop detection function is a function for cases where the XIN clock is stopped by an external cause, set bits OCD1 to OCD0 to 00b to stop or start the XIN clock by a program (select stop mode or change the CM05 bit).
- This function cannot be used when the XIN clock frequency is below 2 MHz. In this case, set bits OCD1 to OCD0 to 00b.
- To use the low-speed on-chip oscillator clock as the clock source for the CPU clock and the peripheral functions after detecting the oscillation stop, set the FRA01 bit in the FRA0 register to 0 (low-speed on-chip oscillator selected) and bits OCD1 to OCD0 to 11b.

To use the high-speed on-chip oscillator clock as the clock source for the CPU clock and the peripheral functions after detecting the oscillation stop, first set the FRA00 bit to 1 (high-speed on-chip oscillator oscillates) and the FRA01 bit to 1 (high-speed on-chip oscillator selected). Then set bits OCD1 to OCD0 to 11b.

Table 9.6	Determination of Interrupt Sources for Oscillation Stop Detection, Watchdog Timer,
	Voltage Monitor 1, or Voltage Monitor 2 Interrupt

Generated Interrupt Source	Bit Indicating Interrupt Source
Oscillation stop detection	(a) OCD3 bit in OCD register = 1
((a) or (b))	(b) OCD1 to OCD0 bits in OCD register = 11b and OCD2 bit = 1
Watchdog timer	VW2C3 bit in VW2C register = 1
Voltage monitor 1	VW1C2 bit in VW1C register = 1
Voltage monitor 2	VW2C2 bit in VW2C register = 1

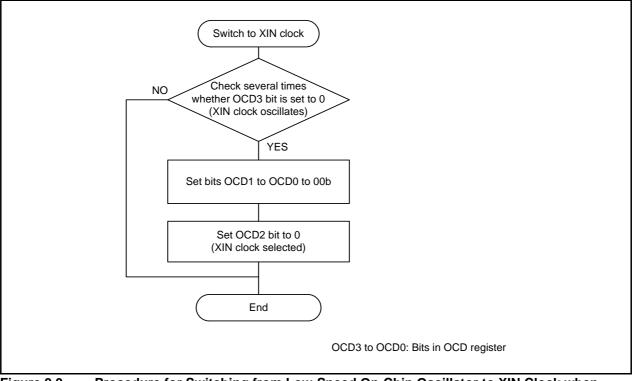


Figure 9.9 Procedure for Switching from Low-Speed On-Chip Oscillator to XIN Clock when Oscillation Stop is Detected

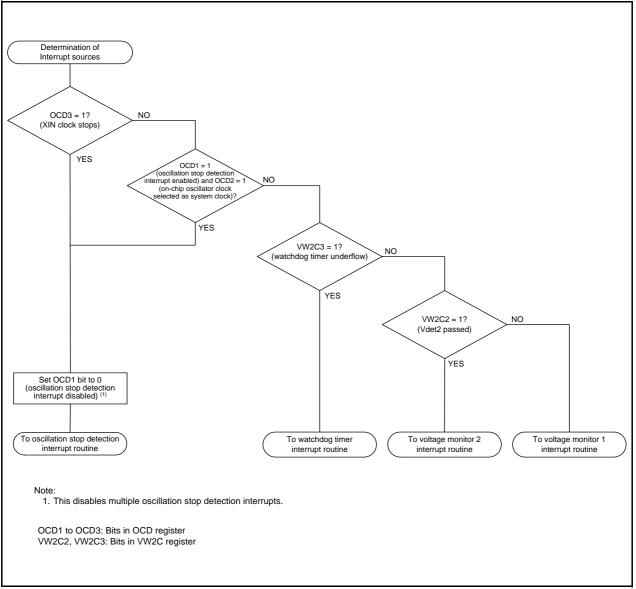


Figure 9.10 Example of Determining Interrupt Sources for Oscillation Stop Detection, Watchdog Timer, Voltage Monitor 1, or Voltage Monitor 2 Interrupt

9.8 Notes on Clock Generation Circuit

9.8.1 Stop Mode

To enter stop mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and then the CM10 bit in the CM1 register to 1 (stop mode). An instruction queue pre-reads 4 bytes from the instruction which sets the CM10 bit to 1 (stop mode) and the program stops.

Insert at least four NOP instructions following the JMP.B instruction after the instruction which sets the CM10 bit to 1.

• Program example to enter stop mode

BCLR	1, FMR0	; CPU rewrite mode disabled
BCLR	7, FMR2	; Low-current-consumption read mode disabled
BSET	0, PRCR	; Writing to CM1 register enabled
FSET	Ι	; Enable interrupt
BSET	0, CM1	; Stop mode
JMP.B	LABEL_001	
LABEL_001:		
NOP		
NOP		
NOP		
NOP		

9.8.2 Wait Mode

To enter wait mode by setting the CM30 bit to 1, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) before setting the CM30 bit to 1.

To enter wait mode with the WAIT instruction, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and then execute the WAIT instruction. An instruction queue pre-reads 4 bytes from the instruction to set the CM30 bit to 1 (MCU enters wait mode) or the WAIT instruction, and then the program stops. Insert at least four NOP instructions after the instruction to set the CM30 bit to 1 (MCU enters wait mode) or the WAIT instruction.

• Program example to execute the WAIT instruction

une main n	isti uetion	
BCLR	1, FMR0	; CPU rewrite mode disabled
BCLR	7, FMR2	; Low-current-consumption read mode disabled
FSET	Ι	; Enable interrupt
WAIT		; Wait mode
NOP		

• Program example to execute the instruction to set the CM30 bit to 1

BCLR BCLR BSET FCLR BSET NOP NOP NOP	1, FMR0 7, FMR2 0, PRCR I 0, CM3	; CPU rewrite mode disabled ; Low-current-consumption read mode disabled ; Writing to CM3 register enabled ; Interrupt disabled ; Wait mode
NOP		
BCLR FSET	0, PRCR I	; Writing to CM3 register disabled ; Interrupt enabled

9.8.3 Oscillation Stop Detection Function

Since the oscillation stop detection function cannot be used if the XIN clock frequency is below 2 MHz, set bits OCD1 to OCD0 to 00b.

9.8.4 Oscillation Circuit Constants

Consult the oscillator manufacturer to determine the optimal oscillation circuit constants for the user system.

10. Protection

The protection function protects important registers from being easily overwritten if a program runs out of control. The registers protected by the PRCR register are as follows:

- Registers protected by PRC0 bit: Registers CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3
- Registers protected by PRC1 bit: Registers PM0 and PM1
- Registers protected by PRC2 bit: PD0 register
- Registers protected by PRC3 bit: Registers OCVREFCR, VCA2, VD1LS, VW0C, VW1C, and VW2C

10.1 Register

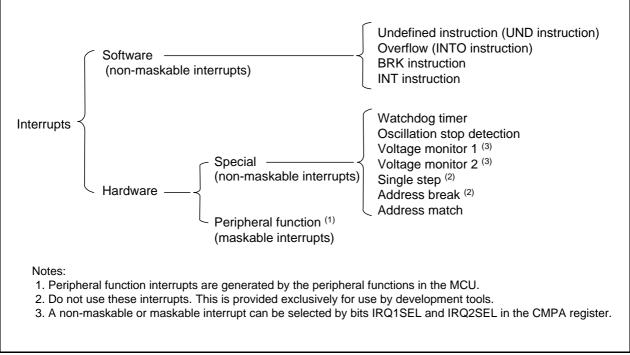
10.1.1 Protect Register (PRCR)

Address 000Ah Bit b6 b3 b0 b7 b5 b4 b2 b1 PRC3 PRC2 PRC1 PRC0 Symbol After Reset 0 0 0 0 0 0 0 0

Bit	Symbol	Bit Name	Function	R/W
b0	PRC0	Protect bit 0	Enables writing to registers CM0, CM1, CM3, OCD, FRA0,	R/W
			FRA1, FRA2, and FRA3.	
			0: Write disabled	
			1: Write enabled ⁽²⁾	
b1	PRC1	Protect bit 1	Enables writing to registers PM0 and PM1.	R/W
			0: Write disabled	
			1: Write enabled ⁽²⁾	
b2	PRC2	Protect bit 2	Enables writing to the PD0 register.	R/W
			0: Write disabled	
			1: Write enabled ⁽¹⁾	
b3	PRC3	Protect bit 3	Enables writing to registers OCVREFCR, VCA2, VD1LS,	R/W
			VW0C, VW1C, and VW2C.	
			0: Write disabled	
			1: Write enabled ⁽²⁾	
b4	-	Reserved bits	Set to 0.	R/W
b5	—	1		
b6	—	1		
b7	—	Nothing is assigned. If n	ecessary, set to 0. When read, the content is 0.	—

Notes:

2. Bits PRC0, PRC1, and PRC3 are not set to 0 even after setting them to 1 (write enabled) and writing to the SFR areas. Set these bits to 0 by a program.


^{1.} The PRC2 bit is set to 0 after setting it to 1 (write enabled) and writing to the SFR area. Change the register protected by the PRC2 bit with the next instruction after that used to set the PRC2 bit to 1. Do not allow interrupts or DTC activation between the instruction to set to the PRC2 bit to 1 and the next instruction.

11. Interrupts

11.1 Overview

11.1.1 Types of Interrupts

Figure 11.1 shows the Types of Interrupts.

Maskable interrupts: These interrupts are enabled or disabled by the interrupt enable flag (I flag). The interrupt priority can be changed based on the interrupt priority level.
 Non-maskable interrupts: These interrupts are not enabled or disabled by the interrupt enable flag (I flag). These interrupts are not enabled or disabled or the interrupt enable flag (I flag). The interrupt priority cannot be changed based on the interrupt priority level.

11.1.2 Software Interrupts

A software interrupt is generated when an instruction is executed. Software interrupts are non-maskable.

11.1.2.1 Undefined Instruction Interrupt

An undefined instruction interrupt is generated when the UND instruction is executed.

11.1.2.2 Overflow Interrupt

An overflow interrupt is generated when the O flag is set to 1 (arithmetic operation overflow) and the INTO instruction is executed. Instructions that set the O flag are as follows: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, and SUB.

11.1.2.3 BRK Interrupt

A BRK interrupt is generated when the BRK instruction is executed.

11.1.2.4 INT Instruction Interrupt

An INT instruction interrupt is generated when the INT instruction is executed. Software interrupt numbers 0 to 63 can be specified with the INT instruction. Because some software interrupt numbers are assigned to peripheral function interrupts, the same interrupt routine as for peripheral function interrupts can be executed by executing the INT instruction.

For software interrupt numbers 0 to 31, the U flag is saved on the stack during instruction execution and the U flag is set to 0 (ISP selected) before the interrupt sequence is executed. The U flag is restored from the stack when returning from the interrupt routine. For software interrupt numbers 32 to 63, the U flag does not change state during instruction execution, and the selected SP is used.

11.1.3 Special Interrupts

Special interrupts are non-maskable.

11.1.3.1 Watchdog Timer Interrupt

A watchdog timer interrupt is generated by the watchdog timer. For details, refer to **14. Watchdog Timer**.

11.1.3.2 Oscillation Stop Detection Interrupt

An oscillation stop detection interrupt is generated by the oscillation stop detection function. For details of the oscillation stop detection function, refer to **9. Clock Generation Circuit**.

11.1.3.3 Voltage Monitor 1 Interrupt

A voltage monitor 1 interrupt is generated by the voltage detection circuit. A non-maskable or maskable interrupt can be selected by IRQ1SEL bit in the CMPA register. For details of the voltage detection circuit, refer to **6. Voltage Detection Circuit** and for details.

11.1.3.4 Voltage Monitor 2 Interrupt

A voltage monitor 2 interrupt is generated by the voltage detection circuit. A non-maskable or maskable interrupt can be selected by IRQ2SEL bit in the CMPA register. For details of the voltage detection circuit, refer to **6. Voltage Detection Circuit** and for details.

11.1.3.5 Single-Step Interrupt, and Address Break Interrupt

Do not use these interrupts. They are provided exclusively for use by development tools.

11.1.3.6 Address Match Interrupt

An address match interrupt is generated immediately before executing an instruction that is stored at an address indicated by registers RMAD0 to RMAD1 if the AIER00 bit in the AIER0 register or the AIER10 bit in the AIER1 register is set to 1 (address match interrupt enabled).

For details of the address match interrupt, refer to 11.7 Address Match Interrupt.

11.1.4 Peripheral Function Interrupts

A peripheral function interrupt is generated by a peripheral function in the MCU. Peripheral function interrupts are maskable. Refer to **Table 11.2 Relocatable Vector Tables** for sources of the corresponding peripheral function interrupt. For details of peripheral functions, refer to the descriptions of individual peripheral functions.

11.1.5 Interrupts and Interrupt Vectors

There are 4 bytes in each vector. Set the starting address of an interrupt routine in each interrupt vector. When an interrupt request is acknowledged, the CPU branches to the address set in the corresponding interrupt vector. Figure 11.2 shows an Interrupt Vector.

	MSB	
Vector address (L)	Low-order address	
	Middle-ord	er address
	0000	High-order address
Vector address (H)	0000	0000

Figure 11.2	Interrupt Vector
-------------	------------------

11.1.5.1 Fixed Vector Tables

The fixed vector tables are allocated addresses 0FFDCh to 0FFFFh.

Table 11.1 lists the Fixed Vector Tables. The vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to **25.3 Functions to Prevent Flash Memory from being Rewritten**.

Interrupt Source	Vector Addresses Address (L) to (H)	Remarks	Reference
Undefined instruction	0FFDCh to 0FFDFh	Interrupt with UND instruction	R8C/Tiny Series User's Manual: Software
Overflow	0FFE0h to 0FFE3h	Interrupt with INTO instruction	
BRK instruction	0FFE4h to 0FFE7h	If the content of address OFFE6h is FFh, program execution starts from the address shown by the vector in the relocatable vector table.	
Address match	0FFE8h to 0FFEBh		11.7 Address Match Interrupt
Single step (1)	0FFECh to 0FFEFh		
Watchdog timer, Oscillation stop detection, Voltage monitor 1 ⁽²⁾ , Voltage monitor 2 ⁽³⁾	0FFF0h to 0FFF3h		 14. Watchdog Timer 9. Clock Generation Circuit 6. Voltage Detection Circuit
Address break ⁽¹⁾	0FFF4h to 0FFF7h		
(Reserved)	0FFF8h to 0FFFBh		
Reset	0FFFCh to 0FFFFh		5. Resets

Table 11.1 Fixed Vector Tables

Notes:

1. Do not use these interrupts. They are provided exclusively for use by development tools.

2. Voltage monitor 1 interrupt is selected when the IRQ1SEL bit in the CMPA register is set to 0 (nonmaskable interrupt).

3. Voltage monitor 2 interrupt is selected when the IRQ2SEL bit in the CMPA register is set to 0 (nonmaskable interrupt).

11.1.5.2 Relocatable Vector Tables

The relocatable vector tables occupy 256 bytes beginning from the starting address set in the INTB register. Table 11.2 lists the Relocatable Vector Tables.

Interrupt Source	Vector Addresses ⁽¹⁾ Address (L) to Address (H)	Software Interrupt Number	Interrupt Control Register	Reference
BRK instruction ⁽²⁾	+0 to +3 (0000h to 0003h)	0	—	R8C/Tiny Series User's Manual: Software
Flash memory ready	+4 to +7 (0004h to 0007h)	1	FMRDYIC	25. Flash Memory
(Reserved)		2 to 5	—	
(Reserved)	+24 to +27 (0018h to 001Bh)	6	—	—
Timer RC	+28 to +31 (001Ch to 001Fh)	7	TRCIC	19. Timer RC
(Reserved)	+32 to +35 (0020h to 0023h)	8	—	—
(Reserved)	+36 to +39 (0024h to 0027h)	9	—	—
(Reserved)	+40 to +43 (0028h to 002Bh)	10	—	—
UART2 transmit/NACK2	+44 to +47 (002Ch to 002Fh)	11	S2TIC	21. Serial Interface
UART2 receive/ACK2	+48 to +51 (0030h to 0033h)	12	S2RIC	(UART2)
Key input	+52 to +55 (0034h to 0037h)	13	KUPIC	11.6 Key Input Interrupt
A/D conversion	+56 to +59 (0038h to 003Bh)	14	ADIC	23. A/D Converter
(Reserved)	+60 to +63 (003Ch to 003Fh)	15	—	—
(Reserved)		16	—	—
UART0 transmit	+68 to +71 (0044h to 0047h)	17	SOTIC	20. Serial Interface
UART0 receive	+72 to +75 (0048h to 004Bh)	18	SORIC	(UART0)
(Reserved)		19	—	—
(Reserved)		20	—	—
INT2	+84 to +87 (0054h to 0057h)	21	INT2IC	11.4 INT Interrupt
Timer RA	+88 to +91 (0058h to 005Bh)	22	TRAIC	17. Timer RA
(Reserved)		23	—	—
Timer RB	+96 to +99 (0060h to 0063h)	24	TRBIC	18. Timer RB
INT1	+100 to +103 (0064h to 0067h)	25	INT1IC	11.4 INT Interrupt
INT3	+104 to +107 (0068h to 006Bh)	26	INT3IC	
(Reserved)		27	—	—
(Reserved)		28	—	—
INT0	+116 to +119 (0074h to 0077h)	29	INTOIC	11.4 INT Interrupt
UART2 bus collision detection	+120 to +123 (0078h to 007Bh)	30	U2BCNIC	21. Serial Interface (UART2)
(Reserved)		31	—	—
Software ⁽²⁾	+128 to +131 (0080h to 0083h) to +164 to +167 (00A4h to 00A7h)	32 to 41	—	R8C/Tiny Series User's Manual: Software
Sensor control unit	+168 to +171 (00A8h to 00ABh)	42	SCUIC	24. Sensor Control Unit
(Reserved)		43 to 49	—	—
Voltage monitor 1 (3)	+200 to +203 (00C8h to 00CBh)	50	VCMP1IC	6. Voltage Detection
Voltage monitor 2 (4)	+204 to +207 (00CCh to 00CFh)	51	VCMP2IC	Circuit
(Reserved)		52 to 55	—	—
Software ⁽²⁾	+224 to +227 (00E0h to 00E3h) to +252 to +255 (00FCh to 00FFh)	56 to 63	—	R8C/Tiny Series User's Manual: Software

 Table 11.2
 Relocatable Vector Tables

Notes:

1. These addresses are relative to those in the INTB register.

2. These interrupts are not disabled by the I flag.

3. Voltage monitor 1 interrupt is selected when the IRQ1SEL bit in the CMPA register is set to 1 (maskable interrupt).

4. Voltage monitor 2 interrupt is selected when the IRQ2SEL bit in the CMPA register is set to 1 (maskable interrupt).

11.2 Registers

11.2.1 Interrupt Control Register (S2TIC, S2RIC, KUPIC, ADIC, S0TIC, S0RIC, TRAIC, TRBIC, U2BCNIC, SCUIC, VCMP1IC, VCMP2IC)

Address 004Bh (S2TIC), 004Ch (S2RIC), 004Dh (KUPIC), 004Eh (ADIC), 0051h (S0TIC), 0052h (S0RIC), 0056h (TRAIC), 0058h (TRBIC), 005Eh (U2BCNIC), 006Ah (SCUIC), 0072h (VCMP1IC), 0073h (VCMP2IC), Bit b7 b6 b5 b4 b3 b2 b1 b0

DI	07	00	05	04	05	02	DI	00	
Symbol	_	—	—	—	IR	ILVL2	ILVL1	ILVL0	
After Reset	Х	Х	Х	Х	Х	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0 b1 b2	ILVL0 ILVL1 ILVL2	Interrupt priority level select bit	b2 b1 b0 0 0 0: Level 0 (interrupt disabled) 0 0 1: Level 1 0 1 0: Level 2 0 1 1: Level 3 1 0 0: Level 4 1 0 1: Level 5 1 1 0: Level 6 1 1 1: Level 7	R/W R/W R/W
b3	IR	Interrupt request bit	0: No interrupt requested 1: Interrupt requested	R/W (1)
b4	_	Nothing is assigned. If necessary, set	to 0. When read, the content is undefined.	—
b5	—]		
b6	—]		
b7				

Note:

1. Only 0 can be written to the IR bit. Do not write 1 to this bit.

Rewrite the interrupt control register when an interrupt request corresponding to the register is not generated. Refer to **11.9.5 Rewriting Interrupt Control Register**.

Address 0041h (FMRDYIC), 0047h (TRCIC) Bit b7 b6 b5 b4 b3 b2 b1 b0 Symbol IR ILVL2 ILVL1 ILVL0 Х After Reset Х Х Х Х 0 0 0 Bit Symbol Bit Name Function R/W b0 ILVL0 Interrupt priority level select bit b2 b1 b0 R/W 0 0 0: Level 0 (interrupt disabled) b1 ILVL1 R/W 0 0 1: Level 1 b2 ILVL2 R/W 0 1 0: Level 2 0 1 1: Level 3 1 0 0: Level 4 1 0 1: Level 5 1 1 0: Level 6 1 1 1: Level 7 b3 IR Interrupt request bit 0: No interrupt requested R 1: Interrupt requested b4 Nothing is assigned. If necessary, set to 0. When read, the content is undefined. ____ b5 _ b6 b7

11.2.2 Interrupt Control Register (FMRDYIC, TRCIC)

Rewrite the interrupt control register when an interrupt request corresponding to the register is not generated. Refer to **11.9.5 Rewriting Interrupt Control Register**.

11.2.3 INTi Interrupt Control Register (INTilC) (i = 0 to 3)

Address 0055h (INT2IC), 0059h (INT1IC), 005Ah (INT3IC), 005Dh (INT0IC)								
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	—	—	_	POL	IR	ILVL2	ILVL1	ILVL0
After Reset	Х	Х	0	0	Х	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0 b1 b2	ILVL0 ILVL1 ILVL2	Interrupt priority level select bit	b2 b1 b0 0 0 0: Level 0 (interrupt disabled) 0 0 1: Level 1 0 1 0: Level 2 0 1 1: Level 3 1 0 0: Level 4 1 0 1: Level 5 1 1 0: Level 6 1 1 1: Level 7	R/W R/W R/W
b3	IR	Interrupt request bit	0: No interrupt requested 1: Interrupt requested	R/W (1)
b4	POL	Polarity switch bit ⁽³⁾	0: Falling edge selected 1: Rising edge selected ⁽²⁾	R/W
b5	—	Reserved bit	Set to 0.	R/W
b6	—	Nothing is assigned. If necessary,	set to 0. When read, the content is undefined.	—
b7	—	1		

Notes:

- 1. Only 0 can be written to the IR bit. Do not write 1 to this bit.
- 2. If the INTIPL bit in the INTEN register is set to 1 (both edges), set the POL bit to 0 (falling edge selected).
- 3. The IR bit may be set to 1 (interrupt requested) when the POL bit is rewritten. Refer to **11.9.4 Changing Interrupt Sources**.

Rewrite the interrupt control register when an interrupt request corresponding to the register is not generated. Refer to **11.9.5 Rewriting Interrupt Control Register**.

11.3 Interrupt Control

The following describes enabling and disabling maskable interrupts and setting the acknowledgement priority. This description does not apply to non-maskable interrupts.

Use the I flag in the FLG register, IPL, and bits ILVL2 to ILVL0 in the corresponding interrupt control register to enable or disable a maskable interrupt. Whether an interrupt is requested or not is indicated by the IR bit in the corresponding interrupt control register.

11.3.1 I Flag

The I flag enables or disables maskable interrupts. Setting the I flag to 1 (enabled) enables maskable interrupts. Setting the I flag to 0 (disabled) disables all maskable interrupts.

11.3.2 IR Bit

The IR bit is set to 1 (interrupt requested) when an interrupt request is generated. After the interrupt request is acknowledged and the CPU branches to the corresponding interrupt vector, the IR bit is set to 0 (no interrupt requested).

The IR bit can be set to 0 by a program. Do not write 1 to this bit.

However, the IR bit operations of the timer RC interrupt and the flash memory interrupt are different. Refer to **11.8 Timer RC Interrupt, Flash Memory Interrupt (Interrupts with Multiple Interrupt Request Sources), and Sensor Control Unit Interrupt (Interrupt with Single Interrupt Request Sources)**.

11.3.3 Bits ILVL2 to ILVL0, IPL

Interrupt priority levels can be set using bits ILVL2 to ILVL0.

Table 11.3 lists the Settings of Interrupt Priority Levels and Table 11.4 lists the Interrupt Priority Levels Enabled by IPL.

The following are the conditions when an interrupt is acknowledged:

- I flag = 1
- IR bit = 1
- Interrupt priority level > IPL

The I flag, IR bit, bits ILVL2 to ILVL0, and IPL are independent of each other. They do not affect one another.

Table 11.3	Settings of Interrupt Priority
	Levels

Bits ILVL2 to ILVL0	Interrupt Priority Level	Priority
000b	Level 0 (interrupt disabled)	_
001b	Level 1	Low
010b	Level 2	
011b	Level 3	
100b	Level 4	
101b	Level 5	₩
110b	Level 6	V
111b	Level 7	High

Table 11.4	Interrupt Priority Levels Enabled by
	IPL

IPL	Enabled Interrupt Priority Level
000b	Interrupt level 1 and above
001b	Interrupt level 2 and above
010b	Interrupt level 3 and above
011b	Interrupt level 4 and above
100b	Interrupt level 5 and above
101b	Interrupt level 6 and above
110b	Interrupt level 7 and above
111b	All maskable interrupts are disabled

11.3.4 Interrupt Sequence

The following describes an interrupt sequence which is performed from when an interrupt request is acknowledged until the interrupt routine is executed.

When an interrupt request is generated while an instruction is being executed, the CPU determines its interrupt priority level after the instruction is completed. The CPU starts the interrupt sequence from the following cycle. However, for the SMOVB, SMOVF, SSTR, or RMPA instruction, if an interrupt request is generated while the instruction is being executed, the MCU suspends the instruction to start the interrupt sequence. The interrupt sequence is performed as indicated below.

Figure 11.3 shows the Time Required for Executing Interrupt Sequence.

- (1) The CPU obtains interrupt information (interrupt number and interrupt request level) by reading address 00000h. The IR bit for the corresponding interrupt is set to 0 (no interrupt requested). ⁽²⁾
- (2) The FLG register is saved to a temporary register ⁽¹⁾ in the CPU immediately before entering the interrupt sequence.
- (3) The I, D and U flags in the FLG register are set as follows: The I flag is set to 0 (interrupts disabled). The D flag is set to 0 (single-step interrupt disabled). The U flag is set to 0 (ISP selected). However, the U flag does not change state if an INT instruction for software interrupt number 32 to 63 is executed.
- (4) The CPU internal temporary register $^{(1)}$ is saved on the stack.
- (5) The PC is saved on the stack.
- (6) The interrupt priority level of the acknowledged interrupt is set in the IPL.
- (7) The starting address of the interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, instructions are executed from the starting address of the interrupt routine.

Notes:

- 1. These registers cannot be accessed by the user.
- 2. Refer to **11.8 Timer RC Interrupt, Flash Memory Interrupt (Interrupts with Multiple Interrupt Request Sources), and Sensor Control Unit Interrupt (Interrupt with Single Interrupt Request Sources)** for the IR bit operations of the timer RC Interrupt.

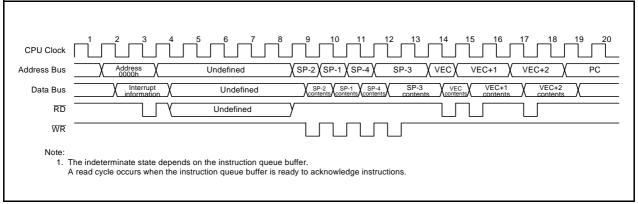


Figure 11.3 Time Required for Executing Interrupt Sequence

11.3.5 Interrupt Response Time

Figure 11.4 shows the Interrupt Response Time. The interrupt response time is the period from when an interrupt request is generated until the first instruction in the interrupt routine is executed. The interrupt response time includes the period from when an interrupt request is generated until the currently executing instruction is completed (refer to (a) in Figure 11.4) and the period required for executing the interrupt sequence (20 cycles, refer to (b) in Figure 11.4).

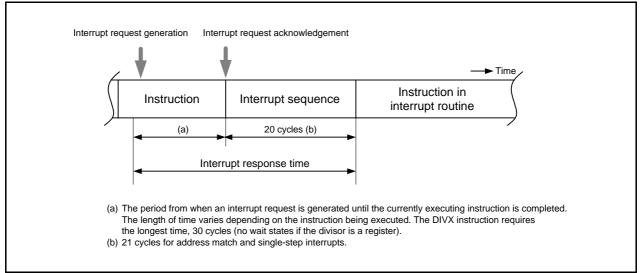


Figure 11.4 Interrupt Response Time

11.3.6 IPL Change when Interrupt Request is Acknowledged

When a maskable interrupt request is acknowledged, the interrupt priority level of the acknowledged interrupt is set in the IPL.

When a software interrupt or special interrupt request is acknowledged, the level listed in Table 11.5 is set in the IPL.

Table 11.5 lists the IPL Value When Software or Special Interrupt is Acknowledged.

Table 11.5 IPL Value When Software or Special Interrupt is Acknowledged

Interrupt Source without Interrupt Priority Level	Value Set in IPL
Watchdog timer, oscillation stop detection, voltage monitor 1, voltage monitor 2, address break	7
Software, address match, single-step	Not changed

11.3.7 Saving Registers

In the interrupt sequence, the FLG register and PC are saved on the stack.

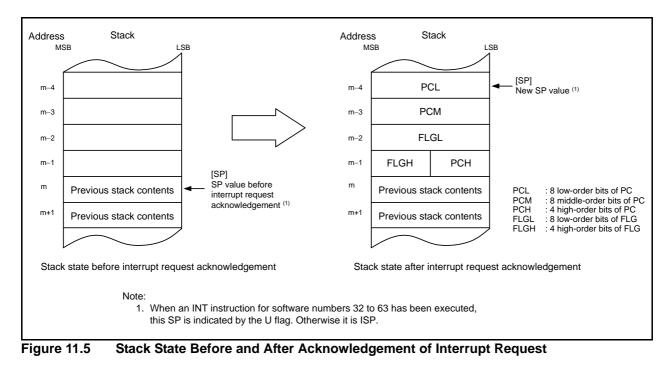

After an extended 16 bits, 4 high-order bits in the PC and 4 high-order (IPL) and 8 low-order bits in the FLG register, are saved on the stack, the 16 low-order bits in the PC are saved.

Figure 11.5 shows the Stack State Before and After Acknowledgement of Interrupt Request.

The other necessary registers should be saved by a program at the beginning of the interrupt routine. The PUSHM instruction can save several registers in the register bank being currently used ⁽¹⁾ with a single instruction.

Note:

1. Selectable from registers R0, R1, R2, R3, A0, A1, SB, and FB.

The register saving operation, which is performed as part of the interrupt sequence, saved in 8 bits at a time in four steps.

Figure 11.6 shows the Register Saving Operation.

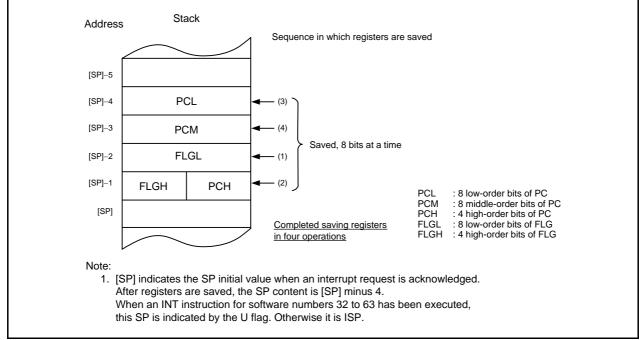


Figure 11.6 Register Saving Operation

11.3.8 Returning from Interrupt Routine

When the REIT instruction is executed at the end of an interrupt routine, the FLG register and PC, which have been saved on the stack, are automatically restored. The program, that was running before the interrupt request was acknowledged, starts running again.

Registers saved by a program in an interrupt routine should be saved using the POPM instruction or a similar instruction before executing the REIT instruction.

11.3.9 Interrupt Priority

If two or more interrupt requests are generated while a single instruction is being executed, the interrupt with the higher priority is acknowledged.

Set bits ILVL2 to ILVL0 to select any priority level for maskable interrupts (peripheral function). However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, with the higher priority interrupts acknowledged.

The priority of watchdog timer and other special interrupts is set by hardware.

Figure 11.7 shows the Hardware Interrupt Priority.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, the MCU executes the interrupt routine.

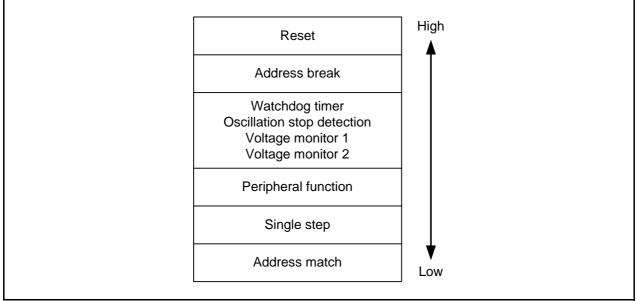
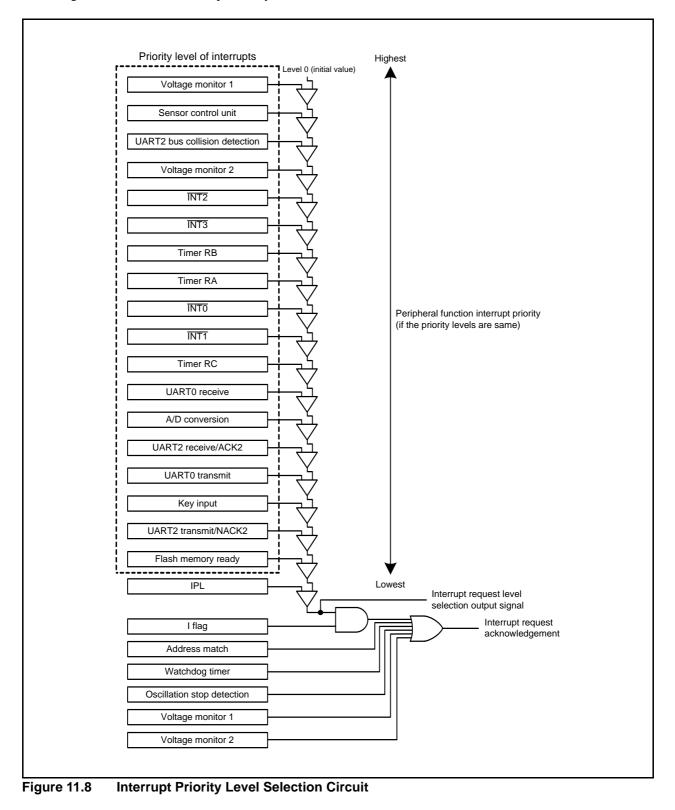



Figure 11.7 Hardware Interrupt Priority

11.3.10 Interrupt Priority Level Selection Circuit

The interrupt priority level selection circuit is used to select the highest priority interrupt. Figure 11.8 shows the Interrupt Priority Level Selection Circuit.

11.4 INT Interrupt

11.4.1 **INTi** Interrupt (i = 0 to 3)

The \overline{INTi} interrupt is generated by an \overline{INTi} input. To use the \overline{INTi} interrupt, set the INTiEN bit in the INTEN register is to 1 (enabled). The edge polarity is selected using the INTiPL bit in the INTEN register and the POL bit in the INTIC register. The input pins used as the $\overline{INT1}$ and $\overline{INT3}$ input can be selected. Also, inputs can be passed through a digital filter with three different sampling clocks.

The $\overline{INT0}$ pin is shared with the pulse output forced cutoff input of timer RC, and the external trigger input of timer RB. The $\overline{INT2}$ pin is shared with the event input enabled of timer RA.

Table 11.6 lists the Pin Configuration of INT Interrupt.

	•	•	
Pin Name	Assigned Pin	I/O	Function
INTO	P4_5	Input	INT0 interrupt input, timer RB external trigger input, timer RC pulse output forced cutoff input
INT1	P1_5, P1_7, P2_0, or P3_5	Input	INT1 interrupt input
INT2	P3_4	Input	INT2 interrupt input, timer RA event input enabled
INT3	P3_3 or P3_7	Input	INT3 interrupt input

Table 11.6 Pin Configuration of INT Interrupt

11.4.2 INT Interrupt Input Pin Select Register (INTSR)

Address 018Eh								
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol		INT3SEL0			INT1SEL2	INT1SEL1	INT1SEL0	
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W	
b0	—	Nothing is assigned. If necessary, set	o 0. When read, the content is 0.	—	
b1 b2 b3	INT1SEL0 INT1SEL1 INT1SEL2	INT1 pin select bit	b3 b2 b1 0 0 0: P1_7 assigned 0 0 1: P1_5 assigned 0 1 0: P2_0 assigned 0 1 1: Do not set. 1 0 0: Do not set. 1 0 1: P3_5 assigned Other than above: Do not set.	R/W R/W R/W	
b4	—	Reserved bit	Set to 0.	R/W	
b5	—	Nothing is assigned. If necessary, set to 0. When read, the content is 0.			
b6	INT3SEL0	INT3 pin select bit	0: P3_3 assigned 1: P3_7 assigned	R/W	
b7	—	Reserved bit	Set to 0.	R/W	

The INTSR register selects which pin is assigned to the \overline{INTi} (i = 1 or 3) input. To use \overline{INTi} , set this register. Set the INTSR register before setting the \overline{INTi} associated registers. Also, do not change the setting values in this register during \overline{INTi} operation.

11.4.3 Low-Voltage Signal Mode Control Register (TSMR)

Address (Address 0190h									
Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Symbol	13LVM	I2LVM	I1LVM	IOLVM	U2LVM		UOLVM	LVMPR		
After Reset	0	0	0	0	0	0	0	0		

Bit	Symbol	Bit Name	Function	R/W
b0	LVMPR	Low-voltage signal mode protect bit	0: Write disabled	R/W
b1	UOLVM	UART0 low-voltage signal mode control bit ⁽¹⁾	1: Write enabled ⁽¹⁾ 0: Low-voltage signal mode disabled	R/W
	OOLVIN	OAKTO low-voltage signal mode control bit (*)	1: Low-voltage signal mode enabled ⁽²⁾	
b2	—	Reserved bit	Set to 0.	R/W
b3	U2LVM	UART2 low-voltage signal mode control bit ⁽¹⁾	0: Low-voltage signal mode disabled	R/W
			1: Low-voltage signal mode enabled ⁽²⁾	
b4	IOLVM	INT0 low-voltage signal mode control bit ⁽¹⁾	0: Low-voltage signal mode disabled 1: Low-voltage signal mode enabled	R/W
b5	I1LVM	INT1 low-voltage signal mode control bit ⁽¹⁾		R/W
b6	I2LVM	INT2 low-voltage signal mode control bit ⁽¹⁾		R/W
b7	I3LVM	INT3 low-voltage signal mode control bit ⁽¹⁾		R/W

Notes:

 When the LVMPR bit is set to 1 (write enabled), writing to bits UiLVM (i = 0 or 2) and IjLVM (j = 0 to 3) is enabled. Rewrite bits UiLVM (i = 0 or 2) and IjLVM (j = 0 to 3) after setting the LVMPR bit to 1. When writing 1 to the LVMPR bit, write 0 and then 1 continuously.

2. When the UiLVM (i = 0 or 2) bit is set to 1, the TxDi (i = 0 or 2) pin is set to N-channel open-drain output regardless of the setting of the NCH bit in the UiC0 (i = 0 or 2) register.

11.4.4 External Input Enable Register 0 (INTEN)

Address 01FAh								
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	INT3PL	INT3EN	INT2PL	INT2EN	INT1PL	INT1EN	INT0PL	INT0EN
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	INT0EN	INT0 input enable bit	0: Disabled 1: Enabled	R/W
b1	INT0PL	INT0 input polarity select bit (1, 2)	0: One edge 1: Both edges	R/W
b2	INT1EN	INT1 input enable bit	0: Disabled 1: Enabled	R/W
b3	INT1PL	INT1 input polarity select bit (1, 2)	0: One edge 1: Both edges	R/W
b4	INT2EN	INT2 input enable bit	0: Disabled 1: Enabled	R/W
b5	INT2PL	INT2 input polarity select bit (1, 2)	0: One edge 1: Both edges	R/W
b6	INT3EN	INT3 input enable bit	0: Disabled 1: Enabled	R/W
b7	INT3PL	INT3 input polarity select bit ^(1, 2)	0: One edge 1: Both edges	R/W

Notes:

1. To set the INTiPL bit (i = 0 to 3) to 1 (both edges), set the POL bit in the INTiIC register to 0 (falling edge selected).

2. The IR bit in the INTIIC register may be set to 1 (interrupt requested) if the INTEN register is rewritten. Refer to **11.9.4 Changing Interrupt Sources**.

11.4.5 INT Input Filter Select Register 0 (INTF)

Address	01FCh							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	INT3F1	INT3F0	INT2F1	INT2F0	INT1F1	INT1F0	INT0F1	INT0F0
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0 b1	INTOF0 INTOF1	INTO input filter select bit	0 0: No filter 0 1: Filter with f1 sampling 1 0: Filter with f8 sampling 1 1: Filter with f32 sampling	R/W R/W
b2 b3	INT1F0 INT1F1	INT1 input filter select bit	0 0: No filter 0 1: Filter with f1 sampling 1 0: Filter with f8 sampling 1 1: Filter with f8 sampling	R/W R/W
b4 b5	INT2F0 INT2F1	INT2 input filter select bit	0 0: No filter 0 1: Filter with f1 sampling 1 0: Filter with f8 sampling 1 1: Filter with f32 sampling	R/W R/W
b6 b7	INT3F0 INT3F1	INT3 input filter select bit	0 0: No filter 0 1: Filter with f1 sampling 1 0: Filter with f8 sampling 1 1: Filter with f32 sampling	R/W R/W

11.4.6 **INTi** Input Filter (i = 0 to 3)

The $\overline{\text{INTi}}$ input contains a digital filter. The sampling clock is selected using bits INTiF1 and INTiF0 in the INTF register. The $\overline{\text{INTi}}$ level is sampled every sampling clock cycle and if the sampled input level matches three times, the IR bit in the INTiIC register is set to 1 (interrupt requested).

Figure 11.9 shows the INTi Input Filter Configuration. Figure 11.10 shows an Operating Example of INTi Input Filter.

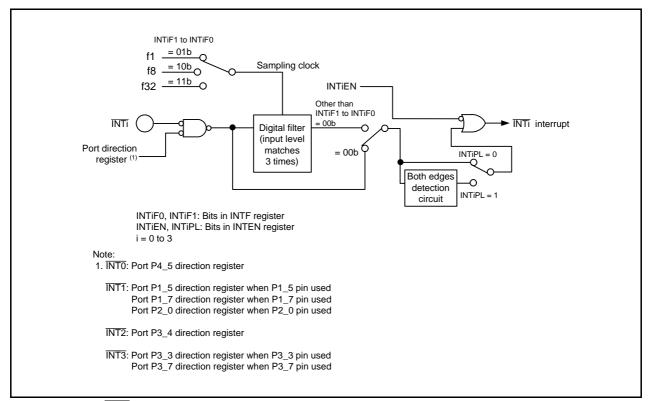


Figure 11.9 INTi Input Filter Configuration

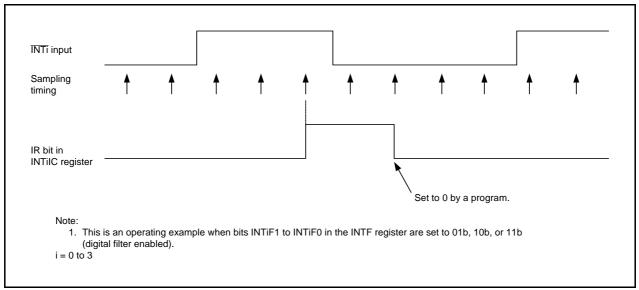


Figure 11.10 Operating Example of INTi Input Filter

11.5 Low-Voltage Signal Mode

Serial interface (UART0 and UART2) communication and the INT input for the INT interrupt can be performed using a low-voltage signal. Table 11.7 lists the Pins Usable for Inputting and Outputting Low-Voltage Signal. Depending on the setting of the TSMR register, the pins enabled for low-voltage signal mode is switched from

schmitt input to CMOS input when they are used as input.

Set the input threshold values for CMOS input using registers VLT0 and VLT1.

When low-voltage signal mode is used, all inputs are set to CMOS input. Since schmitt input is disabled, always take countermeasures against noise.

Table 11.7	Pins Usable for Inputting and Outputting Low-Voltage Signal
------------	---

Perip	Peripheral Function Name				
Serial interface	UART0 Clock synchronous serial I/O Clock asynchronous serial I/O	CLK0, RXD0, TXD0			
	UART2 Clock synchronous serial I/O Clock asynchronous serial I/O Special mode 1 (I ² C mode) Special mode 2 (SSU mode) Multiprocessor communication function	<u>CLK2</u> , <u>RXD2</u> , TXD2, CTS2, RTS2, SCL2, SDA2			
INT	INTO to INT3	INT0 to INT3			

11.6 Key Input Interrupt

A key input interrupt request is generated by one of the input edges of pins $\overline{K10}$ to $\overline{K13}$. The key input interrupt can be used as a key-on wake-up function to exit wait or stop mode.

The KIiEN (i = 0 to 3) bit in the KIEN register is be used to select whether or not the pins are used as the $\overline{\text{KIi}}$ input. The KIiPL bit in the KIEN register is also be used to select the input polarity.

When inputting "L" to the $\overline{\text{KIi}}$ pin, which sets the KIiPL bit to 0 (falling edge), the input to the other pins $\overline{\text{K10}}$ to $\overline{\text{K13}}$ is not detected as interrupts. When inputting "H" to the $\overline{\text{KIi}}$ pin, which sets the KIiPL bit to 1 (rising edge), the input to the other pins $\overline{\text{K10}}$ to $\overline{\text{K13}}$ is not also detected as interrupts.

Figure 11.11 shows a Block Diagram of Key Input Interrupt. Table 11.8 lists the Pin Configuration of Key Input Interrupt.

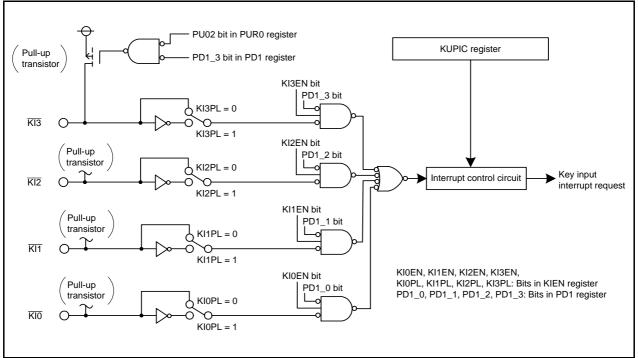


Figure 11.11 Block Diagram of Key Input Interrupt

Table 11.8	Pin Configuration of Key Input Interrupt

Pin Name	I/O	Function		
KI0	Input	KI0 interrupt input		
KI1	Input	KI1 interrupt input		
KI2	Input	KI2 interrupt input		
KI3	Input	KI3 interrupt input		

11.6.1 Key Input Enable Register 0 (KIEN)

	Ado	dress 0	1FEh								
		Bit	b7	b6	b5	b4	b3	b2	b1	b0	
	Sy	mbol	KI3PL	KI3EN	KI2PL	KI2EN	KI1PL	KI1EN	KI0PL	KI0EN	
	After F	Reset	0	0	0	0	0	0	0	0	
г	D:+	Cumb		П	it Name				Function		
ļ	Bit	Symb							Function		R/W
	b0	KI0E	N KIO II	nput enable) bit		0: Disab				R/W
							1: Enable	ed			
Ĩ	b1	KI0P	L KI0 i	nput polarit	y select bit		0: Falling	g edge			R/W
							1: Rising	edge			
f	b2	KI1E	N KI1 i	nput enable	e bit		0: Disab	ed			R/W
				•			1: Enable	ed			
ł	b3	KI1P	L KI1 i	nput polarit	v select bit		0: Falling	n edae			R/W
				ip at p orain	,		1: Rising				
ł	b4	KI2E		nput enable	a hit		0: Disab	-			R/W
	04	NIZLI		iiput enable	; Dit		1: Enable				1.7, 4.4
ļ		1/100									5.44
	b5	KI2P	L KI2 II	nput polarit	y select bit		0: Falling				R/W
							1: Rising	edge			
Ĩ	b6	KI3E	N KI3 i	nput enable	e bit		0: Disab	led			R/W
							1: Enable	ed			
t	b7	KI3P	L KI3 i	nput polarit	v select bit		0: Falling	a eqae			R/W
	1	_	_		,						

The IR bit in the KUPIC register may be set to 1 (interrupt requested) when the KIEN register is rewritten. Refer to **11.9.4 Changing Interrupt Sources**.

1: Rising edge

11.7 Address Match Interrupt

An address match interrupt request is generated immediately before execution of the instruction at the address indicated by the RMADi register (i = 0 or 1). This interrupt is used as a break function by the debugger. When the on-chip debugger is used, do not set an address match interrupt (registers AIER0, AIER1, RMAD0, and RMAD1, and fixed vector tables) in the user system.

Set the starting address of any instruction in the RMADi register (i = 0 or 1). The AIERi0 bit in the AIERi register can be used to select enable or disable the interrupt. The address match interrupt is not affected by the I flag and IPL.

The PC value (refer to **11.3.7 Saving Registers**) which is saved on the stack when an address match interrupt request is acknowledged varies depending on the instruction at the address indicated by the RMADi register. (The appropriate return address is not saved on the stack.) When returning from the address match interrupt, follow one of the following means:

- Rewrite the contents of the stack and use the REIT instruction to return.
- Use an instruction such as POP to restore the stack to its previous state before the interrupt request was acknowledged. Then use a jump instruction to return.

Table 11.9 lists the PC Value Saved on Stack When Address Match Interrupt Request is Acknowledged and Table 11.10 lists the Correspondence Between Address Match Interrupt Sources and Associated Registers.

 Table 11.9
 PC Value Saved on Stack When Address Match Interrupt Request is Acknowledged

	PC Value Saved ⁽¹⁾					
 Instruction 	with 2-byte op	peration coc	le ⁽²⁾			Address indicated by
 Instruction 	with 1-byte op	peration coc	le ⁽²⁾			RMADi register + 2
ADD.B:S	#IMM8,dest	SUB.B:S	#IMM8,dest	AND.B:S	#IMM8,dest	
OR.B:S	#IMM8,dest	MOV.B:S	#IMM8,dest	STZ	#IMM8,dest	
STNZ	#IMM8,dest	STZX	#IMM81,#IM	M82,dest		
CMP.B:S	#IMM8,dest	PUSHM	src	POPM	dest	
JMPS	#IMM8	JSRS	#IMM8			
MOV.B:S	#IMM,dest (h					
Instructions	other than ab	Address indicated by				
						RMADi register + 1

Notes:

- 1. Refer to the 11.3.7 Saving Registers.
- 2. Operation code: Refer to the R8C/Tiny Series User's Manual: Software (REJ09B0001).

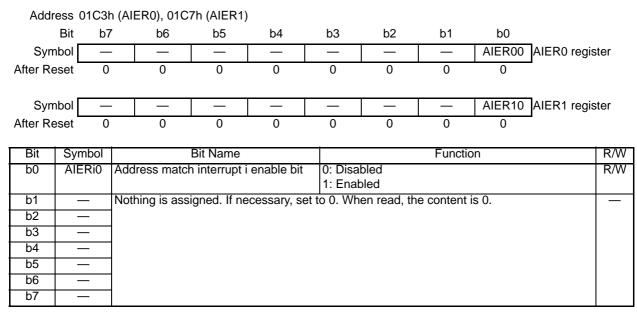
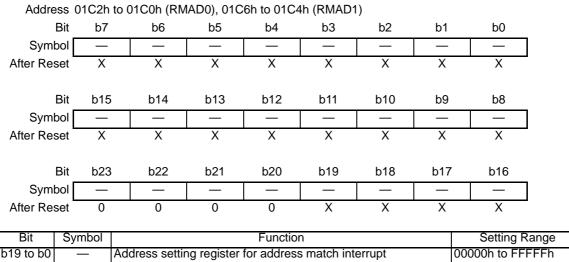

Chapter 4. Instruction Code/Number of Cycles contains diagrams showing operation code below each syntax. Operation code is shown in the bold frame in the diagrams.

Table 11.10	Correspondence Between Address Match Interrupt Sources and Associated Registers
-------------	---


Address Match Interrupt Source	Address Match Interrupt Enable Bit	Address Match Interrupt Register
Address match interrupt 0	AIER00	RMAD0
Address match interrupt 1	AIER10	RMAD1

11.7.1 Address Match Interrupt Enable Register i (AIERi) (i = 0 or 1)

11.7.2 Address Match Interrupt Register i (RMADi) (i = 0 or 1)

Bit	Symbol	Function	Setting Range	R/W
b19 to b0	_	Address setting register for address match interrupt	00000h to FFFFFh	R/W
b20	_	Nothing is assigned. If necessary, set to 0. When read, the conti	ent is 0.	—
b21	_			
b22	_			
b23				

11.8 Timer RC Interrupt, Flash Memory Interrupt (Interrupts with Multiple Interrupt Request Sources), and Sensor Control Unit Interrupt (Interrupt with Single Interrupt Request Sources)

The timer RC interrupt and flash memory interrupt each have multiple interrupt request sources. An interrupt request is generated by the logical OR of several interrupt request sources and is reflected in the IR bit in the corresponding interrupt control register. Therefore, each of these peripheral functions has its own interrupt request source status register (status register) and interrupt request source enable register (enable register) to control the generation of interrupt requests (change of the IR bit in the interrupt control register).

The Sensor Control Unit interrupt has single interrupt request sources. An interrupt request is generated by the logical OR of several interrupt request sources and is reflected in the IR bit in the corresponding interrupt control register.

Therefore, Sensor Control Unit has its own interrupt request source status register (status register) and interrupt request source enable register (enable register) to control the generation of interrupt requests (change of the IR bit in the interrupt control register).

Table 11.11 lists the Registers Associated with Timer RC Interrupt, Sensor Control Unit Interrupt and Flash Memory Interrupt.

Table 11.11Registers Associated with Timer RC Interrupt, Sensor Control Unit Interrupt and
Flash Memory Interrupt

Peripheral Function	Status Register of	Enable Register of	Interrupt Control
Name	Interrupt Request Source	Interrupt Request Source	Register
Timer RC	TRCSR	TRCIER	TRCIC
Sensor Control Unit	SIF	SCUIE	SCUIC
Flash memory	RDYSTI	RDYSTIE	FMRDYIC
	BSYAEI	BSYAEIE	
		CMDERIE	

As with other maskable interrupts, the timer RC interrupt and flash memory interrupt are controlled by the combination of the I flag, IR bit, bits ILVL0 to ILVL2, and IPL. However, since each interrupt source is generated by a combination of multiple interrupt request sources, the following differences from other maskable interrupts apply:

- When bits in the enable register are set to 1 and the corresponding bits in the status register are set to 1 (interrupt enabled), the IR bit in the interrupt control register is set to 1 (interrupt requested).
- When either bits in the status register or the corresponding bits in the enable register, or both are set to 0, the IR bit is set to 0 (no interrupt requested).

That is, even if the interrupt is not acknowledged after the IR bit is set to 1, the interrupt request will not be retained.

Also, the IR bit is not set to 0 even if 0 is written to this bit.

• Individual bits in the status register are not automatically set to 0 even if the interrupt is acknowledged.

The IR bit is also not automatically set to 0 when the interrupt is acknowledged.

Set individual bits in the status register to 0 in the interrupt routine. Refer to the status register figure for how to set individual bits in the status register to 0.

- When multiple bits in the enable register are set to 1 and other request sources are generated after the IR bit is set to 1, the IR bit remains 1.
- When multiple bits in the enable register are set to 1, use the status register to determine which request source causes an interrupt.

Refer to chapters of the individual peripheral functions (19. Timer RC and 25. Flash Memory) for the status register and enable register.

For the interrupt control register, refer to **11.3 Interrupt Control**.

11.9 Notes on Interrupts

11.9.1 Reading Address 00000h

Do not read address 00000h by a program. When a maskable interrupt request is acknowledged, the CPU reads interrupt information (interrupt number and interrupt request level) from 00000h in the interrupt sequence. At this time, the IR bit for the acknowledged interrupt is set to 0.

If address 00000h is read by a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to 0. This may cause the interrupt to be canceled, or an unexpected interrupt to be generated.

11.9.2 SP Setting

Set a value in the SP before an interrupt is acknowledged. The SP is set to 0000h after a reset. If an interrupt is acknowledged before setting a value in the SP, the program may run out of control.

11.9.3 External Interrupt and Key Input Interrupt

Either the "L" level width or "H" level width shown in the Electrical Characteristics is required for the signal input to pins $\overline{INT0}$ to $\overline{INT3}$ and pins $\overline{K10}$ to $\overline{K13}$, regardless of the CPU clock.

For details, refer to Table 27.18 (VCC = 5 V), Table 27.24 (VCC = 3 V), Table 27.30 (VCC = 2.2 V) External Interrupt INTi (i = 0 to 3) Input, Key Input Interrupt KIi (i = 0 to 3).

11.9.4 Changing Interrupt Sources

The IR bit in the interrupt control register may be set to 1 (interrupt requested) when the interrupt source changes. To use an interrupt, set the IR bit to 0 (no interrupt requested) after changing interrupt sources. Changing interrupt sources as referred to here includes all factors that change the source, polarity, or timing of the interrupt assigned to a software interrupt number. Therefore, if a mode change of a peripheral function involves the source, polarity, or timing of an interrupt, set the IR bit to 0 (no interrupt requested) after making these changes. Refer to the descriptions of the individual peripheral functions for related interrupts. Figure 11.12 shows a Procedure Example for Changing Interrupt Sources.

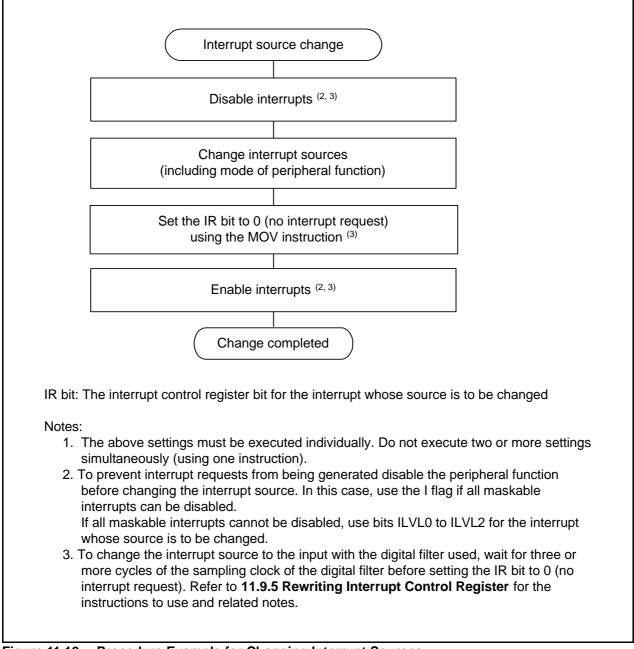


Figure 11.12 Procedure Example for Changing Interrupt Sources

11.9.5 Rewriting Interrupt Control Register

- (a) The contents of the interrupt control register can be rewritten only while no interrupt requests corresponding to that register are generated. If an interrupt request may be generated, disable the interrupt before rewriting the contents of the interrupt control register.
- (b) When rewriting the contents of the interrupt control register after disabling the interrupt, be careful to choose appropriate instructions.

Changing any bit other than the IR bit

If an interrupt request corresponding to the register is generated while executing the instruction, the IR bit may not be set to 1 (interrupt requested), and the interrupt may be ignored. If this causes a problem, use one of the following instructions to rewrite the contents of the register: AND, OR, BCLR, and BSET.

Changing the IR bit

Depending on the instruction used, the IR bit may not be set to 0 (no interrupt requested). Use the MOV instruction to set the IR bit to 0.

(c) When using the I flag to disable an interrupt, set the I flag as shown in the sample programs below. Refer to(b) regarding rewriting the contents of interrupt control registers using the sample programs.

Examples 1 to 3 shows how to prevent the I flag from being set to 1 (interrupts enabled) before the contents of the interrupt control register are rewritten for the effects of the internal bus and the instruction queue buffer.

Example 1: Use the NOP instructions to pause program until the interrupt control register is rewritten INT_SWITCH1:

FCLR	Ι	; Disable interrupts
AND.B	#00H, 0056H	; Set the TRAIC register to 00h
NOP		
NOP		
FSET	Ι	; Enable interrupts

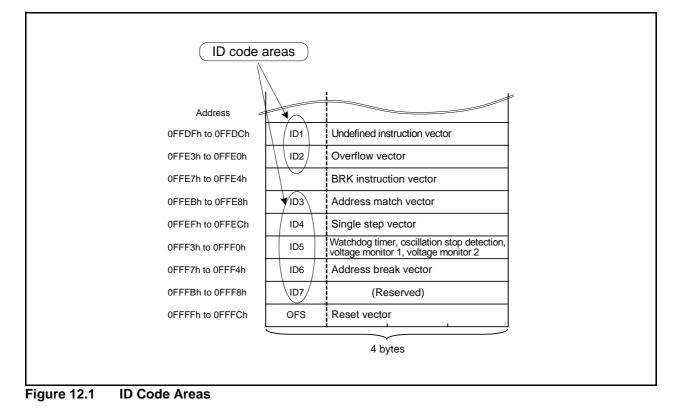
Example 2: Use a dummy read to delay the FSET instruction

INT_SWITCH2:

FCLR	Ι	; Disable interrupts
AND.B	#00H, 0056H	; Set the TRAIC register to 00h
MOV.W	MEM,R0	; <u>Dummy read</u>
FSET	Ι	; Enable interrupts

Example 3: Use the POPC instruction to change the I flag

INT_SWITCH3:					
PUSHC	FLG				
FCLR	Ι	; Disable interrupts			
AND.B	#00H, 0056H	; Set the TRAIC register to 00h			
POPC	FLG	; Enable interrupts			



12. ID Code Areas

The ID code areas are used to implement a function that prevents the flash memory from being rewritten in standard serial I/O mode. This function prevents the flash memory from being read, rewritten, or erased.

12.1 Overview

The ID code areas are assigned to 0FFDFh, 0FFE3h, 0FFEBh, 0FFEFh, 0FFF3h, 0FFF7h, and 0FFFBh of the respective vector highest-order addresses of the fixed vector table. Figure 12.1 shows the ID Code Areas.

12.2 Functions

The ID code areas are used in standard serial I/O mode. Unless 3 bytes (addresses 0FFFCh to 0FFFEh) of the reset vector are set to FFFFFFh, the ID codes stored in the ID code areas and the ID codes sent from the serial programmer or the on-chip debugging emulator are checked to see if they match. If the ID codes match, the commands sent from the serial programmer or the on-chip debugging emulator are acknowledged. If the ID codes do not match, the commands are not acknowledged. To use the serial programmer or the on-chip debugging emulator, first write predetermined ID codes to the ID code areas.

If 3 bytes (addresses 0FFFCh to 0FFFEh) of the reset vector are set to FFFFFFh, the ID codes are not checked and all commands are accepted.

The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

The character sequence of the ASCII codes "ALeRASE" is the reserved word used for the forced erase function. The character sequence of the ASCII codes "Protect" is the reserved word used for the standard serial I/O mode disabled function. Table 12.1 lists the ID Code Reserved Word. The reserved word is a set of reserved characters when all the addresses and data in the ID code storage addresses sequentially match Table 12.1. When the forced erase function or standard serial I/O mode disabled function is not used, use another character sequence of the ASCII codes.

ID Code Storage Address		ID Code Reserved Word (ASCII) ⁽¹⁾		
ID Code Storage Address		ALeRASE	Protect	
0FFDFh	ID1	41h (upper-case "A")	50h (upper-case "P")	
0FFE3h	ID2	4Ch (upper-case "L")	72h (lower-case "r")	
0FFEBh	ID3	65h (lower-case "e")	6Fh (lower-case "o")	
0FFEFh	ID4	52h (upper-case "R")	74h (lower-case "t")	
0FFF3h	ID5	41h (upper-case "A")	65h (lower-case "e")	
0FFF7h	ID6	53h (upper-case "S")	63h (lower-case "c")	
0FFFBh	ID7	45h (upper-case "E")	74h (lower-case "t")	

Table 12.1	ID Code F	Reserved	Word

Note:

1. Reserve word: A set of characters when all the addresses and data in the ID code storage addresses sequentially match Table 12.1.

12.3 Forced Erase Function

This function is used in standard serial I/O mode. When the ID codes sent from the serial programmer or the onchip debugging emulator are "ALeRASE" in ASCII code, the content of the user ROM area will be erased at once. However, if the contents of the ID code addresses are set to other than "ALERASE" (other than **Table 12.1 ID Code Reserved Word**) when the ROMCR bit in the OFS register is set to 1 and the ROMCP1 bit is set to 0 (ROM code protect enabled), forced erasure is not executed and the ID codes are checked with the ID code check function. Table 12.2 lists the Conditions and Operations of Forced Erase Function.

Also, when the contents of the ID code addresses are set to "ALeRASE" in ASCII code, if the ID codes sent from the serial programmer or the on-chip debugging emulator are "ALeRASE", the content of the user ROM area will be erased. If the ID codes sent from the serial programmer are other than "ALERASE", the ID codes do not match and no command is acknowledged, thus the user ROM area remains protected.

ID code from serial programmer or the on-chip debugging emulator	ID code in ID code storage address	Bits ROMCP1 and ROMCR in OFS register	Operation
ALeRASE	ALeRASE		All erasure of user ROM
	Other than ALeRASE (1)	Other than 01b (ROM code protect disabled)	area (forced erase function)
		01b (ROM code protect enabled)	ID code check (ID code check function)
Other than ALeRASE	ALeRASE	_	ID code check (ID code check function. No ID code match.)
	Other than ALeRASE (1)	_	ID code check (ID code check function)

Table 12.2	Conditions and Operation	ns of Forced Erase Function
	Conditions and Operation	IS OFFORCED ETASE FUNCTION

Note:

1. For "Protect", refer to **12.4 Standard Serial I/O Mode Disabled Function**.

12.4 Standard Serial I/O Mode Disabled Function

This function is used in standard serial I/O mode. When the I/D codes in the ID code storage addresses are set to the reserved character sequence of the ASCII codes "Protect" (refer to **Table 12.1 ID Code Reserved Word**), communication with the serial programmer or the on-chip debugging emulator is not performed. This does not allow the flash memory to be read, rewritten, or erased using the serial programmer or the on-chip debugging emulator.

Also, if the ID codes are also set to the reserved character sequence of the ASCII codes "Protect" when the ROMCR bit in the OFS register is set to 1 and the ROMCP1 bit is set to 0 (ROM code protect enabled), ROM code protection cannot be disabled using the serial programmer or the on-chip debugging emulator. This prevents the flash memory from being read, rewritten, or erased using the serial programmer, the on-chip debugging emulator, or parallel programmer.

12.5 Notes on ID Code Areas

12.5.1 Setting Example of ID Code Areas

The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. The following shows a setting example.

To set 55h in all of the ID code areas .org 00FFDCH
.lword dummy | (5500000h) ; UND
.lword dummy | (5500000h) ; INTO
.lword dummy | (5500000h) ; ADDRESS MATCH
.lword dummy | (5500000h) ; SET SINGLE STEP
.lword dummy | (5500000h) ; WDT
.lword dummy | (5500000h) ; ADDRESS BREAK
.lword dummy | (5500000h) ; RESERVE

(Programming formats vary depending on the compiler. Check the compiler manual.)

13. Option Function Select Area

13.1 Overview

The option function select area is used to select the MCU state after a reset, the function to prevent rewriting in parallel I/O mode, or the watchdog timer operation. The reset vector highest-order-address, 0FFFFh and 0FFDBh, are assigned as the option function select area. Figure 13.1 shows the Option Function Select Area.

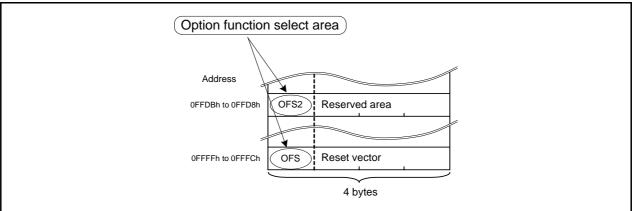


Figure 13.1 Option Function Select Area

13.2 Registers

Registers OFS and OFS2 are used to select the MCU state after a reset, the function to prevent rewriting in parallel I/O mode, or the watchdog timer operation.

13.2.1 Option Function Select Register (OFS)

Address	0FFFFh							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	CSPROINI	LVDAS	VDSEL1	VDSEL0	ROMCP1	ROMCR		WDTON
After Reset			l	Jser Settin	g Value (1)			

Bit	Symbol	Bit Name	Function	R/W
b0	WDTON	Watchdog timer start select bit	0: Watchdog timer automatically starts after reset.1: Watchdog timer is stopped after reset.	R/W
b1		Reserved bit	Set to 1.	R/W
b2	ROMCR	ROM code protect disable bit	0: ROM code protect disabled 1: ROMCP1 bit enabled	R/W
b3	ROMCP1	ROM code protect bit	0: ROM code protect enabled 1: ROM code protect disabled	R/W
b4	VDSEL0	Voltage detection 0 level select bit ⁽²⁾	b5 b4	R/W
b5	VDSEL1		0 0: 3.80 V selected (Vdet0_3) 0 1: 2.85 V selected (Vdet0_2) 1 0: 2.35 V selected (Vdet0_1) 1 1: 1.90 V selected (Vdet0_0)	R/W
b6	LVDAS	Voltage detection 0 circuit start bit ⁽³⁾	0: Voltage monitor 0 reset enabled after reset 1: Voltage monitor 0 reset disabled after reset	R/W
b7	CSPROINI	Count source protection mode after reset select bit	0: Count source protect mode enabled after reset 1: Count source protect mode disabled after reset	R/W

Notes:

1. The OFS register is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the OFS register. If the block including the OFS register is erased, the OFS register is set to FFh.

When blank products are shipped, the OFS register is set to FFh. It is set to the written value after written by the user.

When factory-programming products are shipped, the value of the OFS register is the value programmed by the user.

2. The same level of the voltage detection 0 level selected by bits VDSEL0 and VDESL1 is set in both functions of voltage monitor 0 reset and power-on reset.

3. To use power-on reset and voltage monitor 0 reset, set the LVDAS bit to 0 (voltage monitor 0 reset enabled after reset).

For a setting example of the OFS register, refer to 13.3.1 Setting Example of Option Function Select Area.

LVDAS Bit (Voltage Detection 0 Circuit Start Bit)

The Vdet0 voltage to be monitored by the voltage detection 0 circuit is selected by bits VDSEL0 and VDSEL1.

13.2.2 **Option Function Select Register 2 (OFS2)**

Address	0FFDBh							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol					WDTRCS1	WDTRCS0	WDTUFS1	WDTUFS0
After Reset				User Se	etting Value (1)		

Bit	Symbol	Bit Name	Function	R/W
b0 b1	WDTUFS0 WDTUFS1	Watchdog timer underflow period set bit	^{b1 b0} 0 0: 03FFh 0 1: 0FFFh 1 0: 1FFFh 1 1: 3FFFh	R/W R/W
b2 b3	WDTRCS0 WDTRCS1	Watchdog timer refresh acknowledgement period set bit	b3 b2 0 0: 25% 0 1: 50% 1 0: 75% 1 1: 100%	R/W R/W
b4		Reserved bits	Set to 1.	R/W
b5	—			
b6	_			
b7	—			

Note:

1. The OFS2 register is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the OFS2 register. If the block including the OFS2 register is erased, the OFS2 register is set to FFh.

When blank products are shipped, the OFS2 register is set to FFh. It is set to the written value after written by the user.

When factory-programming products are shipped, the value of the OFS2 register is the value programmed by the user.

For a setting example of the OFS2 register, refer to 13.3.1 Setting Example of Option Function Select Area.

Bits WDTRCS0 and WDTRCS1

(Watchdog Timer Refresh Acknowledgement Period Set Bit)

Assuming that the period from when the watchdog timer starts counting until it underflows is 100%, the refresh acknowledgement period for the watchdog timer can be selected.

For details, refer to 14.3.1.1 Refresh Acknowledgment Period.

13.3 Notes on Option Function Select Area

R8C/3JT Group

13.3.1 Setting Example of Option Function Select Area

The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. The following shows a setting example.

To set FFh in the OFS register .org 00FFFCH
.lword reset | (0FF000000h) ; RESET
(Programming formats vary depending on the compiler. Check the compiler manual.)

To set FFh in the OFS2 register .org 00FFDBH .byte 0FFh
(Programming formats vary depending on the compiler. Check the compiler manual.)

14. Watchdog Timer

The watchdog timer is a function that detects when a program is out of control. Use of the watchdog timer is recommended to improve the reliability of the system.

14.1 Overview

The watchdog timer contains a 14-bit counter and allows selection of count source protection mode enable or disable.

Table 14.1 lists the Watchdog Timer Specifications.

Refer to **5.5 Watchdog Timer Reset** for details of the watchdog timer reset.

Figure 14.1 shows a Watchdog Timer Block Diagram.

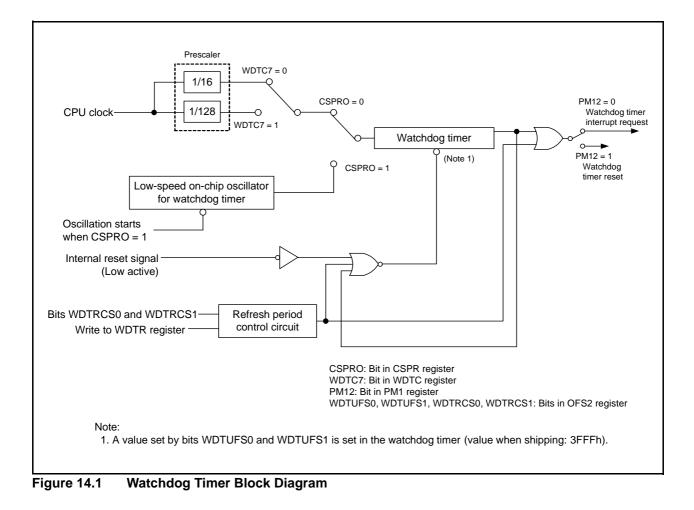
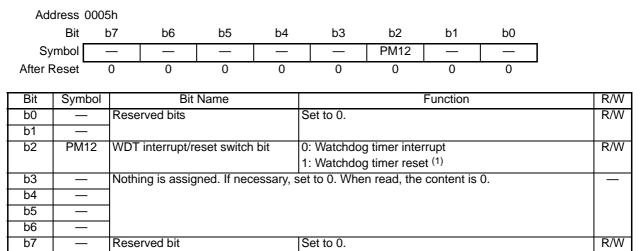

Item	Count Source Protection Mode Disabled	Count Source Protection Mode Enabled				
Count source	CPU clock	Low-speed on-chip oscillator clock for the watchdog timer				
Count operation	Decrement					
Count start condition	Either of the following can be selected: • After a reset, count starts automatical • Count starts by writing to the WDTS re	ly.				
Count stop condition	Stop mode, wait mode	None				
Watchdog timer initialization conditions	 Reset Write 00h and then FFh to the WDTR register (with acknowledgement period setting). ⁽¹⁾ Underflow 					
Operations at underflow	Watchdog timer interrupt Watchdog timer reset or watchdog timer reset Watchdog timer reset					
Selectable functions	 Division ratio of the prescaler Selected by the WDTC7 bit in the WDTC register. Count source protection mode Whether count source protection mode is enabled or disabled after a reset can be selected by the CSPROINI bit in the OFS register (flash memory). If count source protection mode is disabled after a reset, it can be enabled o disabled by the CSPRO bit in the CSPR register (program). Start or stop of the watchdog timer after a reset Selected by the WDTON bit in the OFS register (flash memory). Initial value of the watchdog timer Selectable by bits WDTUFS0 and WDTUFS1 in the OFS2 register. Refresh acknowledgement period for the watchdog timer Selectable by bits WDTRCS0 and WDTRCS1 in the OFS2 register. 					

Table 14.1 Watchdog Timer Specifications

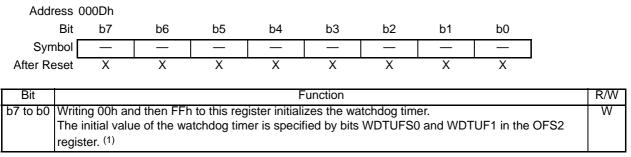
Note:

1. Write the WDTR register during the count operation of the watchdog timer.



14.2 Registers

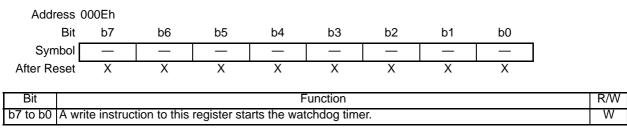
14.2.1 Processor Mode Register 1 (PM1)



Note:

 The PM12 bit is set to 1 when 1 is written by a program (and remains unchanged even if 0 is written to it). This bit is automatically set to 1 when the CSPRO bit in the CSPR register is set to 1 (count source protection mode enabled).

Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting the PM1 register.


14.2.2 Watchdog Timer Reset Register (WDTR)

Note:

1. Write the WDTR register during the count operation of the watchdog timer.

14.2.3 Watchdog Timer Start Register (WDTS)

14.2.4 Watchdog Timer Control Register (WDTC)

	Address (00Fh									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
	Symbol	WDTC7				—	_		—		
When S	Shipping	0	0	1	1	1	1	1	1		
	<u> </u>	-i	D % N								D 44/
Bit	Symbol		Bit Na					nction			R/W
b0	—		he following bits of the watchdog timer can be read.								R
b1	—		When bits WDTUFS1 to WDTUFS0 in the OFS2 register are								R
b2	—		FFh): b5 to								R
b3	—		FFh): b7 to								R
b4	—		FFh): b8 to								R
b5	—	110 (3F)	FFh): b9 to	D4							R
b6	—	Reserve	ed bit		Whe	en read, the	content is	0.			R
b7	WDTC7	Prescale	er select bi	t		ivided-by-1 ivided-by-1					R/W
L											

14.2.5 Count Source Protection Mode Register (CSPR)

Address	001Ch							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	CSPRO					_	_	
After Reset	0	0	0	0	0	0	0	0
	The above	applies whether the second sec	nen the CS	PROINI bit	t in the OF	S register is	s set to 1.	
After Reset	1	0	0	0	0	0	0	0
	The above	applies wh	nen the CS	PROINI bit	t in the OF	S register is	s set to 0.	

Bit	Symbol	Bit Name	Function	R/W
b0		Reserved bits	Set to 0.	R/W
b1				
b2				
b3				
b4				
b5				
b6				
b7	CSPRO	Count source protection mode select bit ⁽¹⁾	0: Count source protection mode disabled1: Count source protection mode enabled	R/W

Note:

1. To set the CSPRO bit to 1, write 0 and then 1 to it. This bit cannot be set to 0 by a program. Disable interrupts and DTC activation between writing 0 and writing 1.

Option Function Select Register (OFS) 14.2.6

Address	Address 0FFFFh							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	CSPROINI	LVDAS	VDSEL1	VDSEL0	ROMCP1	ROMCR	—	WDTON
After Reset			L	Jser Settin	a Value (1)			

User Setting Value (1)

Bit	Symbol	Bit Name	Function	R/W
b0	WDTON	Watchdog timer start select bit	0: Watchdog timer automatically starts after reset.1: Watchdog timer is stopped after reset.	R/W
b1	—	Reserved bit	Set to 1.	R/W
b2	ROMCR	ROM code protect disable bit	0: ROM code protect disabled 1: ROMCP1 bit enabled	R/W
b3	ROMCP1	ROM code protect bit	0: ROM code protect enabled 1: ROM code protect disabled	R/W
b4	VDSEL0	Voltage detection 0 level select bit ⁽²⁾	b5 b4	R/W
b5	VDSEL1		0 0: 3.80 V selected (Vdet0_3) 0 1: 2.85 V selected (Vdet0_2) 1 0: 2.35 V selected (Vdet0_1) 1 1: 1.90 V selected (Vdet0_0)	R/W
b6	LVDAS	Voltage detection 0 circuit start bit ⁽³⁾	0: Voltage monitor 0 reset enabled after reset1: Voltage monitor 0 reset disabled after reset	R/W
b7	CSPROINI	Count source protection mode after reset select bit	0: Count source protect mode enabled after reset 1: Count source protect mode disabled after reset	R/W

Notes:

1. The OFS register is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the OFS register. If the block including the OFS register is erased, the OFS register is set to FFh.

When blank products are shipped, the OFS register is set to FFh. It is set to the written value after written by the user.

When factory-programming products are shipped, the value of the OFS register is the value programmed by the user.

2. The same level of the voltage detection 0 level selected by bits VDSEL0 and VDESL1 is set in both functions of voltage monitor 0 reset and power-on reset.

3. To use power-on reset and voltage monitor 0 reset, set the LVDAS bit to 0 (voltage monitor 0 reset enabled after reset).

For a setting example of the OFS register, refer to 13.3.1 Setting Example of Option Function Select Area.

LVDAS Bit (Voltage Detection 0 Circuit Start Bit)

The Vdet0 voltage to be monitored by the voltage detection 0 circuit is selected by bits VDSEL0 and VDSEL1.

14.2.7 **Option Function Select Register 2 (OFS2)**

Address	0FFDBh							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	_	_		_	WDTRCS1	WDTRCS0	WDTUFS1	WDTUFS0
After Reset				User Se	etting Value (1)		

Bit	Symbol	Bit Name	Function	R/W
b0	WDTUFS0	Watchdog timer underflow period set bit	0 0: 03FFh	R/W
b1	WDTUFS1		0 1: 0FFFh 1 0: 1FFFh 1 1: 3FFFh	R/W
b2 b3		Watchdog timer refresh acknowledgement period set bit	b3 b2 0 0: 25% 0 1: 50% 1 0: 75% 1 1: 100%	R/W R/W
b4	—	Reserved bits	Set to 1.	R/W
b5	_			
b6	—			
b7	—			

Note:

1. The OFS2 register is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the OFS2 register. If the block including the OFS2 register is erased, the OFS2 register is set to FFh.

When blank products are shipped, the OFS2 register is set to FFh. It is set to the written value after written by the user.

When factory-programming products are shipped, the value of the OFS2 register is the value programmed by the user.

For a setting example of the OFS2 register, refer to 13.3.1 Setting Example of Option Function Select Area.

Bits WDTRCS0 and WDTRCS1

(Watchdog Timer Refresh Acknowledgement Period Set Bit)

Assuming that the period from when the watchdog timer starts counting until it underflows is 100%, the refresh acknowledgement period for the watchdog timer can be selected.

For details, refer to 14.3.1.1 Refresh Acknowledgment Period.

14.3 Functional Description

14.3.1 Common Items for Multiple Modes

14.3.1.1 Refresh Acknowledgment Period

The period for acknowledging refreshment operation to the watchdog timer (write to the WDTR register) can be selected by bits WDTRCS0 and WDTRCS1 in the OFS2 register. Figure 14.2 shows the Refresh Acknowledgement Period for Watchdog Timer.

Assuming that the period from when the watchdog timer starts counting until it underflows is 100%, a refresh operation executed during the refresh acknowledgement period is acknowledged. Any refresh operation executed during the period other than the above is processed as an incorrect write, and a watchdog timer interrupt or watchdog timer reset (selectable by the PM12 bit in the PM1 register) is generated.

Do not execute any refresh operation while the count operation of the watchdog timer is stopped.

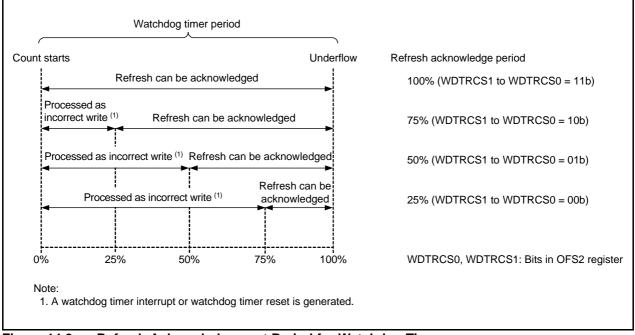


Figure 14.2 Refresh Acknowledgement Period for Watchdog Timer

14.3.2 Count Source Protection Mode Disabled

The count source for the watchdog timer is the CPU clock when count source protection mode is disabled. Table 14.2 lists the Watchdog Timer Specifications (Count Source Protection Mode Disabled).

Table 14.2	Watchdog Timer Specifications (Count Source Protection Mode Disabled)
------------	---

Item	Specification
Count source	CPU clock
Count operation	Decrement
Period	Division ratio of prescaler (n) × count value of watchdog timer (m) (1)
	CPU clock
	n: 16 or 128 (selected by the WDTC7 bit in the WDTC register)
	m: Value set by bits WDTUFS0 and WDTUFS1 in the OFS2 register
	Example:
	The period is approximately 13.1 ms when: - The CPU clock frequency is set to 20 MHz.
	- The prescaler is divided by 16.
	- Bits WDTUFS1 to WDTUFS0 are set to 11b (3FFFh).
Watchdog timer	• Reset
initialization conditions	• Write 00h and then FFh to the WDTR register. ⁽³⁾
	• Underflow
Count start conditions	The operation of the watchdog timer after a reset is selected by
	the WDTON bit ⁽²⁾ in the OFS register (address 0FFFFh).
	• When the WDTON bit is set to 1 (watchdog timer is stopped after reset).
	The watchdog timer and prescaler are stopped after a reset and
	start counting when the WDTS register is written to.
	 When the WDTON bit is set to 0 (watchdog timer starts automatically after reset).
	The watchdog timer and prescaler start counting automatically after a reset.
Count stop condition	Stop mode, wait mode (Count resumes from the retained value after exiting.)
Operations at underflow	• When the PM12 bit in the PM1 register is set to 0.
	• When the PM12 bit in the PM1 register is set to 1.
	When the FMT2 bit in the FMT register is set to T. Watchdog timer reset (Refer to 5.5 Watchdog Timer Reset .)
L	

Notes:

- 1. The watchdog timer is initialized when 00h and then FFh is written to the WDTR register. The prescaler is initialized after a reset. This may cause some errors due to the prescaler during the watchdog timer period.
- 2. The WDTON bit cannot be changed by a program. To set this bit, write 0 to bit 0 of address 0FFFFh with a flash programmer.
- 3. Write the WDTR register during the count operation of the watchdog timer.

14.3.3 Count Source Protection Mode Enabled

The count source for the watchdog timer is the low-speed on-chip oscillator clock for the watchdog timer when count source protection mode is enabled. If the CPU clock stops when a program is out of control, the clock can still be supplied to the watchdog timer.

Table 14.3 lists the Watchdog Timer Specifications (Count Source Protection Mode Enabled).

Table 14.3	Watchdog Timer Specifications (Count Source Protection Mode Enabled)
------------	--

Item	Specification					
Count source	Low-speed on-chip oscillator clock					
Count operation	Decrement					
Period	Count value of watchdog timer (m)					
	Low-speed on-chip oscillator clock for the watchdog timer					
	m: Value set by bits WDTUFS0 and WDTUFS1 in the OFS2 register					
	Example:					
	The period is approximately 8.2 ms when:					
	- The on-chip oscillator clock for the watchdog timer is set to 125 kHz.					
	- Bits WDTUFS1 to WDTUFS0 are set to 00b (03FFh).					
Watchdog timer	• Reset					
initialization conditions	• Write 00h and then FFh to the WDTR register. ⁽³⁾					
	Underflow					
Count start conditions	The operation of the watchdog timer after a reset is selected by					
	the WDTON bit ⁽¹⁾ in the OFS register (address 0FFFFh).					
	• When the WDTON bit is set to 1 (watchdog timer is stopped after reset).					
	The watchdog timer and prescaler are stopped after a reset and					
	start counting when the WDTS register is written to.					
	• When the WDTON bit is set to 0 (watchdog timer starts automatically after					
	reset). The watchdog timer and prescaler start counting automatically after a reset.					
Count stop condition						
Count stop condition	None (Count does not stop even in wait mode and stop mode once it starts.)					
Operation at underflow	Watchdog timer reset (Refer to 5.5 Watchdog Timer Reset .)					
Registers, bits	• When the CSPPRO bit in the CSPR register is set to 1 (count source					
	protection mode enabled) ⁽²⁾ , the following are set automatically:					
	- The low-speed on-chip oscillator for the watchdog timer is on.					
	- The PM12 bit in the PM1 register is set to 1 (watchdog timer reset when					
	the watchdog timer underflows).					

Notes:

- 1. The WDTON bit cannot be changed by a program. To set this bit, write 0 to bit 0 of address 0FFFFh with a flash programmer.
- 2. Even if 0 is written to the CSPROINI bit in the OFS register, the CSPRO bit is set to 1. The CSPROINI bit cannot be changed by a program. To set this bit, write 0 to bit 7 of address 0FFFh with a flash programmer.
- 3. Write the WDTR register during the count operation of the watchdog timer.

15. DTC

The DTC (data transfer controller) is a function that transfers data between the SFR and on-chip memory without using the CPU. This chip incorporates one DTC channel. The DTC is activated by a peripheral function interrupt to perform data transfers. The DTC and CPU use the same bus, and the DTC takes priority over the CPU in using the bus. To control DTC data transfers, control data comprised of a transfer source address, a transfer destination address, and operating modes are allocated in the DTC control data area. Each time the DTC is activated, the DTC reads control data to perform data transfers.

15.1 Overview

Table 15.1 lists the DTC Specifications.

Item		Specification			
Activation sources		22 sources			
Allocatable control data		24 sets			
Address space which can be t	ransferred	64 Kbytes (00000h to 0FFFFh)			
Maximum number of transfer	Normal mode	256 times			
times	Repeat mode	255 times			
Maximum size of block to be	Normal mode	256 bytes			
transferred	Repeat mode	255 bytes			
Unit of transfers		Byte			
Transfer mode	Normal mode	Transfers end on completion of the transfer causing the DTCCTj register value to change from 1 to 0.			
	Repeat mode	On completion of the transfer causing the DTCCTj register value to change from 1 to 0, the repeat area address is initialized and the DTRLDj register value is reloaded to the DTCCTj register to continue transfers.			
Address control	Normal mode	Fixed or incremented			
	Repeat mode	Addresses of the area not selected as the repeat area are fixed or incremented.			
Priority of activation sources		Refer to Table 15.5 DTC Activation Sources and DTC Vector Addresses.			
Interrupt request	Normal mode	When the data transfer causing the DTCCTj register value to change from 1 to 0 is performed, the activation source interrupt request is generated for the CPU, and interrupt handling is performed on completion of the data transfer.			
	Repeat mode	When the data transfer causing the DTCCTj register value to change from 1 to 0 is performed while the RPTINT bit in the DTCCRj register is 1 (interrupt generation enabled), the activation source interrupt request is generated for the CPU, and interrupt handling is performed on completion of the transfer.			
Transfer start		When bits DTCENi0 to DTCENi7 in the DTCENi registers are 1 (activation enabled), data transfer is started each time the corresponding DTC activation sources are generated.			
Transfer stop	Normal mode	 When bits DTCENi0 to DTCENi7 are set to 0 (activation disabled). When the data transfer causing the DTCCTj register value to change from 1 to 0 is completed. 			
	Repeat mode	 When bits DTCENi0 to DTCENi7 are set to 0 (activation disabled). When the data transfer causing the DTCCTj register value to change from 1 to 0 is completed while the RPTINT bit is 1 (interrupt generation enabled). 			

Table 15.1 DTC Specifications

i = 0 to 3, 5, 6, j = 0 to 23

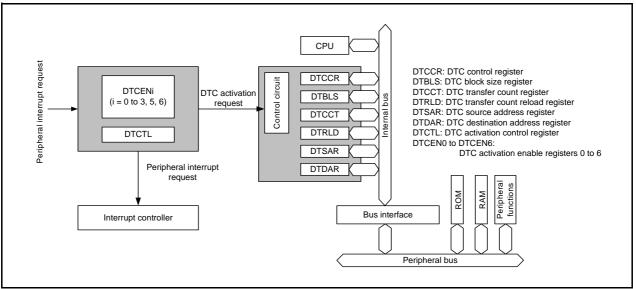


Figure 15.1 DTC Block Diagram

15.2 Registers

When the DTC is activated, control data (DTCCRj, DTBLSj, DTCCTj, DTRLDj, DTSARj, and DTDARj, j = 0 to 23) allocated in the control data area is read, and then transferred to the control registers (DTCCR, DTBLS, DTCCT, DTRLD, DTSAR, and DTDAR) in the DTC. On completion of the DTC data transfer, the contents of the DTC control registers are written back to the control data area.

Each DTCCR, DTBLS, DTCCT, DTRLD, DTSAR, and DTDAR register cannot be directly read or written to. DTCCRj, DTBLSj, DTCCTj, DTRLDj, DTSARj, and DTDARj are allocated as control data at addresses from 2C40h to 2CFFh in the DTC control data area, and can be directly accessed. Also, registers DTCTL and DTCENi (i = 0 to 3, 5, 6) can be directly accessed.

15.2.1 DTC Control Register j (DTCCRj) (j = 0 to 23) Address Refer to Table 15.4 Control Data Allocation Addresses. Bit b7 b6 b5 b4 b3 b2 b1 b0 Symbol RPTINT CHNE DAMOD SAMOD RPTSEL MODE After Reset Х Х Х Х Х Х Х Х Bit Bit Name Symbol Function R/W b0 MODE Transfer mode select bit 0: Normal mode R/W

			1: Repeat mode	
b1	RPTSEL	Repeat area select bit ⁽¹⁾	0: Transfer destination is the repeat area.	R/W
			1: Transfer source is the repeat area.	
b2	SAMOD	Source address control bit ⁽²⁾	0: Fixed	R/W
			1: Incremented	
b3	DAMOD	Destination address control bit ⁽²⁾	0: Fixed	R/W
			1: Incremented	
b4	CHNE	Chain transfer enable bit ⁽³⁾	0: Chain transfers disabled	R/W
			1: Chain transfers enabled	
b5	RPTINT	Repeat mode interrupt enable bit ⁽¹⁾	0: Interrupt generation disabled	R/W
			1: Interrupt generation enabled	
b6		Reserved bits	Set to 0.	R/W

b7 Notes:

- 1. This bit is valid when the MODE bit is 1 (repeat mode).
- 2. Settings of bits SAMOD and DAMOD are invalid for the repeat area.
- 3. Set the CHNE bit in the DTCCR23 register to 0 (chain transfers disabled).

15.2.2 DTC Block Size Register j (DTBLSj) (j = 0 to 23)

Address Refer to Table 15.4 Control Data Allocation Addresses.

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	_	—	_	—	—	_	—	_]
After Reset	Х	Х	Х	Х	Х	Х	Х	Х	-

Bit	Function	Setting Range	R/W
b7 to b0	These bits specify the size of the data block to be transferred by one	00h to FFh ⁽¹⁾	R/W
	activation.		

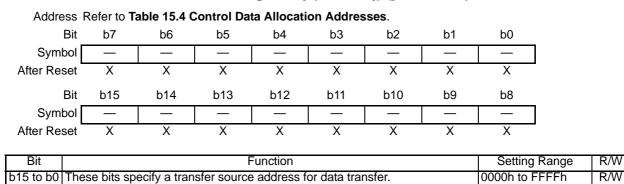
Note:

1. When the DTBLS register is set to 00h, the block size is 256 bytes.

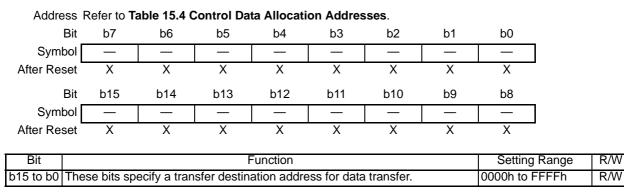
Address Refer to Table 15.4 Control Data Allocation Addresses.											
Bit	b7	b6	b5	b4	b3	b2	b1	b0			
Symbol	_	_		—							
After Reset	Х	Х	Х	Х	Х	Х	Х	Х			
				-				a			
Bit			1	Function				Setting	Range	R/W	
b7 to b0 The	ese bits sp	ecify the nu	umber of ti	mes of DT(C data trans	sfers.		00h to FFI	ר ⁽¹⁾	R/W	

Note:

1. When the DTCCT register is set to 00h, the number of transfer times is 256. Each time the DTC is activated, the DTCCT register is decremented by 1.


15.2.4 DTC Transfer Count Reload Register j (DTRLDj) (j = 0 to 23)

Address Refer to Table 15.4 Control Data Allocation Addresses. Bit b0 b7 b6 b5 b4 b3 b2 b1 Symbol Х Х After Reset Х Х Х Х Х Х Bit Function Setting Range R/W b7 to b0 This register value is reloaded to the DTCCT register in repeat mode. R/W 00h to FFh (1)


Note:

1. Set the initial value for the DTCCT register.

15.2.5 DTC Source Address Register j (DTSARj) (j = 0 to 23)

15.2.6 DTC Destination Address Register j (DTDARj) (j = 0 to 23)

15.2.7 DTC Activation Enable Register i (DTCENi) (i = 0 to 3, 5, 6)

Address 0088h (DTCEN0), 0089h (DTCEN1), 008Ah (DTCEN2), 008Bh (DTCEN3), 008Dh (DTCEN5), 008Eh (DTCEN6)

		Bit	b	7	b6	b5	b4	b3	b2	b1	b0		
	Sy	/mbol	DTC	ENi7	DTCENi6	DTCENi5	DTCENi4	DTCENi3	DTCENi2	DTCENi1	DTCENi0		
	After F	Reset	0)	0	0	0	0	0	0	0		
г	D:4	0			D:4	News				E			
	Bit	Sym				Name				Function			R/W
Ī	b0	DTC	ENi0	DTC	activation	enable bit	(1)	0: Activatio	n disabled				R/W
Ī	b1	DTC	ENi1					1: Activatio	n enabled			Ī	R/W
Î	b2	DTC	ENi2									Ī	R/W
Ī	b3	DTC	ENi3									Í	R/W
Î	b4	DTC	ENi4									Ī	R/W
Ī	b5	DTC	ENi5									Í	R/W
Ī	b6	DTC	ENi6									Í	R/W
Ī	b7	DTC	ENi7									Ť	R/W

Note:

1. For the operation of this bit, refer to **15.3.7 Interrupt Sources**.

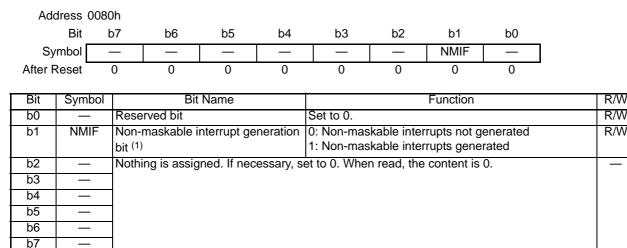

The DTCENi registers enable/disable DTC activation by interrupt sources. Table 15.2 lists Correspondences between Bits DTCENi0 to DTCENi7 (i = 0 to 3, 5, 6) and Interrupt Sources.

Table 15.2	Correspondences between Bits DTCENi0 to DTCENi7 (i = 0 to 3, 5, 6) and Interrupt
	Sources

Register	DTCENi7 Bit	DTCENi6 Bit	DTCENi5 Bit	DTCENi4 Bit	DTCENi3 Bit	DTCENi2 Bit	DTCENi1 Bit	DTCENi0 Bit
DTCEN0	INTO	INT1	INT2	INT3	—	_	—	—
DTCEN1	Key input	A/D conversion	UART0 reception	UART0 transmission	_	_	UART2 reception	UART2 transmission
DTCEN2	_	_	Voltage Monitor 2	Voltage Monitor 1	Sensor control unit data transfer request	_	Timer RC input- capture/ compare- match A	Timer RC input- capture/ compare- match B
DTCEN3	Timer RC input- capture/ compare- match C	Timer RC input- capture/ compare- match D	_	_	_	_	_	—
DTCEN5		_		_	_			_
DTCEN6	_	Timer RA	_	Timer RB	Flash ready status	_	_	—

15.2.8 DTC Activation Control Register (DTCTL)

Note:

1. This bit is set to 0 when the read result is 1 and 0 is written to the same bit. This bit remains unchanged even if the read result is 0 and 0 is written to the same bit. This bit remains unchanged if 1 is written to it.

The DTCTL register controls DTC activation when a non-maskable interrupt (an interrupt by the watchdog timer, oscillation stop detection, voltage monitor 1, or voltage monitor 2) is generated.

NMIF Bit (Non-Maskable Interrupt Generation Bit)

The NMIF bit is set to 1 when a watchdog timer interrupt, an oscillation stop detection interrupt, a voltage monitor 1 interrupt, or a voltage monitor 2 interrupt is generated.

When the NMIF bit is 1, the DTC is not activated even if the interrupt which enables DTC activation is generated. If the NMIF bit is changed to 1 during DTC transfer, the transfer is continued until it is completed.

When an interrupt source is the watchdog timer, wait for the following cycles before writing 0 to the NMIF bit: If the WDTC7 bit in the WDTC register is set to 0 (divide-by-16 using the prescaler), wait for 16 cycles of the CPU clock after the interrupt source is generated.

If the WDTC7 bit is set to 1 (divide-by-128 using the prescaler), wait for 128 cycles of the CPU clock after the interrupt source is generated.

When an interrupt source is oscillation stop detection, set to the OCD1 bit in the OCD register to 0 (oscillation stop detection interrupt disabled) before writing 0 to the NMIF bit.

15.3 Function Description

15.3.1 Overview

When the DTC is activated, control data is read from the DTC control data area to perform data transfers and control data after data transfer is written back to the DTC control data area. Twenty-four sets of control data can be stored in the DTC control data area, which allows 24 types of data transfers to be performed.

There are two transfer modes: normal mode and repeat mode. When the CHNE bit in the DTCCRj (j = 0 to 23) register is set to 1 (chain transfers enabled), multiple control data is read and data transfers are continuously performed by one activation source (chain transfers).

A transfer source address is specified by the 16-bit register DTSARj, and a transfer destination address is specified by the 16-bit register DTDARj. The values in the registers DTSARj and DTDARj are separately fixed or incremented according to the control data on completion of the data transfer.

15.3.2 Activation Sources

The DTC is activated by an interrupt source. Figure 15.2 is a Block Diagram Showing Control of DTC Activation Sources.

The interrupt sources to activate the DTC are selected with the DTCENi (i = 0 to 3, 5, 6) registers.

The DTC sets 0 (activation disabled) to the corresponding bit among bits DTCENi0 to DTCENi7 in the DTCENi register during operation when the setting of data transfer (the first transfer in chain transfers) is either of the following:

- Transfer causing the DTCCTj (j = 0 to 23) register value to change to 0 in normal mode
- Transfer causing the DTCCTj register value to change to 0 while the RPTINT bit in the DTCCRj register is 1 (interrupt generation enabled) in repeat mode

If the data transfer setting is not either of the above and the activation source is an interrupt source for timer RC or the flash memory, the DTC sets 0 to the interrupt source flag corresponding to the activation source during operation.

Table 15.3 lists the DTC Activation Sources and Interrupt Source Flags for Setting to 0 during DTC Operation. If multiple activation sources are simultaneously generated, the DTC activation will be performed according to the DTC activation source priority.

If multiple activation sources are simultaneously generated on completion of DTC operation, the next transfer will be performed according to the priority.

DTC activation is not affected by the I flag or interrupt control register, unlike with interrupt request operation. Therefore, even if interrupt requests cannot be acknowledged because interrupts are disabled, DTC activation requests can be acknowledged. The IR bit in the interrupt control register does not change even when an interrupt source to enable DTC activation is generated.

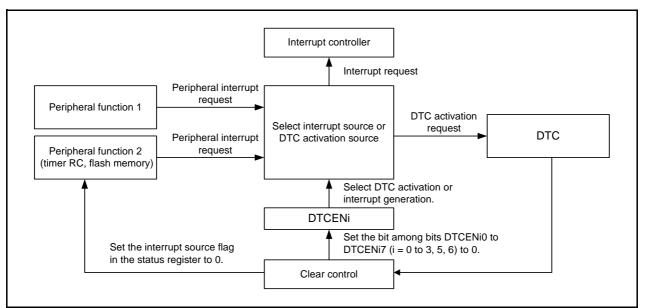


Figure 15.2 Block Diagram Showing Control of DTC Activation Sources

Table 15.3DTC Activation Sources and Interrupt Source Flags for Setting to 0 during DTC
Operation

DTC activation source generation	Interrupt Source Flag for Setting to 0
Timer RC input-capture/compare-match A	IMFA bit in TRCSR register
Timer RC input-capture/compare-match B	IMFB bit in TRCSR register
Timer RC input-capture/compare-match C	IMFC bit in TRCSR register
Timer RC input-capture/compare-match D	IMFD bit in TRCSR register
Flash ready status	RDYSTI bit in FST register

15.3.3 Control Data Allocation and DTC Vector Table

Control data is allocated in the order: Registers DTCCRj, DTBLSj, DTCCTj, DTRLDj, DTSARj, and DTDARj (j = 0 to 23). Table 15.4 lists the Control Data Allocation Addresses.

Register Symbol	Control Data No.	Address	DTCCRj Register	DTBLSj Register	DTCCTj Register	DTRLDj Register	DTSARj Register (Lower 8 Bits)	DTSARj Register (Higher 8 Bits)	DTDARj Register (Lower 8 Bits)	DTDARj Register (Higher 8 Bits)
DTCD0	Control Data 0	2C40h to 2C47h	2C40h	2C41h	2C42h	2C43h	2C44h	2C45h	2C46h	2C47h
DTCD1	Control Data 1	2C48h to 2C4Fh	2C48h	2C49h	2C4Ah	2C4Bh	2C4Ch	2C4Dh	2C4Eh	2C4Fh
DTCD2	Control Data 2	2C50h to 2C57h	2C50h	2C51h	2C52h	2C53h	2C54h	2C55h	2C56h	2C57h
DTCD3	Control Data 3	2C58h to 2C5Fh	2C58h	2C59h	2C5Ah	2C5Bh	2C5Ch	2C5Dh	2C5Eh	2C5Fh
DTCD4	Control Data 4	2C60h to 2C67h	2C60h	2C61h	2C62h	2C63h	2C64h	2C65h	2C66h	2C67h
DTCD5	Control Data 5	2C68h to 2C6Fh	2C68h	2C69h	2C6Ah	2C6Bh	2C6Ch	2C6Dh	2C6Eh	2C6Fh
DTCD6	Control Data 6	2C70h to 2C77h	2C70h	2C71h	2C72h	2C73h	2C74h	2C75h	2C76h	2C77h
DTCD7	Control Data 7	2C78h to 2C7Fh	2C78h	2C79h	2C7Ah	2C7Bh	2C7Ch	2C7Dh	2C7Eh	2C7Fh
DTCD8	Control Data 8	2C80h to 2C87h	2C80h	2C81h	2C82h	2C83h	2C84h	2C85h	2C86h	2C87h
DTCD9	Control Data 9	2C88h to 2C8Fh	2C88h	2C89h	2C8Ah	2C8Bh	2C8Ch	2C8Dh	2C8Eh	2C8Fh
DTCD10	Control Data 10	2C90h to 2C97h	2C90h	2C91h	2C92h	2C93h	2C94h	2C95h	2C96h	2C97h
DTCD11	Control Data 11	2C98h to 2C9Fh	2C98h	2C99h	2C9Ah	2C9Bh	2C9Ch	2C9Dh	2C9Eh	2C9Fh
DTCD12	Control Data 12	2CA0h to 2CA7h	2CA0h	2CA1h	2CA2h	2CA3h	2CA4h	2CA5h	2CA6h	2CA7h
DTCD13	Control Data 13	2CA8h to 2CAFh	2CA8h	2CA9h	2CAAh	2CABh	2CACh	2CADh	2CAEh	2CAFh
DTCD14	Control Data 14	2CB0h to 2CB7h	2CB0h	2CB1h	2CB2h	2CB3h	2CB4h	2CB5h	2CB6h	2CB7h
DTCD15	Control Data 15	2CB8h to 2CBFh	2CB8h	2CB9h	2CBAh	2CBBh	2CBCh	2CBDh	2CBEh	2CBFh
DTCD16	Control Data 16	2CC0h to 2CC7h	2CC0h	2CC1h	2CC2h	2CC3h	2CC4h	2CC5h	2CC6h	2CC7h
DTCD17	Control Data 17	2CC8h to 2CCFh	2CC8h	2CC9h	2CCAh	2CCBh	2CCCh	2CCDh	2CCEh	2CCFh
DTCD18	Control Data 18	2CD0h to 2CD7h	2CD0h	2CD1h	2CD2h	2CD3h	2CD4h	2CD5h	2CD6h	2CD7h
DTCD19	Control Data 19	2CD8h to 2CDFh	2CD8h	2CD9h	2CDAh	2CDBh	2CDCh	2CDDh	2CDEh	2CDFh
DTCD20	Control Data 20	2CE0h to 2CE7h	2CE0h	2CE1h	2CE2h	2CE3h	2CE4h	2CE5h	2CE6h	2CE7h
DTCD21	Control Data 21	2CE8h to 2CEFh	2CE8h	2CE9h	2CEAh	2CEBh	2CECh	2CEDh	2CEEh	2CEFh
DTCD22	Control Data 22	2CF0h to 2CF7h	2CF0h	2CF1h	2CF2h	2CF3h	2CF4h	2CF5h	2CF6h	2CF7h
DTCD23	Control Data 23	2CF8h to 2CFFh	2CF8h	2CF9h	2CFAh	2CFBh	2CFCh	2CFDh	2CFEh	2CFFh

 Table 15.4
 Control Data Allocation Addresses

j = 0 to 23

When the DTC is activated, one control data is selected according to the data read from the vector table which has been assigned to each activation source, and the selected control data is read from the DTC control data area.

Table 15.5 lists the DTC Activation Sources and DTC Vector Addresses. A one-byte vector table area is assigned to each activation source and one value from 00000000b to 00010111b (control data numbers in Table 15.4) is stored in each area to select one of the 24 control data sets.

Figures 15.3 to 15.5 show the DTC Internal Operation Flowchart.

Interrupt Request Source	Interrupt Name	Source No.	DTC Vector Address	Priority	
External input	ĪNT0	0	2C00h	High	
	ĪNT1	1	2C01h		
	ĪNT2	2	2C02h		
	ĪNT3	3	2C03h		
	(Reserved)	4	2C04h		
Key input	Key input	8	2C08h		
A/D	A/D conversion	9	2C09h		
UART0	UART0 reception	10	2C0Ah		
	UART0 transmission	11	2C0Bh		
(Reserved)	—	12	2C0Ch		
	—	13	2C0Dh		
UART2	UART2 reception	14	2C0Eh		
	UART2 transmission	15	2C0Fh		
Voltage detection circuit	Voltage monitor 2	18	2C12h		
	Voltage monitor 1	19	2C13h		
Sensor control unit	Data transfer request	20	2C14h		
Timer RC	Input-capture/compare-match A	22	2C16h		
	Input-capture/compare-match B	23	2C17h		
	Input-capture/compare-match C	24	2C18h		
	Input-capture/compare-match D	25	2C19h		
(Reserved)	—	26	2C1Ah		
	—	27	2C1Bh		
	—	28	2C1Ch		
	—	29	2C1Dh		
	—	30	2C1Eh		
	—	31	2C1Fh		
	—	32	2C20h		
	—	33	2C21h	1	
Timer RA	Timer RA	49	2C31h	1	
Timer RB	Timer RB	51	2C33h	1 🕇	
Flash memory	Flash ready status	52	2C34h	Low	

Table 15.5 DTC Activation Sources and DTC Vector Addresses

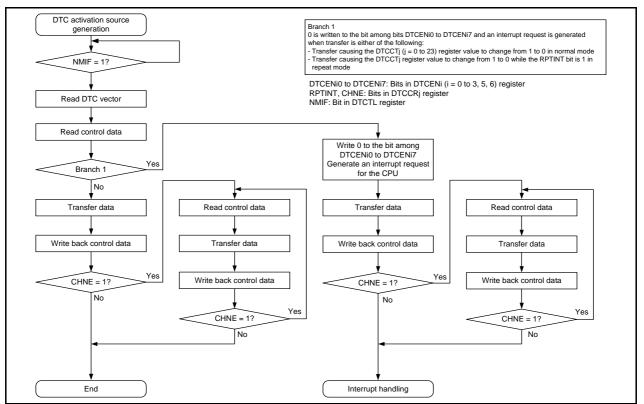


Figure 15.3 DTC Internal Operation Flowchart When DTC Activation Source is not Timer RC or Flash Memory Interrupt Source

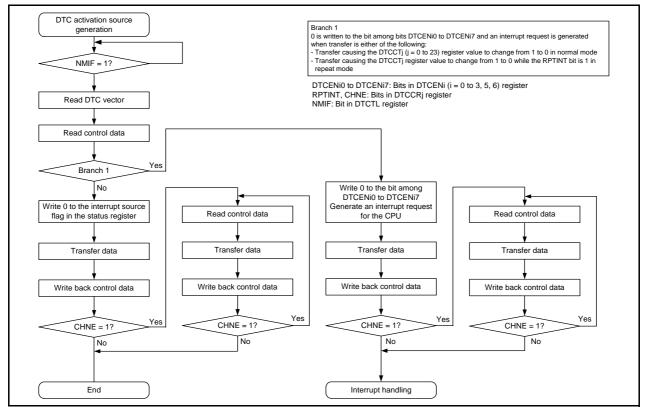


Figure 15.4 DTC Internal Operation Flowchart When DTC Activation Source is Timer RC Interrupt Source

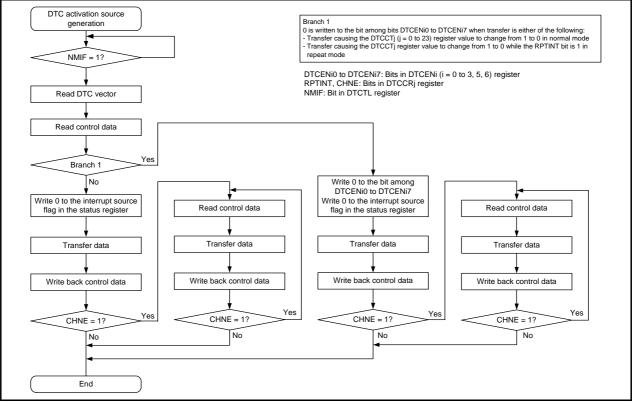


Figure 15.5 DTC Internal Operation Flowchart When DTC Activation Source is Flash ready status

15.3.4 Normal Mode

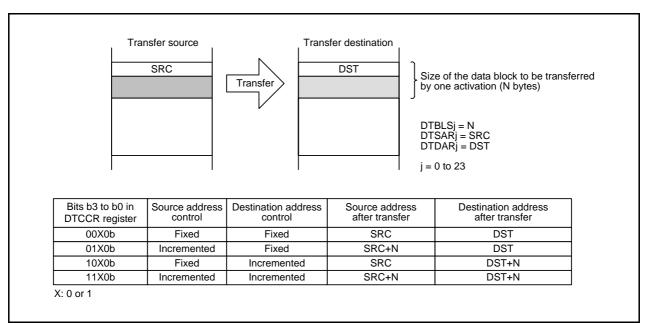

One to 256 bytes of data are transferred by one activation. The number of transfer times can be 1 to 256. When the data transfer causing the DTCCTj (j = 0 to 23) register value to change to 0 is performed, an interrupt request for the CPU is generated during DTC operation.

Table 15.6 lists Register Functions in Normal Mode. Figure 15.6 shows Data Transfers in Normal Mode.

Table 15.6	Register Functions in Normal Mode
------------	-----------------------------------

Register	Symbol	Function
DTC block size register j	DTBLSj	Size of the data block to be transferred by one activation
DTC transfer count register j	DTCCTj	Number of times of data transfers
DTC transfer count reload register j	DTRLDj	Not used
DTC source address register j	DTSARj	Data transfer source address
DTC destination address register j	DTDARj	Data transfer destination address

j = 0 to 23

15.3.5 Repeat Mode

One to 255 bytes of data are transferred by one activation. Either of the transfer source or destination should be specified as the repeat area. The number of transfer times can be 1 to 255. On completion of the specified number of transfer times, the DTCCTj (i = 0 to 23) register and the address specified for the repeat area are initialized to continue transfers. When the data transfer causing the DTCCTj register value to change to 0 is performed while the RPTINT bit in the DTCCRj register is 1 (interrupt generation enabled), an interrupt request for the CPU is generated during DTC operation.

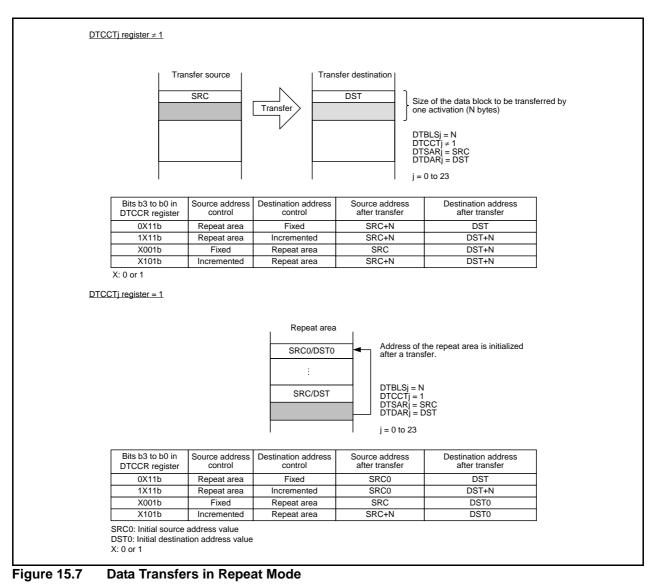

The lower 8 bits of the initial value for the repeat area address must be 00h. The size of data to be transferred must be set to 255 bytes or less before the specified number of transfer times is completed.

Table 15.7 lists Register Functions in Repeat Mode. Figure 15.7 shows Data Transfers in Repeat Mode.

Register	Symbol	Function
DTC block size register j	DTBLSj	Size of the data block to be transferred by one activation
DTC transfer count register j	DTCCTj	Number of times of data transfers
DTC transfer count reload register j	DTRLDj	This register value is reloaded to the DTCCT register. (Data transfer count is initialized.)
DTC source address register j	DTSARj	Data transfer source address
DTC destination address register j	DTDARj	Data transfer destination address

Table 15.7	Register Functions in Repeat Mode
------------	-----------------------------------

j = 0 to 23

15.3.6 Chain Transfers

When the CHNE bit in the DTCCRj (j = 0 to 22) register is 1 (chain transfers enabled), multiple data transfers can be continuously performed by one activation source. Figure 15.8 shows a Flow of Chain Transfers.

When the DTC is activated, one control data is selected according to the data read from the DTC vector address corresponding to the activation source, and the selected control data is read from the DTC control data area. When the CHNE bit for the control data is 1 (chain transfers enabled), the next control data immediately following the current control data is read and transferred after the current transfer is completed. This operation is repeated until the data transfer with the control data for which the CHNE bit is 0 (chain transfers disabled) is completed.

Set the CHNE bit in the DTCCR23 register to 0 (chain transfers disabled).

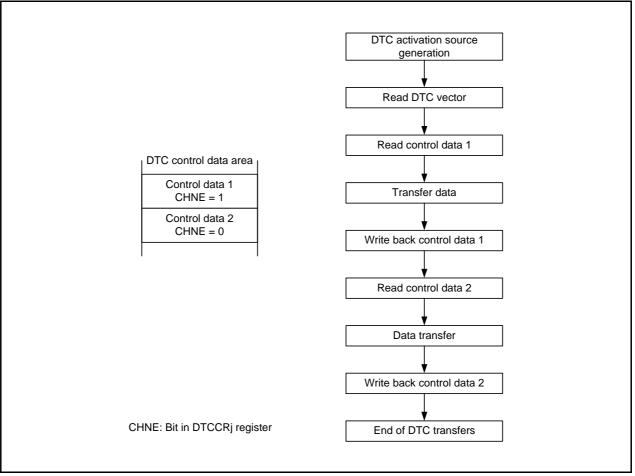


Figure 15.8 Flow of Chain Transfers

15.3.7 Interrupt Sources

When the data transfer causing the DTCCTj (j = 0 to 23) register value to change to 0 is performed in normal mode, and when the data transfer causing the DTCCTj register value to change to 0 is performed while the RPTINT bit in the DTCCRj register is 1 (interrupt generation enabled) in repeat mode, the interrupt request corresponding to the activation source is generated for the CPU during DTC operation. However, no interrupt request is generated for the CPU when the activation source is flash ready status.

Interrupt requests for the CPU are affected by the I flag or interrupt control register. In chain transfers, whether the interrupt request is generated or not is determined either by the number of transfer times specified for the first type of the transfer or the RPTINT bit. When an interrupt request is generated for the CPU, the bit among bits DTCENi0 to DTCENi7 in the DTCENi (i = 0 to 3, 5, 6) registers corresponding to the activation source are set to 0 (activation disabled).

15.3.8 Operation Timings

The DTC requires five clock cycles to read control data allocated in the DTC control data area. The number of clock cycles required to write back control data differs depending on the control data settings.

Figure 15.9 shows an Example of DTC Operation Timings and Figure 15.10 shows an Example of DTC Operation Timings in Chain Transfers. Table 15.8 lists the Specifications of Control Data Write-Back Operation.

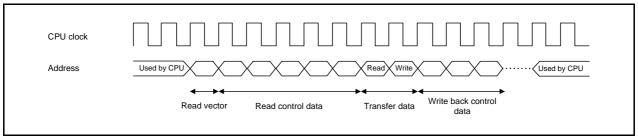


Figure 15.9 Example of DTC Operation Timings

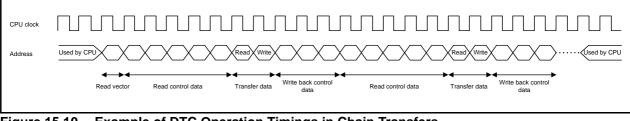


Figure 15.10 Example of DTC Operation Timings in Chain Transfers

	-				-			
Bits b3 to b0 in	Operating	Address	S Control	C	Number of			
DTCCR Register	Mode	Source	Destination	DTCCTj Register	DTRLDj Register	DTSARj Register	DTDARj Register	Clock Cycles
00X0b	Fixed		Fixed	Written back	Written back	Not written back	Not written back	1
01X0b	Normal mode	Incremented	Fixed	Written back	Written back	Written back	Not written back	2
10X0b	mode	Fixed	Incremented	Written back	Written back	Not written back	Written back	2
11X0b		Incremented	Incremented	Written back	Written back	Written back	Written back	3
0X11b		Repeat area	Fixed	Written back	Written back	Written back	Not written back	2
1X11b	Repeat		Incremented	Written back	Written back	Written back	Written back	3
X001b	mode	Fixed	Repeat area	Written back	Written back	Not written back	Written back	2
X101b		Incremented		Written back	Written back	Written back	Written back	3

 Table 15.8
 Specifications of Control Data Write-Back Operation

j = 0 to 23

X: 0 or 1

15.3.9 Number of DTC Execution Cycles

Table 15.9 lists the Operations Following DTC Activation and Required Number of Cycles for each operation. Table 15.10 lists the Number of Clock Cycles Required for Data Transfers.

Table 15.9	Operations Following DTC Act	tivation and Required Number of Cycles
------------	------------------------------	--

Vector Read	Contro	ol Data	Data Read	Data Write	Internal Operation	
	Read	Write-back	Dala Reau	Data White		
1	5	(Note 2)	(Note 1)	(Note 1)	1	

Notes:

- 1. For the number of clock cycles required for data read/write, refer to Table 15.10 Number of Clock Cycles Required for Data Transfers.
- 2. For the number of clock cycles required for control data write-back, refer to **Table 15.8 Specifications of Control Data Write-Back Operation**.

Data is transferred as described below, when the DTBLSj (j = 0 to 23) register = N,

- (1) When N = 2n (even), two-byte transfers are performed n times.
- (2) When N = 2n + 1 (odd), two-byte transfers are performed n times followed by one time of one-byte transfer.

Table 15.10 Number of Clock Cycles Required for Data Transfers

Operation	Unit of Transfers	(ransfers)		SFR (Word Access)		SFR (Byte	SFR (DTC control data area)			
	TIANSIEIS	Even Address	Odd Address	(Program ROM)	(Data flash)	Even Address	Odd Address	Access)	Even Address	Odd Address
Data read	1-byte SK1		1	1	2	2	2	2		1
Data read	2-byte SK2	1	2	2	4	2	4	4	1	2
Data write	1-byte SL1		1	—	—	2	2	2		1
Data white	2-byte SL2	1	2	—	_	2	4	4	1	2

From Tables 15.9 and 15.10, the total number of required execution cycles can be obtained by the following formula:

Number of required execution cycles = $1 + \Sigma$ [formula A] + 2

 Σ : Sum of the cycles for the number of transfer times performed by one activation source ([the number of transfer times for which CHNE is set to 1] + 1)

- (1) For N = 2n (even)
- Formula $A = J + n \bullet SK2 + n \bullet SL2$
- (2) For N = 2n + 1 (odd)

Formula
$$A = J + n \bullet SK2 + 1 \bullet SK1 + n \bullet SL2 + 1 \bullet SL1$$

J: Number of cycles required to read control data (5 cycles) + number of cycles required to write back control data

To read data from or write data to the register that to be accessed in 16-bit units, set an even value of 2 or greater to the DTBLSj (j = 0 to 23) register.

The DTC performs accesses in 16-bit units.

15.3.10 DTC Activation Source Acknowledgement and Interrupt Source Flags

15.3.10.1 Interrupt Sources Except for Flash Memory and Timer RC

When the DTC activation source is an interrupt source except for the flash memory or timer RC, the same DTC activation source cannot be acknowledged for 8 to 12 cycles of the CPU clock after the interrupt source is generated. If an interrupt source is generated when a software command is executed, the same DTC activation source cannot be acknowledged for 9 to 16 cycles of the CPU clock. If a DTC activation source is generated during DTC operation and acknowledged, the same DTC activation source cannot be acknowledged for 8 to 12 cycles of the CPU clock. If a DTC activation source is generated during DTC operation and acknowledged, the same DTC activation source cannot be acknowledged for 8 to 12 cycles of the CPU clock on completion of the DTC transfer immediately before the DTC is activated by the source. When a software command is executed on completion of the DTC transfer immediately before the DTC is activated, the same DTC activation source cannot be acknowledged for 16 cycles of the CPU clock.

15.3.10.2 Flash Memory

When the DTC activation source is flash ready status, even if a flash ready status interrupt request is generated, it is not acknowledged as the DTC activation source after the RDYSTI bit in the FST register is set to 1 (flash ready status interrupt request) and before the DTC sets the RDYSTI bit to 0 (no flash ready status interrupt request). If a flash ready status interrupt request is generated after the DTC sets the RDYSTI bit to 0, the DTC acknowledges it as the activation source. 8 to 12 cycles of the CPU clock are required after the RDYSTI bit is set to 1 and before the DTC sets the interrupt request flag to 0. If a flash ready status interrupt is generated when a software command is executed, 9 to 16 cycles of the CPU clock are required before the DTC sets the interrupt request is generated during DTC operation and acknowledged as the DTC activation source, the RDYSTI bit is set to 0 after 8 to 12 cycles of the CPU clock on completion of the DTC transfer immediately before the DTC is activated by the source. When a software command is executed on completion of the DTC transfer immediately before the DTC is activated, the RDYSTI bit is set to 0 after 16 cycles of the CPU clock.

15.3.10.3 Timer RC

When the DTC activation source is an interrupt source for timer RC, even if an input capture/compare match occurs, it is not acknowledged as the DTC activation source after the interrupt source flag is set to 1 and before the DTC sets the flag to 0. If an input capture/compare match occurs after the DTC sets the interrupt source flag to 0, the DTC acknowledges it as the activation source. 8 to 12 cycles of the CPU clock plus 0.5 to 1.5 cycles of the timer operating clock are required after the interrupt source flag is set to 1 and before the DTC sets the flag to 0. If the interrupt request flag is set to 1 when a software command is executed, 9 to 16 cycles of the CPU clock plus 0.5 to 1.5 cycles of the timer operating clock are required after the interrupt source flag to 0. If individual DTC activation sources are generated for timer RC during DTC operation and acknowledged, the interrupt source flag is set to 0 after 8 to 12 cycles of the CPU clock plus 0.5 to 1.5 cycles of the timer operating clock on completion of the DTC transfer immediately before the DTC is activated by the source. When a software command is executed on completion of the DTC transfer immediately before the DTC is activated by the timer operating clock.

15.4 Notes on DTC

15.4.1 DTC activation source

- Do not generate any DTC activation sources before entering wait mode or during wait mode.
- Do not generate any DTC activation sources before entering stop mode or during stop mode.

15.4.2 DTCENi (i = 0 to 3, 5, 6) Registers

- Modify bits DTCENi0 to DTCENi7 only while an interrupt request corresponding to the bit is not generated.
- When the interrupt source flag in the status register for the peripheral function is 1, do not modify the corresponding activation source bit among bits DTCENi0 to DTCENi7.
- Do not access the DTCENi registers using DTC transfers.

15.4.3 Peripheral Modules

Do not set the status register bit for the peripheral function to 0 using a DTC transfer.

15.4.4 Interrupt Request

No interrupt is generated for the CPU during DTC operation in any of the following cases:

- When the DTC activation source is flash ready status
- When performing the data transfer causing the DTCCTj (j = 0 to 23) register value to change to 0 in normal mode
- When performing the data transfer causing the DTCCRj register value to change to 0 while the RPTINT bit in the DTCCRj register is 1 (interrupt generation enabled) in repeat mode

16. General Overview of Timers

The MCU has two 8-bit timers with 8-bit prescalers and a 16-bit timer. The two 8-bit timers with 8-bit prescalers are timer RA and timer RB. These timers contain a reload register to store the default value of the counter. The 16-bit timers are timer RC, and have input capture and output compare functions. All the timers operate independently. Table 16.1 lists Functional Comparison of Timers.

	Item	Timer RA	Timer RB	Timer RC		
Configura	tion	8-bit timer with 8-bit prescaler (with reload register)	8-bit timer with 8-bit prescaler (with reload register)	16-bit timer (with input capture and output compare)		
Count		Decrement	Decrement	Increment		
Count sources		• f1 • f2 • f8 • fOCO	 f1 f2 f8 Timer RA underflow 	• f1 • f2 • f4 • f8 • f32 • fOCO40M • fOCO-F • TRCCLK		
Function	Count of the internal count source	Timer mode	Timer mode	Timer mode (output compare function)		
	Count of the external count source	Event counter mode	—	Timer mode (output compare function)		
	External pulse width/period measurement	Pulse width measurement mode, pulse period measurement mode	—	Timer mode (input capture function; 4 pins)		
	PWM output	Pulse output mode ⁽¹⁾ , Event counter mode ⁽¹⁾	Programmable waveform generation mode	Timer mode (output compare function; 4 pins) ⁽¹⁾ , PWM mode (3 pins), PWM2 mode (1 pin)		
	One-shot waveform output	—	Programmable one-shot generation mode, Programmable wait one- shot generation mode	PWM mode (3 pins)		
	Three-phase waveforms output	—	—	—		
	Timer	—	—	—		
Input pin Output pin Related interrupt		TRAIO	ĪNTO	INTO, TRCCLK, TRCTRG, TRCIOA, TRCIOB, TRCIOC, TRCIOD		
		TRAO TRAIO	TRBO	TRCIOA, TRCIOB, TRCIOC, TRCIOD		
		Timer RA interrupt	Timer RB interrupt, INT0 interrupt	Compare match/input capture A to D interrupt, Overflow interrupt, INT0 interrupt		
Timer stop)	Provided	Provided	Provided		

Note:

1. Rectangular waves are output in these modes. Since the waves are inverted at each overflow, the "H" and "L" level widths of the pulses are the same.

17. Timer RA

Timer RA is an 8-bit timer with an 8-bit prescaler.

17.1 Overview

The prescaler and timer each consist of a reload register and counter. The reload register and counter are allocated at the same address, and can be accessed when accessing registers TRAPRE and TRA (refer to **Tables 17.2 to 17.6 the Specification of Each Modes**).

The count source for timer RA is the operating clock that regulates the timing of timer operations such as counting and reloading.

Figure 17.1 shows a Timer RA Block Diagram. Table 17.1 lists Pin Configuration of Timer RA.

Timer RA contains the following five operating modes:

• Timer mode:

The timer counts the internal count source.

- Pulse output mode:
- The timer counts the internal count source and outputs pulses which invert

the polarity by underflow of the timer.

- Event counter mode:
- The timer counts external pulses.
- Pulse width measurement mode: The
 Pulse period measurement mode: The
 - e: The timer measures the pulse width of an external pulse.de: The timer measures the pulse period of an external pulse.

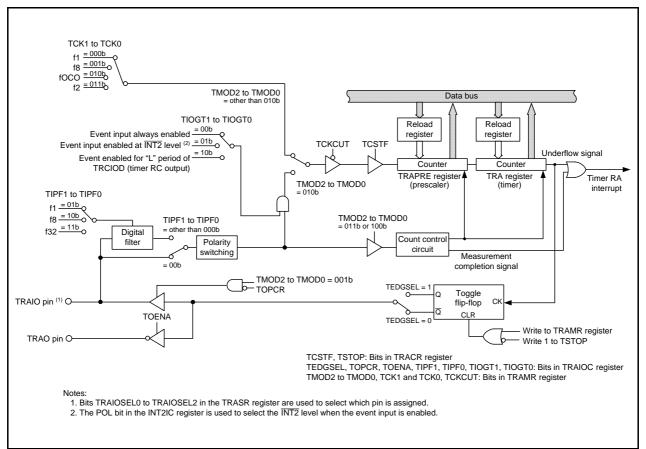


Figure 17.1 Timer RA Block Diagram

Table 17.1	Pin Configuration of Timer RA
------------	-------------------------------

Pin Name	Assigned Pin	I/O	Function
TRAIO	P1_5, P1_7 or P3_5	I/O	Function differs according to the mode. Refer to descriptions of individual modes
TRAO	P3_7	Output	for details.

17.2 Registers

17.2.1 Timer RA Control Register (TRACR)

Address	0100h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol		—	TUNDF	TEDGF		TSTOP	TCSTF	TSTART
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	TSTART	Timer RA count start bit ⁽¹⁾	0: Count stops	R/W
			1: Count starts	
b1	TCSTF	Timer RA count status flag ⁽¹⁾	0: Count stops	R
		-	1: During count	
b2	TSTOP	Timer RA count forcible stop bit ⁽²⁾	When this bit is set to 1, the count is forcibly stopped.	R/W
			When read, its content is 0.	
b3	—	Nothing is assigned. If necessary, s	et to 0. When read, the content is 0.	—
b4	TEDGF	Active edge judgment flag (3, 4)	0: Active edge not received	R/W
			1: Active edge received (end of measurement period)	
b5	TUNDF	Timer RA underflow flag (3, 4)	0: No underflow	R/W
			1: Underflow	
b6	—	Nothing is assigned. If necessary, s	et to 0. When read, the content is 0.	—
b7	—	1		

Notes:

- 1. Refer to **17.8 Notes on Timer RA** for precautions regarding bits TSTART and TCSTF.
- 2. When the TSTOP bit is set to 1, bits TSTART and TCSTF and registers TRAPRE and TRA are set to the values after a reset.
- 3. Bits TEDGF and TUNDF can be set to 0 by writing 0 to these bits by a program. However, their value remains unchanged when 1 is written.
- 4. Set to 0 in timer mode, pulse output mode, and event counter mode.

In pulse width measurement mode and pulse period measurement mode, use the MOV instruction to set the TRACR register. If it is necessary to avoid changing the values of bits TEDGF and TUNDF, write 1 to them.

17.2.2 Timer RA I/O Control Register (TRAIOC)

Address	Address 0101h											
Bit b7 b6 b5 b4 b3 b2 b1 b0												
Symbol	TIOGT1	TIOGT0	TIPF1	TIPF0	TIOSEL	TOENA	TOPCR	TEDGSEL				
After Reset	0	0	0	0	0	0	0	0				

Bit	Symbol	Bit Name	Function	R/W
b0	TEDGSEL	TRAIO polarity switch bit	Function varies according to the operating mode.	R/W
b1	TOPCR	TRAIO output control bit		R/W
b2	TOENA	TRAO output enable bit		R/W
b3	TIOSEL	Hardware LIN function select bit		R/W
b4	TIPF0	TRAIO input filter select bit		R/W
b5	TIPF1			R/W
b6	TIOGT0	TRAIO event input control bit]	R/W
b7	TIOGT1			R/W



17.2.3 Timer RA Mode Register (TRAMR)

Ado	dress 010	2h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	Symbol TCKCUT – TCK1 TCK0					—	TMOD2	TMOD1	TMOD0	
After F	After Reset 0 0 0 0					0	0	0	0	
Bit	Symbol	1		Bit Name				Function		R/W
	-	Time or				b2 b1 b0		T UNCTION		-
b0	TMOD0	Timer	RA opera	ting mode	Select Dit		Timer mode			R/W
b1	TMOD1					0 0 1: F	Pulse outpu	t mode		R/W
b2	TMOD2						Event count			R/W
						0 1 1: F	Pulse width	measurem	ent mode	
						1 0 0: F				
						101:0				
						110:0	Do not set.			
						111:0	Do not set.			
b3	_	Nothir	ng is assig	ned. If nec	essary, set	to 0. Whe	n read, the	content is	0.	—
b4	TCK0	Timer	RA count	source sel	lect bit	b5 b4				R/W
b5	TCK1					0 0: f1				R/W
						0 1: f8				
						1 0: fO				
		_				1 1: f2				
b6			ved bit			Set to 0				R/W
b7	TCKCUT	Timer	RA count	source cut	toff bit		des count s			R/W
						1: Cuts	off count so	ource		

When both the TSTART and TCSTF bits in the TRACR register are set to 0 (count stops), rewrite this register.

17.2.4 Timer RA Prescaler Register (TRAPRE)

Bit	Mode	Function	Setting Range	R/W
b7 to b0	Timer mode	Counts an internal count source	00h to FFh	R/W
	Pulse output mode		00h to FFh	R/W
	Event counter mode	Counts an external count source	00h to FFh	R/W
	Pulse width measurement mode	Measure pulse width of input pulses from external (counts internal count source)	00h to FFh	R/W
	Pulse period measurement mode	Measure pulse period of input pulses from external (counts internal count source)	00h to FFh	R/W

Note:

1. When the TSTOP bit in the TRACR register is set to 1, the TRAPRE register is set to FFh.

17.2.5 Timer RA Register (TRA)

Addres	s 0104h									
В	it b7	b6	b5	b4	b3	b2	b1	b0		
Symbo	ol — I	_	—	_	—	—		—		
After Rese	et 1	1	1	1	1	1	1	1	(Note 1)	
			i					0		5.44
Bit	Mode				Function			Settin	ig Range	R/W
b7 to b0 All	modes		Counts on ι	underflow	of TRAPRE	register		00h to F	Fh ⁽²⁾	R/W

Notes:

1. When the TSTOP bit in the TRACR register is set to 1, the TRAPRE register is set to FFh.

2. Do not set 00h to the TRA register in pulse width measurement mode and pulse period measurement mode.

17.2.6 Timer RA Pin Select Register (TRASR)

Ade	dress (0180h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	—		—	—	—	TRAIOSEL	2 TRAIOSEL1	TRAIOSEL0	
After F	Reset	0	0	0	0	0	0	0	0	
Dit	0			Dit Marra				E		DAA
Bit	Syn	nbol		Bit Name				Function		R/W
b0	TRAIC	OSEL0	TRAIO pin se	elect bit		b2 b1 b): TRAIO pin	naturad		R/W
b1	TRAIC	OSEL1					: P1_7 assig			R/W
b2	TRAIC	OSEL2): P1_5 assig			R/W
							: Do not set.			
): Do not set.			
						101	: P3_5 assig	Ined		
						Other	than above	Do not set.		
b3	-	_	Reserved bit	S		Set to	o 0.			R/W
b4	-	_								
b5	-	_	Nothing is as	ssigned. If r	ecessary,	set to 0. W	/hen read, th	e content is 0.		—
b6	-	_								
b7	-	_								

The TRASR register selects which pin is assigned to the timer RA I/O. To use the I/O pin for timer RA, set this register.

Set the TRASR register before setting the timer RA associated registers. Also, do not change the setting value in this register during timer RA operation.

17.3 Timer Mode

In this mode, the timer counts an internally generated count source (refer to **Table 17.2 Timer Mode Specifications**).

Item	Specification
Count sources	f1, f2, f8, fOCO
Count operations	 Decrement When the timer underflows, the contents of the reload register are reloaded and the count is continued.
Divide ratio	1/(n+1)(m+1) n: Value set in TRAPRE register, m: Value set in TRA register
Count start condition	1 (count starts) is written to the TSTART bit in the TRACR register.
Count stop conditions	 0 (count stops) is written to the TSTART bit in the TRACR register. 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.
Interrupt request generation timing	When timer RA underflows [timer RA interrupt].
TRAIO pin function	Programmable I/O port
TRAO pin function	Programmable I/O port
Read from timer	The count value can be read by reading registers TRA and TRAPRE.
Write to timer	 When registers TRAPRE and TRA are written while the count is stopped, values are written to both the reload register and counter. When registers TRAPRE and TRA are written during the count, values are written to the reload register and counter (refer to 17.3.2 Timer Write Control during Count Operation).

 Table 17.2
 Timer Mode Specifications

17.3.1 Timer RA I/O Control Register (TRAIOC) in Timer Mode

Address 0101h									
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	TIOGT1	TIOGT0	TIPF1	TIPF0	TIOSEL	TOENA	TOPCR	TEDGSEL	
After Reset	0	0	0	0	0	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	TEDGSEL	TRAIO polarity switch bit	Set to 0 in timer mode.	R/W
b1		TRAIO output control bit		R/W
b2		TRAO output enable bit		R/W
b3	TIOSEL	Hardware LIN function select bit	Set to 0. However, set to 1 when the hardware LIN	R/W
			function is used.	
b4	TIPF0	TRAIO input filter select bit	Set to 0 in timer mode.	R/W
b5	TIPF1			R/W
b6	TIOGT0	TRAIO event input control bit		R/W
b7	TIOGT1			R/W

17.3.2 Timer Write Control during Count Operation

Timer RA has a prescaler and a timer (which counts the prescaler underflows). The prescaler and timer each consist of a reload register and a counter. When writing to the prescaler or timer, values are written to both the reload register and counter.

However, values are transferred from the reload register to the counter of the prescaler in synchronization with the count source. In addition, values are transferred from the reload register to the counter of the timer in synchronization with prescaler underflows. Therefore, if the prescaler or timer is written to when count operation is in progress, the counter value is not updated immediately after the WRITE instruction is executed. Figure 17.2 shows an Operating Example of Timer RA when Counter Value is Rewritten during Count Operation.

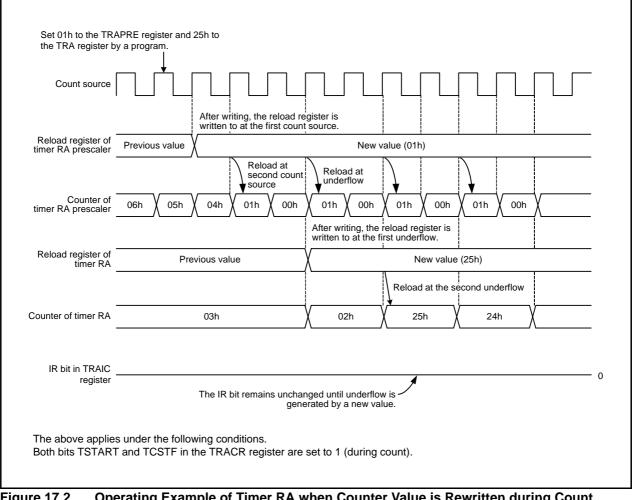


Figure 17.2 Operating Example of Timer RA when Counter Value is Rewritten during Count Operation

17.4 Pulse Output Mode

In pulse output mode, the internally generated count source is counted, and a pulse with inverted polarity is output from the TRAIO pin each time the timer underflows (refer to **Table 17.3 Pulse Output Mode Specifications**).

Item	Specification
Count sources	f1, f2, f8, fOCO
Count operations	• Decrement
	 When the timer underflows, the contents in the reload register is reloaded and the count is continued.
Divide ratio	1/(n+1)(m+1)
	n: Value set in TRAPRE register, m: Value set in TRA register
Count start condition	1 (count starts) is written to the TSTART bit in the TRACR register.
Count stop conditions	 0 (count stops) is written to the TSTART bit in the TRACR register.
	 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.
Interrupt request	When timer RA underflows [timer RA interrupt].
generation timing	
TRAIO pin function	Pulse output, programmable output port
TRAO pin function	Programmable I/O port or inverted output of TRAIO
Read from timer	The count value can be read by reading registers TRA and TRAPRE.
Write to timer	• When registers TRAPRE and TRA are written while the count is stopped, values
	are written to both the reload register and counter.
	 When registers TRAPRE and TRA are written during the count, values are
	written to the reload register and counter (refer to 17.3.2 Timer Write Control
	during Count Operation).
Selectable functions	• TRAIO signal polarity switch function
	The level when the pulse output starts is selected by the TEDGSEL bit in the
	TRAIOC register. ⁽¹⁾
	 TRAO output function Pulses inverted from the TRAIO output polarity can be output from the TRAO
	pin (selectable by the TOENA bit in the TRAIOC register).
	• Pulse output stop function
	Output from the TRAIO pin is stopped by the TOPCR bit in the TRAIOC register.
	• TRAIO pin select function
	P1_5, P1_7, or P3_5 is selected by bits TRAIOSEL0 to TRAIOSEL2 in the
	TRASR register.
Noto	

Table 17.3	Pulse Outpu	ut Mode S	pecifications

Note:

1. The level of the output pulse becomes the level when the pulse output starts when the TRAMR register is written to.

17.4.1 Timer RA I/O Control Register (TRAIOC) in Pulse Output Mode

Ade	dress	0101h	l								
	Bit	b7	,	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	TIOC	ST1	TIOGT0	TIPF1	TIPF0	TIOSEL	TOENA	TOPCR	TEDGSEL	
After F	Reset	0		0	0	0	0	0	0	0	
Bit	Svr	nbol		B	it Name		1		Function		R/W
	,										-
b0	TED	JOEL	IRP	AIO polarity	Switch Dit		0: TRAIO 1: TRAIO	R/W			
b1	TOF	PCR	TRA	AIO output	control bit		0: TRAIO output				R/W
							1: TRAIO				
b2	TO	ENA	TRA	AO output e	enable bit		0: TRAO	R/W			
							1: TRAO	output (inv	erted TRA	IO output from the	e
							port)				
b3	TIO	SEL	Har	dware LIN	function se	elect bit	Set to 0.	R/W			
b4	TIF	PF0	TRAIO input filter select bit				Set to 0 in pulse output mode.				
b5	TIF	PF1								R/W	
b6	TIO	GT0	TRA	IO event i	nput contro	ol bit					R/W
b7	TIO	GT1									R/W

17.5 Event Counter Mode

In event counter mode, external signal inputs to the TRAIO pin are counted (refer to **Table 17.4 Event Counter Mode Specifications**).

Item	Specification
Count source	External signal which is input to TRAIO pin (active edge selectable by a program)
Count operations	 Decrement When the timer underflows, the contents of the reload register are reloaded and the count is continued.
Divide ratio	1/(n+1)(m+1) n: setting value of TRAPRE register, m: setting value of TRA register
Count start condition	1 (count starts) is written to the TSTART bit in the TRACR register.
Count stop conditions	 0 (count stops) is written to the TSTART bit in the TRACR register. 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.
Interrupt request generation timing	When timer RA underflows [timer RA interrupt].
TRAIO pin function	Count source input
TRAO pin function	Programmable I/O port or pulse output ⁽¹⁾
Read from timer	The count value can be read by reading registers TRA and TRAPRE.
Write to timer	 When registers TRAPRE and TRA are written while the count is stopped, values are written to both the reload register and counter. When registers TRAPRE and TRA are written during the count, values are written to the reload register and counter (refer to 17.3.2 Timer Write Control during Count Operation).
Selectable functions	 TRAIO input polarity switch function The active edge of the count source is selected by the TEDGSEL bit in the TRAIOC register. Count source input pin select function P1_5, P1_7, or P3_5 is selected by bits TRAIOSEL0 to TRAIOSEL2 in the TRASR register. Pulse output function Pulses of inverted polarity can be output from the TRAO pin each time the timer underflows (selectable by the TOENA bit in the TRAIOC register). ⁽¹⁾ Digital filter function Whether enabling or disabling the digital filter and the sampling frequency is selected by bits TIPF0 and TIPF1 in the TRAIOC register. Event input control function The enabled period for the event input to the TRAIO pin is selected by bits TIOGT0 and TIOGT1 in the TRAIOC register.

 Table 17.4
 Event Counter Mode Specifications

Note:

1. The level of the output pulse becomes the level when the pulse output starts when the TRAMR register is written to.

17.5.1 Timer RA I/O Control Register (TRAIOC) in Event Counter Mode

Address	Address 0101h									
Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Symbol	TIOGT1	TIOGT0	TIPF1	TIPF0	TIOSEL	TOENA	TOPCR	TEDGSEL		
After Reset	0	0	0	0	0	0	0	0		

Bit	Symbol	Bit Name	Function	R/W
b0	TEDGSEL	TRAIO polarity switch bit	 0: Starts counting at rising edge of the TRAIO input and TRAO starts output at "L" 1: Starts counting at falling edge of the TRAIO input and TRAO starts output at "H" 	R/W
b1	TOPCR	TRAIO output control bit	Set to 0 in event counter mode.	R/W
b2	TOENA	TRAO output enable bit	0: TRAO output disabled 1: TRAO output	R/W
b3	TIOSEL	Hardware LIN function select bit	Set to 0.	R/W
b4	TIPF0	TRAIO input filter select bit ⁽¹⁾	b5 b4 0 0: No filter	R/W
b5	TIPF1		0 1: Filter with f1 sampling 1 0: Filter with f8 sampling 1 1: Filter with f32 sampling	R/W
b6	TIOGT0	TRAIO event input control bit	0 0: Event input always enabled	R/W
b7	TIOGT1		 0 0. Event input always enabled 0 1: Event input enabled at INT2 level ⁽²⁾ 1 0: Event input enabled for "L" period of TRCIOD (timer RC output) 1 1: Do not set. 	R/W

Notes:

1. When the same value from the TRAIO pin is sampled three times continuously, the input is determined.

2. Make the following settings to use event input enabled at INT2 level:

• Set the INT2EN bit in the INTEN register to 1 (INT2 input enabled) and the INT2PL bit to 0 (one edge).

• Set the INT2 polarity by the POL bit in the INT2IC register. When the POL bit is set 0 (falling edge selected), the event input for the INT2 high-level period is enabled. When the POL bit is set 1 (rising edge selected), the event input for the INT2 low-level period is enabled.

• Set the PD3_2 bit in the PD3 register for the port assigned as the INT2 pin to 0 (input mode).

• Select the INT2 digital filter by bits INT2F1 to INT2F0 in the INTF register.

The IR bit in the INT2IC register is set to 1 (interrupt request) in accordance with the setting of the POL bit in the INT2IC register and the INT2PL bit in the INTEN register and a change in the INT2 pin input (refer to **11.9 Notes on Interrupts**).

For details on interrupts, refer to 11. Interrupts.

17.6 Pulse Width Measurement Mode

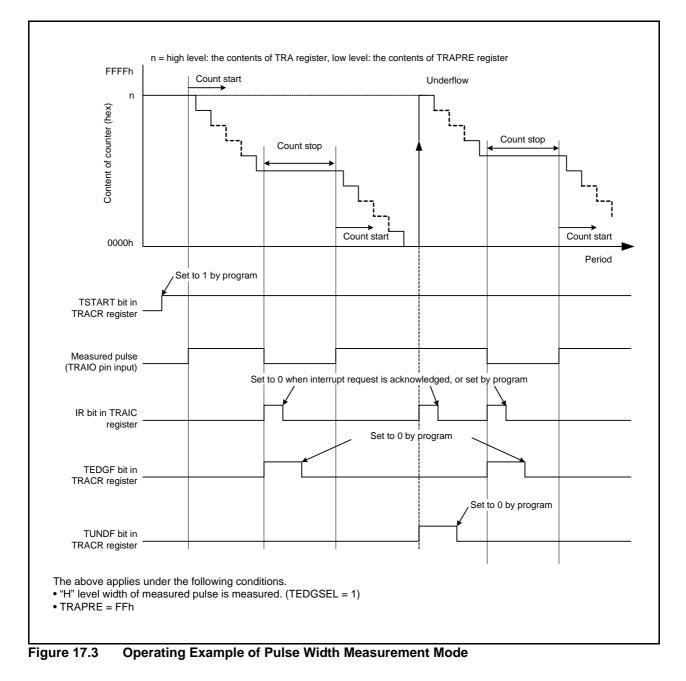
In pulse width measurement mode, the pulse width of an external signal input to the TRAIO pin is measured (refer to **Table 17.5 Pulse Width Measurement Mode Specifications**).

Figure 17.3 shows an Operating Example of Pulse Width Measurement Mode.

Table 17.5	Pulse Width Measurement Mode Specifications
------------	---

Item	Specification
Count sources	f1, f2, f8, fOCO
Count operations	 Decrement Continuously counts the selected signal only when measurement pulse is "H" level, or conversely only "L" level. When the timer underflows, the contents of the reload register are reloaded and the count is continued.
Count start condition	1 (count starts) is written to the TSTART bit in the TRACR register.
Count stop conditions	 0 (count stops) is written to the TSTART bit in the TRACR register. 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.
Interrupt request generation timing	 When timer RA underflows [timer RA interrupt]. Rising or falling of the TRAIO input (end of measurement period) [timer RA interrupt].
TRAIO pin function	Measured pulse input
TRAO pin function	Programmable I/O port
Read from timer	The count value can be read by reading registers TRA and TRAPRE.
Write to timer	 When registers TRAPRE and TRA are written while the count is stopped, values are written to both the reload register and counter. When registers TRAPRE and TRA are written during the count, values are written to the reload register and counter (refer to 17.3.2 Timer Write Control during Count Operation).
Selectable functions	 Measurement level setting The "H" level or "L" level period is selected by the TEDGSEL bit in the TRAIOC register. Measured pulse input pin select function P1_5, P1_7, or P3_5 is selected by bits TRAIOSEL0 to TRAIOSEL2 in the TRASR register. Digital filter function Whether enabling or disabling the digital filter and the sampling frequency is selected by bits TIPF0 and TIPF1 in the TRAIOC register.

17.6.1 Timer RA I/O Control Register (TRAIOC) in Pulse Width Measurement Mode


A	ddress 01	01h										
	Bit	b7	b6	b5	b4	b3	b2	b1	b0			
S	Symbol T	IOGT1	TIOGT0	TIPF1	TIPF0	TIOSEL	TOENA	TOPCR	TEDGSEL			
After	Reset	0	0	0	0	0	0	0	0			
Bit												
	Symbo			Bit Name				Functio		R/W		
b0	TEDGS	EL TR	AIO polarity	switch bit		0: TRA	NO input st	arts at "L"		R/W		
						1: TRA	AIO input st	arts at "H"				
b1	TOPC	R TR	AIO output	control bit		Set to	Set to 0 in pulse width measurement mode.					
b2	TOEN	A TR	AO output e	enable bit			-					
b3	TIOSE	L Hai	rdware LIN	function se	elect bit	Set to	Set to 0. However, set to 1 when the hardware					
						LIN fu	LIN function is used.					
b4	TIPFO) TR	AIO input fil	ter select l	oit ⁽¹⁾	b5 b4						
b5	TIPF1		•				0 0: No filter					
					0 1: Filter with f1 sampling							
							1 0: Filter with f8 sampling					
						1 1: F	ilter with f3	2 sampling	l			
b6	TIOGT	0 TR	AIO event ir	nput contro	ol bit	Set to	0 in pulse v	width meas	surement mode.	R/W		
b7	TIOGT	1								R/W		

Note:

1. When the same value from the TRAIO pin is sampled three times continuously, the input is determined.

17.6.2 Operating Example

17.7 Pulse Period Measurement Mode

In pulse period measurement mode, the pulse period of an external signal input to the TRAIO pin is measured (refer to **Table 17.6 Pulse Period Measurement Mode Specifications**).

Figure 17.4 shows an Operating Example of Pulse Period Measurement Mode.

Table 17.6	Pulse Period Measurement Mode Specifications
------------	--

Item	Specification
Count sources	f1, f2, f8, fOCO
Count operations	 Decrement After the active edge of the measured pulse is input, the contents of the read-out buffer are retained at the first underflow of timer RA prescaler. Then timer RA reloads the contents in the reload register at the second underflow of timer RA prescaler and continues counting.
Count start condition	1 (count starts) is written to the TSTART bit in the TRACR register.
Count stop conditions	 0 (count stops) is written to TSTART bit in the TRACR register. 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.
Interrupt request generation timing	 When timer RA underflows or reloads [timer RA interrupt]. Rising or falling of the TRAIO input (end of measurement period) [timer RA interrupt].
TRAIO pin function	Measured pulse input ⁽¹⁾
TRAO pin function	Programmable I/O port
Read from timer	The count value can be read by reading registers TRA and TRAPRE.
Write to timer	 When registers TRAPRE and TRA are written while the count is stopped, values are written to both the reload register and counter. When registers TRAPRE and TRA are written during the count, values are written to the reload register and counter (refer to 17.3.2 Timer Write Control during Count Operation).
Selectable functions	 Measurement period selection The measurement period of the input pulse is selected by the TEDGSEL in the TRAIOC register. Measured pulse input pin select function P1_5, P1_7, or P3_5 is selected by bits TRAIOSEL0 to TRAIOSEL2 in the TRASR register. Digital filter function Whether enabling or disabling the digital filter and the sampling frequency is selected by bits TIPF0 and TIPF1 in the TRAIOC register.

Note:

1. Input a pulse with a period longer than twice the timer RA prescaler period. Input a pulse with a longer "H" and "L" width than the timer RA prescaler period. If a pulse with a shorter period is input to the TRAIO pin, the input may be ignored.

17.7.1 Timer RA I/O Control Register (TRAIOC) in Pulse Period Measurement Mode

Ade	dress 0'	101h									
	Bit	b7		b6	b5	b4	b3	b2	b1	b0	
Sy	mbol 🗌	fiog	T1 T	IOGT0	TIPF1	TIPF0	—	TOENA	TOPCR	TEDGSEL	
After F	Reset	0		0	0	0	0	0	0	0	
Bit	Symb	ol		В	it Name				Function		R/W
b0	TEDGSEL TRAIO polarity switch bit						edge t 1: Measu	to next risin	g edge irement pu	lse from one rising lse from one falling	R/W
b1	TOPC	CR ⁻	TRAIC	Doutput of	control bit		Set to 0	R/W			
b2	TOEN	IA .	TRAO	output e	nable bit				R/W		
b3			Reserved bit Set to 0.						R/W		
b4	TIPF	0	TRAIC	D input fil	ter select b	oit ⁽¹⁾	0 0: No filter				
b5	TIPF	1					0 1: Filte 1 0: Filte	er with f1 sa er with f8 sa er with f8 sa	ampling		R/W
b6	TIOG	T0 ⁻	TRAIC	D event ir	nput contro	l bit	Set to 0	in pulse pe	riod measu	irement mode.	R/W
b7	TIOG	T1									R/W

Note:

1. When the same value from the TRAIO pin is sampled three times continuously, the input is determined.

17.7.2 Operating Example

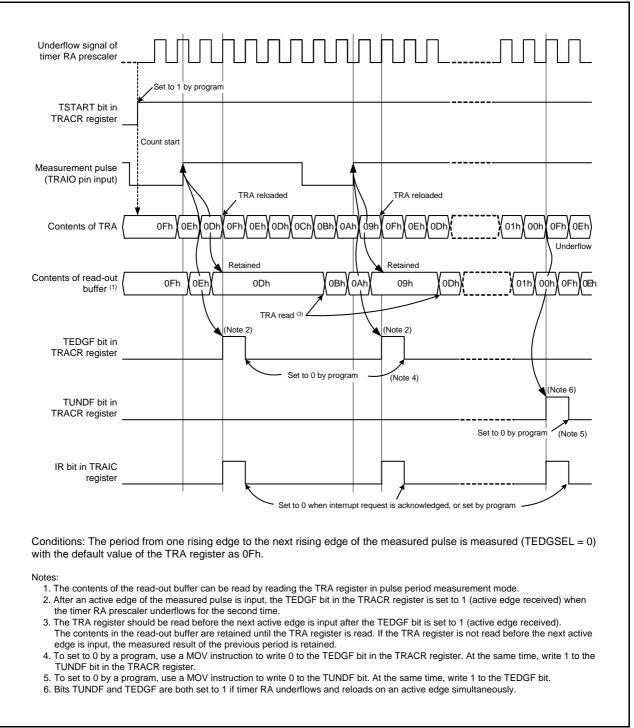


Figure 17.4 Operating Example of Pulse Period Measurement Mode

17.8 Notes on Timer RA

- Timer RA stops counting after a reset. Set the values in the timer RA and timer RA prescalers before the count starts.
- Even if the prescaler and timer RA are read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In pulse width measurement mode and pulse period measurement mode, bits TEDGF and TUNDF in the TRACR register can be set to 0 by writing 0 to these bits by a program. However, these bits remain unchanged if 1 is written. When using the READ-MODIFY-WRITE instruction for the TRACR register, the TEDGF or TUNDF bit may be set to 0 although these bits are set to 1 while the instruction is being executed. In this case, write 1 to the TEDGF or TUNDF bit which is not supposed to be set to 0 with the MOV instruction.
- When changing to pulse period measurement mode from another mode, the contents of bits TEDGF and TUNDF are undefined. Write 0 to bits TEDGF and TUNDF before the count starts.
- The TEDGF bit may be set to 1 by the first timer RA prescaler underflow generated after the count starts.
- When using the pulse period measurement mode, leave two or more periods of the timer RA prescaler immediately after the count starts, then set the TEDGF bit to 0.
- The TCSTF bit retains 0 (count stops) for 0 to 1 cycle of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped.

During this time, do not access registers associated with timer RA ⁽¹⁾ other than the TCSTF bit. Timer RA starts counting at the first valid edge of the count source after the TCSTF bit is set to 1 (during count).

The TCSTF bit remains 1 for 0 to 1 cycle of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. Timer RA counting is stopped when the TCSTF bit is set to 0.

During this time, do not access registers associated with timer RA⁽¹⁾ other than the TCSTF bit.

Note:

1. Registers associated with timer RA: TRACR, TRAIOC, TRAMR, TRAPRE, and TRA.

- When the TRAPRE register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the count source clock for each write interval.
- When the TRA register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the prescaler underflow for each write interval.
- Do not set 00h to the TRA register in pulse width measurement mode and pulse period measurement mode.

18. Timer RB

18. Timer RB

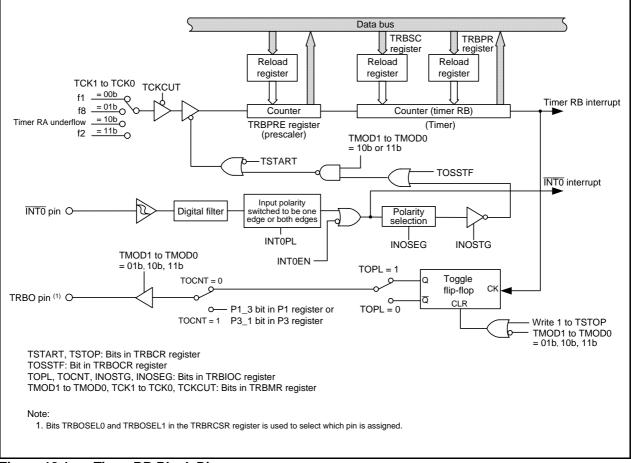
Timer RB is an 8-bit timer with an 8-bit prescaler.

18.1 Overview

The prescaler and timer each consist of a reload register and counter (refer to **Tables 18.2 to 18.5 the Specifications of Each Mode**). Timer RB has timer RB primary and timer RB secondary as reload registers. The count source for timer RB is the operating clock that regulates the timing of timer operations such as counting and reloading.

Figure 18.1 shows a Timer RB Block Diagram. Table 18.1 lists Pin Configuration of Timer RB.

Timer RB has four operation modes listed as follows:


- Timer mode:
- Programmable waveform generation mode:Programmable one-shot generation mode:


The timer counts an internal count source (peripheral function clock or timer RA underflows).

The timer outputs pulses of a given width successively. The timer outputs a one-shot pulse.

• Programmable wait one-shot generation mode:

The timer outputs a delayed one-shot pulse.

Pin Name	Assigned Pin	I/O	Function
TRBO	P1_3, P3_1, or P3_3	Output	Pulse output (programmable waveform generation mode, programmable one-shot generation mode, programmable wait one- shot generation mode)

18.2 Registers

18.2.1 Timer RB Control Register (TRBCR)

Address	0108h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol		—				TSTOP	TCSTF	TSTART
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	TSTART	Timer RB count start bit ⁽¹⁾	0: Count stops	R/W
			1: Count starts	
b1	TCSTF	Timer RB count status flag ⁽¹⁾	0: Count stops	R
			1: During count ⁽³⁾	
b2	TSTOP	Timer RB count forcible stop bit (1, 2)	When this bit is set to 1, the count is forcibly	R/W
			stopped. When read, the content is 0.	
b3	—	Nothing is assigned. If necessary, set	to 0. When read, the content is 0.	—
b4	—			
b5	—			
b6	—]		
b7	_]		

Notes:

- 1. Refer to **18.7 Notes on Timer RB** for precautions regarding bits TSTART, TCSTF and TSTOP.
- 2. When the TSTOP bit is set to 1, registers TRBPRE, TRBSC, TRBPR, and bits TSTART and TCSTF, and the TOSSTF bit in the TRBOCR register are set to values after a reset.
- 3. Indicates that count operation is in progress in timer mode or programmable waveform mode. In programmable one-shot generation mode or programmable wait one-shot generation mode, indicates that a one-shot pulse trigger has been acknowledged.

18.2.2 Timer RB One-Shot Control Register (TRBOCR)

Address	Address 0109h											
Bit	b7	b6	b5	b4	b3	b2	b1	b0				
Symbol		—		_		TOSSTF	TOSSP	TOSST				
After Reset	0	0	0	0	0	0	0	0				

Bit	Symbol	Bit Name	Function	R/W
b0	TOSST	Timer RB one-shot start bit	When this bit is set to 1, one-shot trigger generated. When read, its content is 0.	R/W
b1	TOSSP	Timer RB one-shot stop bit	When this bit is set to 1, counting of one-shot pulses (including programmable wait one-shot pulses) stops. When read, the content is 0.	R/W
b2	TOSSTF	Timer RB one-shot status flag ⁽¹⁾	0: One-shot stopped 1: One-shot operating (Including wait period)	R
b3	—	Nothing is assigned. If necessary, se	t to 0. When read, the content is 0.	—
b4	—			
b5	—			
b6	—			
b7				

Note:

1. When 1 is set to the TSTOP bit in the TRBCR register, the TOSSTF bit is set to 0.

This register is enabled when bits TMOD1 to TMOD0 in the TRBMR register is set to 10b (programmable one-shot generation mode) or 11b (programmable wait one-shot generation mode).

18.2.3 Timer RB I/O Control Register (TRBIOC)

Ad	dress 010)Ah									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Sy	/mbol	_		_		INOSEG	INOSTG	TOCNT	TOPL		
After F	Reset	0	0	0	0	0	0	0	0	•	
Bit	Symbol		B	it Name		T		Function			R/W
b0	TOPL		r RB outpu		ct bit	Function	varies acc		ne operatin	g mode.	R/W
b1	TOCNT	Time	r RB outpu	t switch bit							R/W
b2	INOSTO	One-	shot trigge	r control bi	t						R/W
b3	INOSEG	G One-	shot trigge	r polarity s	elect bit						R/W
b4	—	Noth	ing is assig	ned. If nec	essary, set	to 0. Whe	n read, the	content is	0.		—
b5	—										
b6	—	1									
b7	_										

18.2.4 Timer RB Mode Register (TRBMR)

Address	Address 010Bh											
Bit	b7	b6	b5	b4	b3	b2	b1	b0				
Symbol	TCKCUT	—	TCK1	TCK0	TWRC		TMOD1	TMOD0				
After Reset	0	0	0	0	0	0	0	0				

Bit	Symbol	Bit Name	Function	R/W
b0 b1	TMOD0 TMOD1	Timer RB operating mode select bit ⁽¹⁾	 b1 b0 0 0: Timer mode 0 1: Programmable waveform generation mode 1 0: Programmable one-shot generation mode 1 1: Programmable wait one-shot generation mode 	R/W R/W
b2	—	Nothing is assigned. If necessary, set t	o 0. When read, the content is 0.	—
b3	TWRC	Timer RB write control bit ⁽²⁾	0: Write to reload register and counter 1: Write to reload register only	R/W
b4	TCK0	Timer RB count source select bit ⁽¹⁾	b5 b4 0 0: f1	R/W
b5	TCK1		0 1: f8 1 0: Timer RA underflow ⁽³⁾ 1 1: f2	R/W
b6		Nothing is assigned. If necessary, set t	o 0. When read, the content is 0.	—
b7	TCKCUT	Timer RB count source cutoff bit ⁽¹⁾	0: Provides count source 1: Cuts off count source	R/W

Notes:

1. Change bits TMOD1 and TMOD0; TCK1 and TCK0; and TCKCUT when both the TSTART and TCSTF bits in the TRBCR register set to 0 (count stops).

2. The TWRC bit can be set to either 0 or 1 in timer mode. In programmable waveform generation mode, programmable one-shot generation mode, or programmable wait one-shot generation mode, the TWRC bit must be set to 1 (write to reload register only).

3. To use the underflow signal of timer RA as the count source for timer RB, set timer RA in timer mode, pulse output mode, or event count mode.

18.2.5 Timer RB Prescaler Register (TRBPRE)

Addre	ess 0	10Ch								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sym	bol	_	—	—	_	_	—	_]
After Res	set	1	1	1	1	1	1	1	1	-
Bit	Mode				Function				j Rai	

Bit	Mode	Function	Setting Range	R/W
b7 to b0	Timer mode	Counts an internal count source or	00h to FFh	R/W
	Programmable waveform generation mode		00h to FFh	R/W
	Programmable one-shot generation mode		00h to FFh	R/W
	Programmable wait one-shot generation mode		00h to FFh	R/W

When the TSTOP bit in the TRBCR register is set to 1, the TRBPRE register is set to FFh.

18.2.6 Timer RB Secondary Register (TRBSC)

Address 010Dh								
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol		_		—				—
After Reset	1	1	1	1	1	1	1	1

Bit	Mode	Function	Setting Range	R/W
b7 to b0	Timer mode	Disabled	00h to FFh	—
	Programmable waveform generation mode	Counts timer RB prescaler underflows ⁽¹⁾	00h to FFh	W (2)
	Programmable one-shot generation mode	Disabled	00h to FFh	—
	Programmable wait one-shot generation mode	Counts timer RB prescaler underflows (one-shot width is counted)	00h to FFh	W (2)

Notes:

1. The values of registers TRBPR and TRBSC are reloaded to the counter alternately and counted.

2. The count value can be read out by reading the TRBPR register even when the secondary period is being counted.

When the TSTOP bit in the TRBCR register is set to 1, the TRBSC register is set to FFh.

To write to the TRBSC register, perform the following steps.

(1) Write the value to the TRBSC register.

(2) Write the value to the TRBPR register. (If the value does not change, write the same value second time.)

18.2.7 Timer RB Primary Register (TRBPR)

Address	010Eh								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol		—							1
After Reset	1	1	1	1	1	1	1	1	-
		 .			_				

Bit	Mode	Function	Setting Range	R/W
b7 to b0	Timer mode	Counts timer RB prescaler underflows	00h to FFh	R/W
	Programmable waveform generation mode	Counts timer RB prescaler underflows ⁽¹⁾	00h to FFh	R/W
	Programmable one-shot generation mode	Counts timer RB prescaler underflows (one-shot width is counted)	00h to FFh	R/W
	Programmable wait one-shot generation mode	Counts timer RB prescaler underflows (wait period width is counted)	00h to FFh	R/W

Note:

1. The values of registers TRBPR and TRBSC are reloaded to the counter alternately and counted.

When the TSTOP bit in the TRBCR register is set to 1, the TRBPR register is set to FFh.

18.2.8 Timer RB/RC Pin Select Register (TRBRCSR)

Address (0181h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol		_	TRCCLKSEL1	TRCCLKSEL0		_	TRBOSEL1	TRBOSEL0
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0 b1	TRBOSEL0 TRBOSEL1	TRBO pin select bit	0 0: P1_3 assigned 0 1: P3_1 assigned 1 0: Do not set. 1 1: P3_3 assigned	R/W R/W
b2	—	Reserved bit	Set to 0.	R/W
b3	—	Nothing is assigned. If necessary, set t	o 0. When read, the content is 0.	—
b4 b5	TRCCLKSEL0 TRCCLKSEL1	TRCCLK pin select bit	^{b5 b4} 0 0: TRCCLK pin not used 0 1: P1_4 assigned 1 0: P3_3 assigned 1 1: P3_7 assigned	R/W R/W
b6	—	Reserved bit	Set to 0.	R/W
b7	—	Nothing is assigned. If necessary, set t	o 0. When read, the content is 0.	—

The TRBRCSR register selects which pin is assigned to the timer RB and timer RC I/O. To use the I/O pin for timer RB and timer RC, set this register.

Set bits TRBOSEL0 and TRBOSEL1 before setting the timer RB associated registers. Set bits TRCCLKSEL0 and TRCCLKSEL1 before setting the timer RC associated registers. Also, do not change the setting values of bits TRBOSEL0 and TRBOSEL1 during timer RB operation. Do not change the setting values of bits TRCCLKSEL0 and TRCCLKSEL1 during timer RC operation.

18.3 Timer Mode

In timer mode, a count source which is internally generated or timer RA underflows are counted (refer to **Table 18.2 Timer Mode Specifications**). Registers TRBOCR and TRBSC are not used in timer mode.

Item	Specification
Count sources	f1, f2, f8, timer RA underflow
Count operations	 Decrement When the timer underflows, it reloads the reload register contents before the count continues (when timer RB underflows, the contents of timer RB primary reload register is reloaded).
Divide ratio	1/(n+1)(m+1) n: setting value in TRBPRE register, m: setting value in TRBPR register
Count start condition	1 (count starts) is written to the TSTART bit in the TRBCR register.
Count stop conditions	 0 (count stops) is written to the TSTART bit in the TRBCR register. 1 (count forcibly stop) is written to the TSTOP bit in the TRBCR register.
Interrupt request generation timing	When timer RB underflows [timer RB interrupt].
TRBO pin function	Programmable I/O port
INT0 pin function	Programmable I/O port or INT0 interrupt input
Read from timer	The count value can be read out by reading registers TRBPR and TRBPRE.
Write to timer	 When registers TRBPRE and TRBPR are written while the count is stopped, values are written to both the reload register and counter. When registers TRBPRE and TRBPR are written to while count operation is in progress: If the TWRC bit in the TRBMR register is set to 0, the value is written to both the reload register and the counter. If the TWRC bit is set to 1, the value is written to the reload register only. (Refer to 18.3.2 Timer Write Control during Count Operation.)

 Table 18.2
 Timer Mode Specifications

18.3.1 Timer RB I/O Control Register (TRBIOC) in Timer Mode

Bit	Symbol	Bit Name	Function	R/W
b0	TOPL	Timer RB output level select bit	Set to 0 in timer mode.	R/W
b1	TOCNT	Timer RB output switch bit		R/W
b2	INOSTG	One-shot trigger control bit		R/W
b3	INOSEG	One-shot trigger polarity select bit		R/W
b4		Nothing is assigned. If necessary, set t	o 0. When read, the content is 0.	—
b5				
b6				
b7	—			

18.3.2 Timer Write Control during Count Operation

Timer RB has a prescaler and a timer (which counts the prescaler underflows). The prescaler and timer each consist of a reload register and a counter. In timer mode, the TWRC bit in the TRBMR register can be used to select whether writing to the prescaler or timer during count operation is performed to both the reload register and counter or only to the reload register.

However, values are transferred from the reload register to the counter of the prescaler in synchronization with the count source. In addition, values are transferred from the reload register to the counter of the timer in synchronization with prescaler underflows. Therefore, even if the TWRC bit is set for writing to both the reload register and counter, the counter value is not updated immediately after the WRITE instruction is executed. In addition, if the TWRC bit is set for writing to the reload register only, the synchronization of the writing will be shifted if the prescaler value changes. Figure 18.2 shows an Operating Example of Timer RB when Counter Value is Rewritten during Count Operation.

When the TWRC	bit is set to 0 (write to reload regis	ster and counter)
	RBPRE register and 25h to ster by a program.	
Count source	After writing, the reload r	
Reloads register of timer RB prescaler	Previous value	New value (01h)
Counter of timer RB prescaler	Reload with the second count source	
	////	After writing, the reload register is written on the first underflow.
Reloads register of timer RB	Previous value	New value (25h)
		Reload on the second underflow
Counter of timer RB	03h	02h 25h 24h
Delegde register of	After writing, the reload re written with the first count	nt source.
Reloads register of timer RB prescaler	Previous value	New value (01h)
Counter of timer RB prescaler	06h 🗙 05h 🔪 04h 🗙 03h 🔪 02h	Reload on underflow Reload on underflow 01h 00h 01h 00h After writing, the reload register is written on the first underflow.
Reloads register of timer RB	Previous value	New value (25h)
		Reload on underflow
Counter of timer RB	03h	X 02h X 01h X 00h X 25h
IR bit in TRBIC		
register		Only the prescaler values are updated,
	s under the following conditions. I and TCSTF in the TRBCR registe	extending the duration until timer RB underflow.

Figure 18.2 Operating Example of Timer RB when Counter Value is Rewritten during Count Operation

18.4 Programmable Waveform Generation Mode

In programmable waveform generation mode, the signal output from the TRBO pin is inverted each time the counter underflows, while the values in registers TRBPR and TRBSC are counted alternately (refer to **Table 18.3 Programmable Waveform Generation Mode Specifications**). Counting starts by counting the setting value in the TRBPR register. The TRBOCR register is unused in this mode.

Figure 18.3 shows an Operating Example of Timer RB in Programmable Waveform Generation Mode.

Table 18.3	Programmable Waveform Generation Mode Specifications
------------	--

Item	Specification
Count sources	f1, f2, f8, timer RA underflow
Count operations	 Decrement When the timer underflows, it reloads the contents of the primary reload and
	secondary reload registers alternately before the count continues.
Width and period of	Primary period: (n+1)(m+1)/fi
output waveform	Secondary period: (n+1)(p+1)/fi
	Period: (n+1){(m+1)+(p+1)}/fi
	fi: Count source frequency
	n: Value set in TRBPRE register, m: Value set in TRBPR register p: Value set in TRBSC register
Count start condition	1 (count start) is written to the TSTART bit in the TRBCR register.
Count stop conditions	 0 (count stop) is written to the TSTART bit in the TRBCR register. 1 (count forcibly stop) is written to the TSTOP bit in the TRBCR register.
Interrupt request	In half a cycle of the count source, after timer RB underflows during the secondary
generation timing	period (at the same time as the TRBO output change) [timer RB interrupt]
TRBO pin function	Programmable output port or pulse output
INT0 pin function	Programmable I/O port or INT0 interrupt input
Read from timer	The count value can be read out by reading registers TRBPR and TRBPRE. (1)
Write to timer	When registers TRBPRE, TRBSC, and TRBPR are written while the count is
	stopped, values are written to both the reload register and counter.
	 When registers TRBPRE, TRBSC, and TRBPR are written to during count
	operation, values are written to the reload registers only. ⁽²⁾
Selectable functions	Output level select function
	The output level during primary and secondary periods is selected by the TOPL bit in the TRBIOC register.
	TRBO pin output switch function
	Timer RB pulse output or P3_1 (P1_3) latch output is selected by the TOCNT bit
	in the TRBIOC register. ⁽³⁾

Notes:

1. Even when counting the secondary period, the TRBPR register may be read.

- 2. The set values are reflected in the waveform output beginning with the following primary period after writing to the TRBPR register.
- 3. The value written to the TOCNT bit is enabled by the following.
 - When counting starts.

• When a timer RB interrupt request is generated.

The contents after the TOCNT bit is changed are reflected from the output of the following primary period.

18.4.1 Timer RB I/O Control Register (TRBIOC) in Programmable Waveform Generation Mode

Ade	dress 01	0Ah								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	—	— — — INOSEG INOSTG TOCNT TOPL					TOPL		
After F	Reset	0	0	0	0	0	0	0	0	
Bit	Symbo	/mbol Bit Name Function						R/W		
b0	TOPL		r RB outpu	t level sele	ect bit	0: Outpu	ts "H" for p	rimary peri	od	R/W
			I				•	econdary p		
								n the timer i		
						1: Outpu	ts "L" for p	rimary perio	bd	
								econdary p		
						Outpu	ts "H" whe	n the timer	is stopped	
b1	TOCNT	Time	r RB outpu	t switch bit				3 waveform		R/W
									3) port register	
b2	INOST		shot trigge				in program	mable wav	eform generation	R/W
b3	INOSEC	G One-	shot trigge	r polarity s	elect bit	mode.				R/W
b4	—	Noth	ing is assig	ned. If neo	cessary, se	t to 0. Whe	n read, the	content is	0.	—
b5	—									
b6	—									
b7	_									

18.4.2 Operating Example

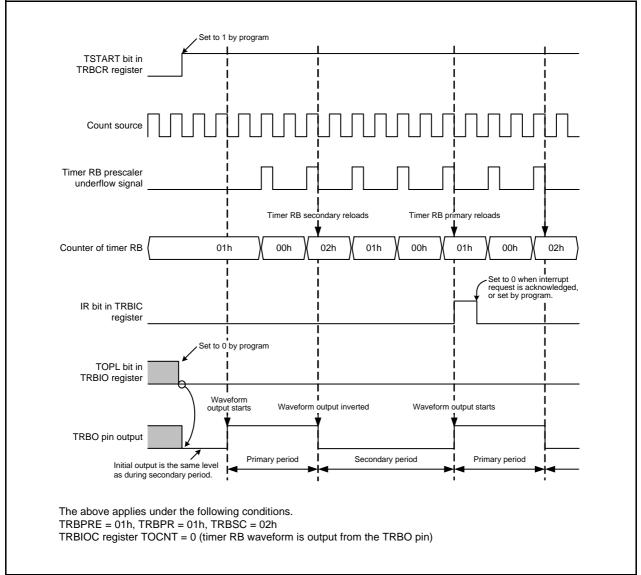


Figure 18.3 Operating Example of Timer RB in Programmable Waveform Generation Mode

18.5 Programmable One-shot Generation Mode

In programmable one-shot generation mode, a one-shot pulse is output from the TRBO pin by a program or an external trigger input (input to the $\overline{INT0}$ pin) (refer to **Table 18.4 Programmable One-Shot Generation Mode Specifications**). When a trigger is generated, the timer starts operating from the point only once for a given period equal to the set value in the TRBPR register. The TRBSC register is not used in this mode. Figure 18.4 shows an Operating Example of Programmable One-Shot Generation Mode.

Table 18.4	Programmable One-Shot Generation Mode Specifications	
------------	--	--

Item	Specification
Count sources	f1, f2, f8, timer RA underflow
Count operations	 Decrement the setting value in the TRBPR register When the timer underflows, it reloads the contents of the reload register before the count completes and the TOSSTF bit is set to 0 (one-shot stops). When the count stops, the timer reloads the contents of the reload register before it stops.
One-shot pulse	(n+1)(m+1)/fi
output time	fi: Count source frequency n: Setting value in TRBPRE register, m: Setting value in TRBPR register
Count start conditions	 The TSTART bit in the TRBCR register is set to 1 (count starts) and the next trigger is generated Set the TOSST bit in the TRBOCR register to 1 (one-shot starts) Input trigger to the INTO pin
Count stop conditions	 When reloading completes after timer RB underflows during primary period When the TOSSP bit in the TRBOCR register is set to 1 (one-shot stops) When the TSTART bit in the TRBCR register is set to 0 (stops counting) When the TSTOP bit in the TRBCR register is set to 1 (forcibly stops counting)
Interrupt request generation timing	In half a cycle of the count source, after the timer underflows (at the same time as the TRBO output ends) [timer RB interrupt].
TRBO pin function	Pulse output
INT0 pin functions	 When the INOSTG bit in the TRBIOC register is set to 0 (INT0 pin one-shot trigger disabled): programmable I/O port or INT0 interrupt input When the INOSTG bit in the TRBIOC register is set to 1 (INT0 pin one-shot trigger enabled): external trigger (INT0 interrupt input)
Read from timer	The count value can be read out by reading registers TRBPR and TRBPRE.
Write to timer	 When registers TRBPRE and TRBPR are written while the count is stopped, values are written to both the reload register and counter. When registers TRBPRE and TRBPR are written during the count, values are written to the reload register only (the data is transferred to the counter at the following reload). ⁽¹⁾
Selectable functions	 Output level select function The output level of the one-shot pulse waveform is selected by the TOPL bit in the TRBIOC register. One-shot trigger select function Refer to 18.5.3 One-Shot Trigger Selection.

Note:

1. The set value is reflected at the following one-shot pulse after writing to the TRBPR register.

18.5.1 Timer RB I/O Control Register (TRBIOC) in Programmable One-Shot Generation Mode

Ad	dress 010)Ah								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	_	—		—	INOSEG	INOSTG	TOCNT	TOPL	
After F	Reset	0	0	0	0	0	0	0	0	
Bit	Symbol		В	it Name				Function		R/W
b0	TOPL		r RB outpu		ect bit	0. Ontoi	its one-sho	t pulse "H"		R/W
	1012	11110	i ne outpu					n the timer		10,00
							its one-sho		lo otoppou	
								•	is stopped	
b1	TOCNT	Time	r RB outpu	t switch bi	t				-shot generation	R/W
			•			mode.			0	
b2	INOSTO	One-	shot trigger	r control bi	it (1)	0. INTO	pin one-sh	ot trigger di	sabled	R/W
			00					ot trigger er		
b3	INOSEG) One-	shot triage	r polarity s	elect bit (1)		g edge trig			R/W
		0110	ener ingge	polarity o			g edge trigg	•		
b4	—	Noth	ing is assig	ned. If neo	cessary, set	to 0. Whe	n read, the	content is	0.	—
b5	—				-					
b6	—									
b7	—									
<u>.</u>		-								

Note:

1. Refer to 18.5.3 One-Shot Trigger Selection.

18.5.2 Operating Example

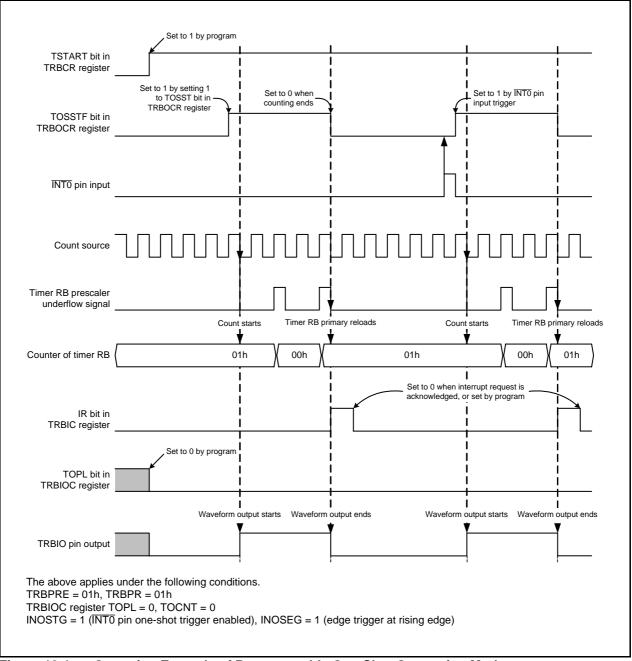


Figure 18.4 Operating Example of Programmable One-Shot Generation Mode

18.5.3 One-Shot Trigger Selection

In programmable one-shot generation mode and programmable wait one-shot generation mode, operation starts when a one-shot trigger is generated while the TCSTF bit in the TRBCR register is set to 1 (count starts).

- A one-shot trigger can be generated by either of the following causes:
- 1 is written to the TOS<u>ST bit in the TRBOCR register by a program.</u>
- Trigger input from the $\overline{INT0}$ pin.

When a one-shot trigger occurs, the TOSSTF bit in the TRBOCR register is set to 1 (one-shot operation in progress) after one or two cycles of the count source have elapsed. Then, in programmable one-shot generation mode, count operation begins and one-shot waveform output starts. (In programmable wait one-shot generation mode, count operation starts for the wait period.) If a one-shot trigger occurs while the TOSSTF bit is set to 1, no retriggering occurs.

To use trigger input from the $\overline{INT0}$ pin, input the trigger after making the following settings:

- Set the PD4_5 bit in the PD4 register to 0 (input port).
- Select the INTO digital filter with bits INTOF1 and INTOF0 in the INTF register.
- Select both edges or one edge with the INTOPL bit in INTEN register. If one edge is selected, further select falling or rising edge with the INOSEG bit in TRBIOC register.
- Set the INTOEN bit in the INTEN register to 1 (enabled).
- After completing the above, set the INOSTG bit in the TRBIOC register to 1 (INT0 pin one-shot trigger enabled).

Note the following points with regard to generating interrupt requests by trigger input from the $\overline{INT0}$ pin.

- Processing to handle the interrupts is required. Refer to 11. Interrupts, for details.
- If one edge is selected, use the POL bit in the INTOIC register to select falling or rising edge. (The INOSEG bit in the TRBIOC register does not affect INTO interrupts).
- If a one-shot trigger occurs while the TOSSTF bit is set to 1, timer RB operation is not affected, but the value of the IR bit in the INTOIC register changes.

18.6 Programmable Wait One-Shot Generation Mode

In programmable wait one-shot generation mode, a one-shot pulse is output from the TRBO pin by a program or an external trigger input (input to the $\overline{INT0}$ pin) (refer to **Table 18.5 Programmable Wait One-Shot Generation Mode Specifications**). When a trigger is generated from that point, the timer outputs a pulse only once for a given length of time equal to the setting value in the TRBSC register after waiting for a given length of time equal to the setting value in the TRBPR register.

Figure 18.5 shows an Operating Example of Programmable Wait One-Shot Generation Mode.

Table 18.5	Programmable Wait One-Shot Generation Mode Specifications	

Item	Specification
Count sources	f1, f2, f8, timer RA underflow
Count operations	 Decrement the timer RB primary setting value. When a count of the timer RB primary underflows, the timer reloads the contents of timer RB secondary before the count continues. When a count of the timer RB secondary underflows, the timer reloads the contents of timer RB primary before the count completes and the TOSSTF bit is set to 0 (one-shot stops). When the count stops, the timer reloads the contents of the reload register before it stops.
Wait time	(n+1)(m+1)/fi fi: Count source frequency n: Value set in the TRBPRE register, m: Value set in the TRBPR register
One-shot pulse	(n+1)(p+1)/fi
output time	fi: Count source frequency n: Value set in the TRBPRE register, p: Value set in the TRBSC register
Count start conditions	 The TSTART bit in the TRBCR register is set to 1 (count starts) and the next trigger is generated. Set the TOSST bit in the TRBOCR register to 1 (one-shot starts). Input trigger to the INTO pin
Count stop conditions	 When reloading completes after timer RB underflows during secondary period. When the TOSSP bit in the TRBOCR register is set to 1 (one-shot stops). When the TSTART bit in the TRBCR register is set to 0 (starts counting). When the TSTOP bit in the TRBCR register is set to 1 (forcibly stops counting).
Interrupt request generation timing	In half a cycle of the count source after timer RB underflows during secondary period (complete at the same time as waveform output from the TRBO pin) [timer RB interrupt].
TRBO pin function	Pulse output
INTO pin functions	 When the INOSTG bit in the TRBIOC register is set to 0 (INT0 pin one-shot trigger disabled): programmable I/O port or INT0 interrupt input When the INOSTG bit in the TRBIOC register is set to 1 (INT0 pin one-shot trigger enabled): external trigger (INT0 interrupt input)
Read from timer	The count value can be read out by reading registers TRBPR and TRBPRE.
Write to timer	 When registers TRBPRE, TRBSC, and TRBPR are written while the count stops, values are written to both the reload register and counter. When registers TRBPRE, TRBSC, and TRBPR are written to during count operation, values are written to the reload registers only. ⁽¹⁾
Selectable functions	 Output level select function The output level of the one-shot pulse waveform is selected by the TOPL bit in the TRBIOC register. One-shot trigger select function Refer to 18.5.3 One-Shot Trigger Selection.

Note:

1. The set value is reflected at the following one-shot pulse after writing to registers TRBSC and TRBPR.

18.6.1 Timer RB I/O Control Register (TRBIOC) in Programmable Wait One-Shot Generation Mode

Ade	dress 010)Ah									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Sy	/mbol	_	—	—	—	INOSEG	INOSTG	TOCNT	TOPL	7	
After F	Reset	0	0	0	0	0	0	0	0	_	
Bit	Symbol		В	it Name				Function			R/W
b0	TOPL	Time	r RB outpu	t level sele	ct bit	0: Output	ts one-shot	pulse "H"			R/W
			•			Output	s "L" when	the timer s	stops or d	uring wait	
							ts one-shot		•	0	
						Output	ts "H" when	the timer s	stops or d	uring wait	
b1	TOCNT	Time	r RB outpu	t switch bit		Set to 0 i	n programr	nable wait	one-shot	generation	R/W
						mode.				-	
b2	INOSTO	One-	shot trigge	r control bi	t (1)	0. INTO p	in one-sho	t trigger dis	sabled		R/W
							in one-sho				
b3	INOSEG) One-	shot trigge	r polarity se	elect bit ⁽¹⁾		edge trigg				R/W
		0.10	onor inggo	i polarity o		•	edge trigge				
b4	—	Noth	ing is assig	ned. If nec	essary, set	to 0. Whe	n read, the	content is	0.		—
b5	t —		- •		•						
b6	—										
b7	—										
Natas											

Note:

1. Refer to 18.5.3 One-Shot Trigger Selection.

18.6.2 Operating Example

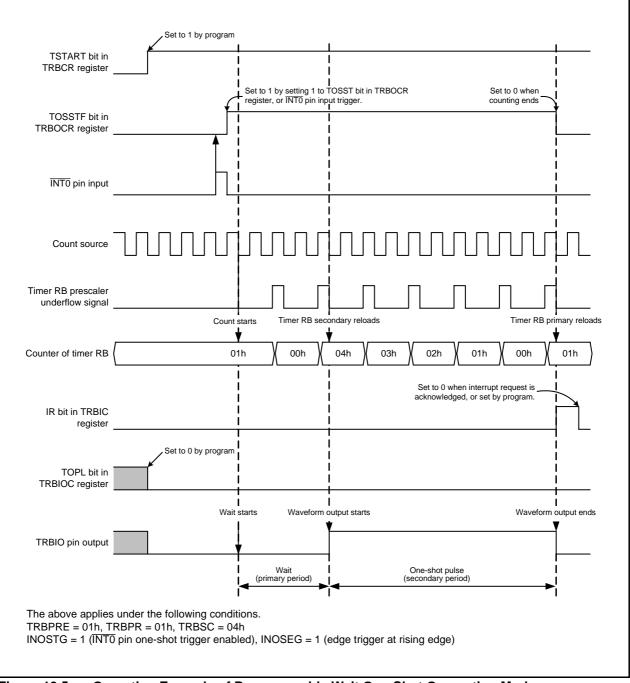


Figure 18.5 Operating Example of Programmable Wait One-Shot Generation Mode

18.7 Notes on Timer RB

- Timer RB stops counting after a reset. Set the values in the timer RB and timer RB prescalers before the count starts.
- Even if the prescaler and timer RB is read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In programmable one-shot generation mode and programmable wait one-shot generation mode, when setting the TSTART bit in the TRBCR register to 0 (stops counting) or setting the TOSSP bit in the TRBOCR register to 1 (stops one-shot), the timer reloads the value of reload register and stops. Therefore, in programmable one-shot generation mode and programmable wait one-shot generation mode, read the timer count value before the timer stops.
- The TCSTF bit remains 0 (count stops) for 1 to 2 cycles of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped.

During this time, do not access registers associated with timer RB ⁽¹⁾ other than the TCSTF bit. Timer RB starts counting at the first valid edge of the count source after the TCSTF bit is set to 1 (during count).

The TCSTF bit remains 1 for 1 to 2 cycles of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. Timer RB counting is stopped when the TCSTF bit is set to 0.

During this time, do not access registers associated with timer RB (1) other than the TCSTF bit.

Note:

1. Registers associated with timer RB: TRBCR, TRBOCR, TRBIOC, TRBMR, TRBPRE, TRBSC, and TRBPR.

- If the TSTOP bit in the TRBCR register is set to 1 during timer operation, timer RB stops immediately.
- If 1 is written to the TOSST or TOSSP bit in the TRBOCR register, the value of the TOSSTF bit changes after one or two cycles of the count source have elapsed. If the TOSSP bit is written to 1 during the period between when the TOSST bit is written to 1 and when the TOSSTF bit is set to 1, the TOSSTF bit may be set to either 0 or 1 depending on the content state. Likewise, if the TOSST bit is written to 1 during the period between when the TOSSP bit is written to 1 and when the TOSSTF bit is set to 0, the TOSSTF bit may be set to either 0 or 1.
- To use the underflow signal of timer RA as the count source for timer RB, set timer RA in timer mode, pulse output mode, or event count mode.

18.7.1 Timer Mode

To write to registers TRBPRE and TRBPR during count operation (TCSTF bit in the TRBCR register is set to 1), note the following points:

- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.

18.7.2 Programmable Waveform Generation Mode

To write to registers TRBPRE and TRBPR during count operation (TCSTF bit in the TRBCR register is set to 1), note the following points:

- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.

18.7.3 Programmable One-shot Generation Mode

To write to registers TRBPRE and TRBPR during count operation (TCSTF bit in the TRBCR register is set to 1), note the following points:

- When the TRBPRE register is written continuously during count operation (TCSTF bit is set to 1), allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously during count operation (TCSTF bit is set to 1), allow three or more cycles of the prescaler underflow for each write interval.

18.7.4 Programmable Wait One-shot Generation Mode

To write to registers TRBPRE and TRBPR during count operation (TCSTF bit in the TRBCR register is set to 1), note the following points:

- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.

19. Timer RC

Timer RC is a 16-bit timer with four I/O pins.

19.1 Overview

Timer RC uses either f1, fOCO40M or fOCO-F as its operation clock. Table 19.1 lists the Timer RC Operation Clock.

Table 19.1 Timer RC Operation Clock

Condition	Timer RC Operation Clock
Count source is f1, f2, f4, f8, f32, or TRCCLK input (bits TCK2 to TCK0 in TRCCR1 register are set to a value from 000b to 101b)	f1
Count source is fOCO40M (bits TCK2 to TCK0 in TRCCR1 register are set to 110b)	fOCO40M
Count source is fOCO-F (bits TCK2 to TCK0 in TRCCR1 register are set to 111b)	fOCO-F

Table 19.2 lists the Pin Configuration of Timer RC, and Figure 19.1 shows a Timer RC Block Diagram. Timer RC has three modes.

• Timer mode

- Input capture function	The counter value is captured to a register, using an external signal as the trigger.
- Output compare function	Matches between the counter and register values are detected. (Pin output state
	changes when a match is detected.)

The following two modes use the output compare function.

- PWM mode PWM2 mode
- Pulses of a given width are output continuously. A one-shot waveform or PWM waveform is output following the trigger after the
 - wait time has elapsed.

Input capture function, output compare function, and PWM mode settings may be specified independently for each pin.

In PWM2 mode waveforms are output based on a combination of the counter or the register.

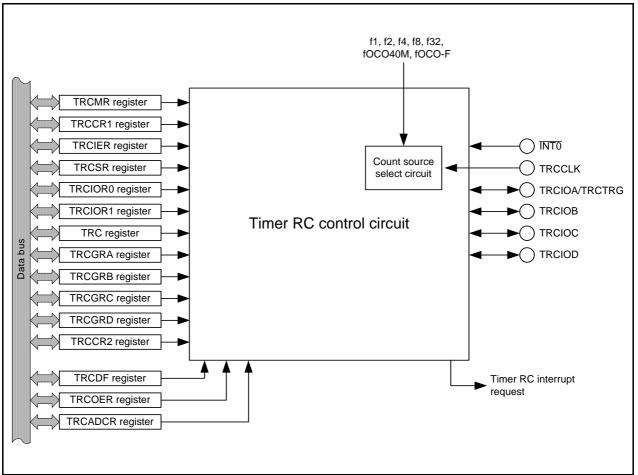


Figure 19.1 Timer RC Block Diagram

Table 19.2 Pin Configuration of Timer RC
--

Pin Name	Assigned Pin	I/O	Function
TRCIOA	P0_0, P0_1, P0_2, P1_1, or P3_1	I/O	Function differs according to the mode.
TRCIOB	P0_3, P0_4, P0_5, P1_2, or P2_0		Refer to descriptions of individual modes
TRCIOC	P0_7, P1_3, P2_1, or P3_4		for details.
TRCIOD	P0_6, P1_0, P2_2, or P3_5		
TRCCLK	P1_4, P3_3, or P3_7	Input	External clock input
TRCTRG	P0_0, P0_1, P0_2, P1_1, or P3_1	Input	PWM2 mode external trigger input

19.2 Registers

Table 19.3 lists the Registers Associated with Timer RC.

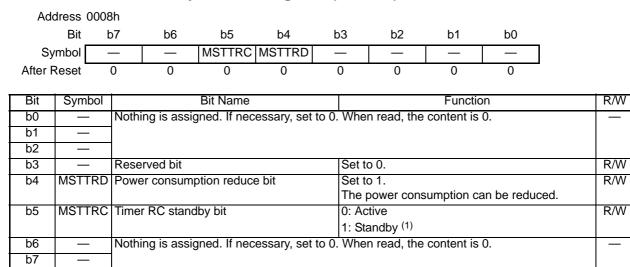

	Mode					
		Timer				_
Address	Symbol	Input Capture Function	Output Compare Function	PWM	PWM2	Related Information
0008h	MSTCR	Valid	Valid	Valid	Valid	19.2.1 Module Standby Control Register (MSTCR)
0120h	TRCMR	Valid	Valid	Valid	Valid	19.2.2 Timer RC Mode Register (TRCMR)
0121h	TRCCR1	Valid	Valid	Valid	Valid	Timer RC control register 1 19.2.3 Timer RC Control Register 1 (TRCCR1) 19.5.1 Timer RC Control Register 1 (TRCCR1) for Output Compare Function 19.6.1 Timer RC Control Register 1 (TRCCR1) in PWM Mode 19.7.1 Timer RC Control Register 1 (TRCCR1) in PWM2 Mode
0122h	TRCIER	Valid	Valid	Valid	Valid	19.2.4 Timer RC Interrupt Enable Register (TRCIER)
0123h	TRCSR	Valid	Valid	Valid	Valid	19.2.5 Timer RC Status Register (TRCSR)
0124h	TRCIOR0	Valid	Valid			Timer RC I/O control register 0, timer RC I/O control register 1 19.2.6 Timer RC I/O Control Register 0 (TRCIOR0) 19.2.7 Timer RC I/O Control Register 1 (TRCIOR1) 19.4.1 Timer RC I/O Control Register 0 (TRCIOR0) for Input Capture Function
0125h	TRCIOR1					 19.4.2 Timer RC I/O Control Register 1 (TRCIOR1) for Input Capture Function 19.5.2 Timer RC I/O Control Register 0 (TRCIOR0) for Output Compare Function 19.5.3 Timer RC I/O Control Register 1 (TRCIOR1) for Output Compare Function
0126h 0127h	TRC	Valid	Valid	Valid	Valid	19.2.8 Timer RC Counter (TRC)
0128h 0129h	TRCGRA	Valid	Valid	Valid	Valid	19.2.9 Timer RC General Registers A, B, C, and D (TRCGRA, TRCGRB, TRCGRC, TRCGRD)
012Ah 012Bh	TRCGRB					
012Ch 012Dh	TRCGRC					
012Eh 012Fh	TRCGRD					
0130h	TRCCR2	—	Valid	Valid	Valid	19.2.10 Timer RC Control Register 2 (TRCCR2)
0131h	TRCDF	Valid			Valid	19.2.11 Timer RC Digital Filter Function Select Register (TRCDF)
0132h	TRCOER	_	Valid	Valid	Valid	19.2.12 Timer RC Output Master Enable Register (TRCOER)
0133h	TRCADCR	—	Valid	Valid	Valid	19.2.13 Timer RC Trigger Control Register (TRCADCR)
0181h	TRBRCSR	Valid	Valid	Valid	Valid	19.2.14 Timer RB/RC Pin Select Register (TRBRCSR)
0182h	TRCPSR0	Valid	Valid	Valid	Valid	19.2.15 Timer RC Pin Select Register 0 (TRCPSR0)
0183h	TRCPSR1	Valid	Valid	Valid	Valid	19.2.16 Timer RC Pin Select Register 1 (TRCPSR1)

Table 19.3 Registers Associated with 1	Timer RC
--	----------

-: Invalid

19.2.1 Module Standby Control Register (MSTCR)

Note:

1. Stop the timer RC function before setting to standby. When the MSTTRC bit is set to 1 (standby), any access to the timer RC associated registers (addresses 0120h to 0133h) is disabled.

19.2.2 Timer RC Mode Register (TRCMR)

Address	Address 0120h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	TSTART	—	BFD	BFC	PWM2	PWMD	PWMC	PWMB	
After Reset	0	1	0	0	1	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	PWMB	PWM mode of TRCIOB select bit ⁽¹⁾	0: Timer mode 1: PWM mode	R/W
b1	PWMC	PWM mode of TRCIOC select bit ⁽¹⁾	0: Timer mode 1: PWM mode	R/W
b2	PWMD	PWM mode of TRCIOD select bit ⁽¹⁾	0: Timer mode 1: PWM mode	R/W
b3	PWM2	PWM2 mode select bit	0: PWM 2 mode 1: Timer mode or PWM mode	R/W
b4	BFC	TRCGRC register function select bit ⁽²⁾	0: General register 1: Buffer register of TRCGRA register	R/W
b5	BFD	TRCGRD register function select bit	0: General register 1: Buffer register of TRCGRB register	R/W
b6	—	Nothing is assigned. If necessary, set to	0. When read, the content is 1.	—
b7	TSTART	TRC count start bit	0: Count stops 1: Count starts	R/W

Notes:

1. These bits are enabled when the PWM2 bit is set to 1 (timer mode or PWM mode).

2. Set the BFC bit to 0 (general register) in PWM2 mode.

For notes on PWM2 mode, refer to 19.9.6 TRCMR Register in PWM2 Mode.

19.2.3 Timer RC Control Register 1 (TRCCR1)

Address 0121h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	CCLR	TCK2	TCK1	TCK0	TOD	TOC	TOB	TOA
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	TOA	TRCIOA output level select bit ⁽¹⁾	Function varies according to the operating mode	R/W
b1	TOB	TRCIOB output level select bit ⁽¹⁾	(function).	R/W
b2	TOC	TRCIOC output level select bit ⁽¹⁾	1	R/W
b3	TOD	TRCIOD output level select bit ⁽¹⁾	1	R/W
b4	TCK0	Count source select bit ⁽¹⁾	b6 b5 b4 0 0 0: f1	R/W
b5	TCK1		0 0 1: f2	R/W
b6	TCK2		0 1 0: f4	R/W
			0 1 1: f8	
			1 0 0: f32	
			1 0 1: TRCCLK input rising edge	
			1 1 0: fOCO40M	
			1 1 1: fOCO-F ⁽²⁾	
b7	CCLR	TRC counter clear select bit	0: Disable clear (free-running operation)1: Clear TRC counter by input capture or by compare match in TRCGRA	R/W

Notes:

1. Set to these bits when the TSTART bit in the TRCMR register is set to 0 (count stops).

2. To select fOCO-F, set it to the clock frequency higher than the CPU clock frequency.

19.2.4 Timer RC Interrupt Enable Register (TRCIER)

Address 0122h									
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	OVIE				IMIED	IMIEC	IMIEB	IMIEA	
After Reset	0	1	1	1	0	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	IMIEA	Input capture / compare match interrupt enable bit A	0: Disable interrupt (IMIA) by the IMFA bit 1: Enable interrupt (IMIA) by the IMFA bit	R/W
b1	IMIEB	Input capture / compare match interrupt enable bit B	0: Disable interrupt (IMIB) by the IMFB bit 1: Enable interrupt (IMIB) by the IMFB bit	R/W
b2	IMIEC	Input capture / compare match interrupt enable bit C	0: Disable interrupt (IMIC) by the IMFC bit 1: Enable interrupt (IMIC) by the IMFC bit	R/W
b3	IMIED	Input capture / compare match interrupt enable bit D	0: Disable interrupt (IMID) by the IMFD bit 1: Enable interrupt (IMID) by the IMFD bit	R/W
b4		Nothing is assigned. If necessary, set to 0	When read, the content is 1.	—
b5				
b6				
b7	OVIE	Overflow interrupt enable bit	0: Disable interrupt (OVI) by the OVF bit 1: Enable interrupt (OVI) by the OVF bit	R/W

R/W R/W R/W R/W

R/W

19.2.5 Timer RC Status Register (TRCSR)

Ado	dress 012	3h									
	Bit I	o7	b6	b5	b4	b3	b2	b1	b0		
Sy	mbol C	VF	_	_	—	IMFD	IMFC	IMFB	IMFA]	
After F	Reset	0	1	1	1	0	0	0	0	4	
Bit	Symbol	1		Bit Name		1		Functior	า		
b0	IMFA	Input			atch flag A	ISource	for setting				
					9	-	[Source for setting this bit to 0]				
b1	IMFB				atch flag B	Write 0 after read. ⁽¹⁾ Source for setting this bit to 1]					
b2	IMFC	Input	capture / c	compare m	atch flag C	-		•	-		
b3	IMFD	Input	capture / c	compare m	atch flag D		o Table 19.	4 Source	for Setting	g Bit of	
						Each F	lag to 1.				
b4	_	Nothi	ng is assig	ned. If nec	essary, set	to 0. Whe	n read, the	content is	1.		
b5	_	-									
b6	—										
b7	OVF	Over	flow flag			[Source	e for setting	this bit to	0]		
						Write 0	after read.	(1)			
						[Source	e for setting	this bit to	11		
						-	5 Table 19.		-	a Bit of	
							lag to 1.		oouniy	,	
		1				Lauri	ing to 1.				

Note:

- 1. The writing results are as follows:
 - This bit is set to 0 when the read result is 1 and 0 is written to the same bit.
 - This bit remains unchanged even if the read result is 0 and 0 is written to the same bit. (This bit remains 1 even if it is set to 1 from 0 after reading, and writing 0.)
 - This bit remains unchanged if 1 is written to it.

Table 19.4Source for Setting Bit of Each Flag to 1

Bit Symbol	Time	Mode	PWM Mode	PWM2 Mode			
Bit Symbol	Input capture Function	Output Compare Function		F WIVIZ WIDDE			
IMFA	TRCIOA pin input edge (1)	When the values of the registers TRC and TRCGRA match.					
IMFB	TRCIOB pin input edge (1)	When the values of the registers TRC and TRCGRB match.					
IMFC	TRCIOC pin input edge (1)	When the values of the regist	When the values of the registers TRC and TRCGRC match. (2)				
IMFD	TRCIOD pin input edge (1)	When the values of the registers TRC and TRCGRD match. (2)					
OVF	When the TRC register over	lows.					

Notes:

1. Edge selected by bits IOj1 to IOj0 (j = A, B, C, or D).

2. Includes the condition that bits BFC and BFD are set to 1 (buffer registers of registers TRCGRA and TRCGRB).

19.2.6 Timer RC I/O Control Register 0 (TRCIOR0)

Address	0124h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol		IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
After Reset	1	0	0	0	1	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	IOA0	TRCGRA control bit	Function varies according to the operating mode	R/W
b1	IOA1		(function).	R/W
b2	IOA2	TRCGRA mode select bit ⁽¹⁾	0: Output compare function 1: Input capture function	R/W
b3	IOA3	TRCGRA input capture input switch bit ⁽³⁾	0: fOCO128 signal 1: TRCIOA pin input	R/W
b4	IOB0	TRCGRB control bit	Function varies according to the operating mode	R/W
b5	IOB1		(function).	R/W
b6	IOB2	TRCGRB mode select bit ⁽²⁾	0: Output compare function 1: Input capture function	R/W
b7	—	Nothing is assigned. If necessary, set	to 0. When read, the content is 1.	—

Notes:

1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.

2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

3. The IOA3 bit is enabled when the IOA2 bit is set to 1 (input capture function).

The TRCIOR0 register is enabled in timer mode. It is disabled in modes PWM and PWM2.

19.2.7 Timer RC I/O Control Register 1 (TRCIOR1)

Address 0125h									
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0	
After Reset	1	0	0	0	1	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	IOC0	TRCGRC control bit	Function varies according to the operating mode	R/W
b1	IOC1		(function).	R/W
b2	IOC2	TRCGRC mode select bit ⁽¹⁾	0: Output compare function 1: Input capture function	R/W
b3	IOC3	TRCGRC register function select bit	0: TRCIOA output register 1: General register or buffer register	R/W
b4	IOD0	TRCGRD control bit	Function varies according to the operating mode	R/W
b5	IOD1		(function).	R/W
b6	IOD2	TRCGRD mode select bit ⁽²⁾	0: Output compare function 1: Input capture function	R/W
b7	IOD3	TRCGRD register function select bit	0: TRCIOB output register 1: General register or buffer register	R/W

Notes:

1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.

2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

The TRCIOR1 register is enabled in timer mode. It is disabled in modes PWM and PWM2.

Timer RC Counter (TRC) 19.2.8 Address 0127h to 0126h Bit b7 b6 b5 b4 b3 b2 b1 b0 Symbol After Reset 0 0 0 0 0 0 0 0 Bit b15 b14 b13 b12 b11 b10 b9 b8 Symbol After Reset 0 0 0 0 0 0 0 0 Bit Function Setting Range R/W b15 to b0 Count a count source. Count operation is incremented. 0000h to FFFFh R/W When an overflow occurs, the OVF bit in the TRCSR register is set to 1.

Access the TRC register in 16-bit units. Do not access it in 8-bit units.

19.2.9 Timer RC General Registers A, B, C, and D (TRCGRA, TRCGRB, TRCGRC, TRCGRD)

		0128h (TRC 012Eh (TRC		2Bh to 012	Ah (TRCG	RB), 012Dł	1 to 012Ch	(TRCGRC	;),		
Bit	b7	b6	b5	b4	b3	b2	b1	b0			
Symbol	_	<u> </u>	—	—	—		—	—]		
After Reset	1	1	1	1	1	1	1	1			
Bit	b15	b14	b13	b12	b11	b10	b9	b8			
Symbol	_	<u> </u>		<u> </u>	<u> </u>		—	<u> </u>]		
After Reset	1	1	1	1	1	1	1	1	1		
Bit	Function										
b15 to b0 Fund	ction varie	es accordin	a to the or	erating mc	ode.	-			R/W		

Access registers TRCGRA to TRCGRD in 16-bit units. Do not access them in 8-bit units.

19.2.10 Timer RC Control Register 2 (TRCCR2)

Address	Address 0130h									
Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Symbol	TCEG1	TCEG0	CSEL			POLD	POLC	POLB	1	
After Reset	0	0	0	1	1	0	0	0	•	

Bit	Symbol	Bit Name	Function	R/W						
b0	POLB	PWM mode output level control bit B ⁽¹⁾	0: TRCIOB output level selected as "L" active 1: TRCIOB output level selected as "H" active	R/W						
b1	POLC	PWM mode output level control bit C ⁽¹⁾	0: TRCIOC output level selected as "L" active 1: TRCIOC output level selected as "H" active	R/W						
b2	POLD	PWM mode output level control bit D ⁽¹⁾	D ⁽¹⁾ 1: TRCIOD output level selected as "H" active							
b3	—	Nothing is assigned. If necessary, s	lothing is assigned. If necessary, set to 0. When read, the content is 1.							
b4	—									
b5	CSEL	TRC count operation select bit ⁽²⁾	 0: Count continues at compare match with the TRCGRA register 1: Count stops at compare match with the TRCGRA register 	R/W						
b6	TCEG0	TRCTRG input edge select bit ⁽³⁾	0 0: Disable the trigger input from the TRCTRG pin	R/W						
b7	TCEG1		 0 1: Rising edge selected 1 0: Falling edge selected 1 1: Both edges selected 	R/W						

Notes:

1. Enabled when in PWM mode.

2. Enabled when in output compare function, PWM mode, or PWM2 mode. For notes on PWM2 mode, refer to **19.9.6 TRCMR Register in PWM2 Mode**.

3. Enabled when in PWM2 mode.

19.2.11 Timer RC Digital Filter Function Select Register (TRCDF)

Address	Address 0131h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	DFCK1	DFCK0		DFTRG	DFD	DFC	DFB	DFA	
After Reset	0	0	0	0	0	0	0	0	

Bit	Symbol	Bit Name	Function	R/W			
b0	DFA	TRCIOA pin digital filter function select bit ⁽¹⁾	0: Function is not used	R/W			
b1	DFB	TRCIOB pin digital filter function select bit ⁽¹⁾	1: Function is used	R/W			
b2	DFC	TRCIOC pin digital filter function select bit ⁽¹⁾		R/W			
b3	DFD	TRCIOD pin digital filter function select bit ⁽¹⁾		R/W			
b4	DFTRG	TRCTRG pin digital filter function select bit ⁽²⁾		R/W			
b5	—	Nothing is assigned. If necessary, set to 0. When read, the content is 0.					
b6	DFCK0	Clock select bits for digital filter function ^(1, 2)	^{b7 b6} 0 0: f32	R/W			
b7	DFCK1		0 1: f8	R/W			
			1 0: f1				
			1 1: Count source (clock selected by bits TCK2 to TCK0 in the TRCCR1 register)				

Notes:

1. These bits are enabled for the input capture function.

2. These bits are enabled when in PWM2 mode and bits TCEG1 to TCEG0 in the TRCCR2 register are set to 01b, 10b, or 11b (TRCTRG trigger input enabled).

Add	dress 0	132	h									
	Bit	b	7	b6	b5	b4	b3	b2	b1	b0		
Sy	mbol	PT	0	_	—	—	ED	EC	EB	EA		
After F	After Reset 0 1 1 1				1	1	1	1				
				_					_			
Bit	Symb				Bit Name			Function				R/W
b0	EA TRCIOA output disable bit ⁽¹⁾			(1)	0: Enabl	•				R/W		
								le output (T		A pin is u	sed as a	
				progra	ammable I/C	D port.)						
b1	EB		TRCI	OB output	disable bit	(1)	0: Enable output					R/W
							1: Disable output (The TRCIOB pin is used as a					
						programmable I/O port.)						
b2	EC		TRCI	OC output	disable bit	(1)	0: Enabl	e output				R/W
							1: Disab	le output (T	he TRCIO	C pin is u	sed as a	
							programmable I/O port.)					
b3	ED		TRCI	OD output	disable bit	(1)	0: Enabl	e output				R/W
							1: Disab	1: Disable output (The TRCIOD pin is used as a				
						programmable I/O port.)						
b4			Nothi	ng is assig	ned. If nec	essary, set	to 0. Whe	n read, the	content is	1.		—
b5												
b6	—											
b7	PTC)		of pulse o	utput force	d cutoff	0: Pulse	output forc	ed cutoff ir	put disat	oled	R/W
			INT0 of pulse output forced cutoff signal input enabled bit			1: Pulse output forced cutoff input enabled						
	Signal input enabled bit				EA, EB, EC,							
								t) when "L"				
L	1						· ·		••			1

19.2.12 Timer RC Output Master Enable Register (TRCOER)

Note:

1. These bits are disabled for input pins set to the input capture function.

19.2.13 Timer RC Trigger Control Register (TRCADCR)

Address	0133h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol			—		ADTRGDE	ADTRGCE	ADTRGBE	ADTRGAE
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	ADTRGAE	A/D trigger A enable bit	0: A/D trigger disabled 1: A/D trigger generated at compare match with registers TRC and TRCGRA	R/W
b1	ADTRGBE	A/D trigger B enable bit	0: A/D trigger disabled 1: A/D trigger generated at compare match with registers TRC and TRCGRB	R/W
b2	ADTRGCE	A/D trigger C enable bit	0: A/D trigger disabled 1: A/D trigger generated at compare match with registers TRC and TRCGRC	R/W
b3	ADTRGDE	A/D trigger D enable bit	0: A/D trigger disabled 1: A/D trigger generated at compare match with registers TRC and TRCGRD	R/W
b4	—	Nothing is assigned. If necessary, s	et to 0. When read, the content is 0.	—
b5	—			
b6	—			
b7	_			

Ado	dress (0181h									
	Bit	b7	b6	b5	b4	b	53	b2	b1	b0	
Sy	mbol — — TRCCLKSEL1 TRCCLKS			TRCCLKSE	L0 -	_	_	TRBOSEL1	TRBOSE	EL0	
After F	Reset	0	0	0	0		0	0	0	0	
Bit	Symbol Bit Name					Function					R/W
b0	TRBOSEL0 TRBO pin select bit				b1 b0	3 000	ianod			R/W	
b1	TRB	OSEL1				0 0: P1_3 assigned 0 1: P3_1 assigned				R/W	
						1 0: Do not set.					
						1 1: P3	_3 ass	signed			
b2		_	Reserved	bit		Set to 0.					R/W
b3		_	Nothing is	assigned. If nec	essary, set t	o 0. Whe	en read	d, the con	tent is 0.		—
b4	TRCC	LKSEL0	TRCCLK p	oin select bit		b5 b4				R/W	
b5	TRCC	LKSEL1				0 0: TRCCLK pin not used 0 1: P1 4 assigned				R/W	
						1 0: P3_3 assigned					
					1 1: P3_7 assigned						
b6		_	Reserved bit			Set to 0.					R/W
b7	 — Nothing is assigned. If necessary, set to 0. When read, the optimized is assigned. 						d, the con	tent is 0.		—	

19.2.14 Timer RB/RC Pin Select Register (TRBRCSR)

The TRBRCSR register selects which pin is assigned to the timer RB and timer RC I/O. To use the I/O pin for timer RB and timer RC, set this register.

Set bits TRBOSEL0 and TRBOSEL1 before setting the timer RB associated registers. Set bits TRCCLKSEL0 and TRCCLKSEL1 before setting the timer RC associated registers. Also, do not change the setting values of bits TRBOSEL0 and TRBOSEL1 during timer RB operation. Do not change the setting values of bits TRCCLKSEL0 and TRCCLKSEL1 during timer RC operation.

Ado	dress	0182h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	mbol	—	TRCIOBSEL2	TRCIOBSEL1	TRCIOBSEL	.0 —	TRCIOASEL2	TRCIOASEL1 T	RCIOASEL0	
After F	Reset	0	0	0	0	0	0	0	0	
D :4	Bit Symbol Bit Name							tion	DAA	
	- ,					b2 b1 b0	Func	lion	R/W	
b0		OASELO		CTRG pin sele	ect dit		CIOA/TRCTR	G pin not used	R/W	
b1	-	OASEL1					_1 assigned		R/W R/W	
b2	TRCI	OASEL2				0 1 0: P0_0 assigned				
							0 1 1: P0_1 assigned			
						1 0 0: P0				
						1 0 1: Do not set.				
						1 1 0: P3_1 assigned				
						1 1 1: Do not set.				
b3		_	Nothing is as	signed. If nec	essary, set t	o 0. When	read, the con	tent is 0.	—	
b4	TRCI	OBSELC	TRCIOB pin	select bit		b6 b5 b4			R/W	
b5	TRCI	OBSEL1					CIOB pin not	used	R/W	
b6	TRCI	OBSEL2					_2 assigned _3 assigned		R/W	
							_3 assigned _4 assigned			
							5 assigned			
							_0 assigned			
							n above: Do n	ot set.		
b7		_	Reserved bit			Set to 0.			R/W	

19.2.15 Timer RC Pin Select Register 0 (TRCPSR0)

The TRCPSR0 register selects which pin is assigned to the timer RC I/O. To use the I/O pin for timer RC, set this register.

Set the TRCPSR0 register before setting the timer RC associated registers. Also, do not change the setting value in this register during timer RC operation.

Ado	dress ()183h									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Sy	mbol	—	TRCIODSEL2	TRCIODSEL1	TRCIODSEL0	—	TRCIOCSEL2	TRCIOCSEL1	TRCIOC	SEL0	
After F	Reset	0	0	0	0	0	0	0	0		
Bit	Bit Symbol Bit Name						Function				
b0	TRCIOCSEL0 TRCIOC pin select bit					2 b1 b0) 0 0: TR	CIOC pin not u	sed		R/W	
b1 b2	TRCIOCSEL1 TRCIOCSEL2					0 0 1: P1_3 assigned				R/W R/W	
02	INCK	JUSELZ					0 1 0: P3_4 assigned 0 1 1: P0_7 assigned				
							1 0 0: P2_1 assigned				
						Other than above: Do not set.					
b3			•	•	•	to 0. When read, the content is 0.				—	
b4	TRCIO	ODSEL0	TRCIOD pin	select bit		3 b5 b4	CIOD pin not u	read		R/W	
b5	TRCIO	DDSEL1						360		R/W	
b6	TRCIO	DDSEL2				0 0 1: P1_0 assigned 0 1 0: P3_5 assigned				R/W	
							_6 assigned				
						1 0 0: P2	_2 assigned				
					C	Other that	n above: Do no	t set.			
b7		 Nothing is assigned. If necessary, set to 0. When read, the content is 0. 									

19.2.16 Timer RC Pin Select Register 1 (TRCPSR1)

The TRCPSR1 register selects which pin is assigned to the timer RC I/O. To use the I/O pin for timer RC, set this register.

Set the TRCPSR1 register before setting the timer RC associated registers. Also, do not change the setting value in this register during timer RC operation.

19.3 Common Items for Multiple Modes

19.3.1 Count Source

The method of selecting the count source is common to all modes. Table 19.5 lists the Count Source Selection, and Figure 19.2 shows a Count Source Block Diagram.

Table 19.5Count Source Selection

Count Source	Selection Method
f1, f2, f4, f8, f32	Count source selected using bits TCK2 to TCK0 in TRCCR1 register
fOCO40M fOCO-F	FRA00 bit in FRA0 register set to 1 (high-speed on-chip oscillator on) Bits TCK2 to TCK0 in TRCCR1 register are set to 110b (fOCO40M) Bits TCK2 to TCK0 in TRCCR1 register are set to 111b (fOCO-F)
External signal input to TRCCLK pin	Bits TCK2 to TCK0 in TRCCR1 register are set to 101b (count source is rising edge of external clock) and the corresponding direction bit in the corresponding direction register is set is set to 0 (input mode)

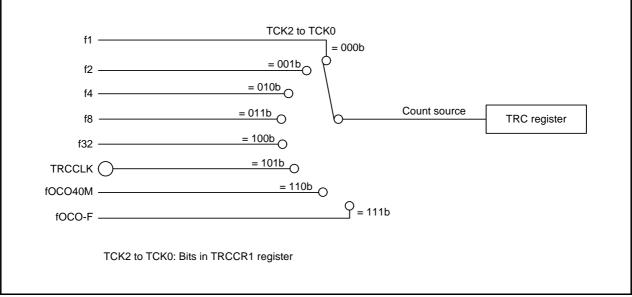


Figure 19.2 Count Source Block Diagram

The pulse width of the external clock input to the TRCCLK pin should be three cycles or more of the timer RC operation clock (refer to **Table 19.1 Timer RC Operation Clock**).

To select fOCO40M or fOCO-F as the count source, set the FRA00 bit in the FRA0 register set to 1 (high-speed on-chip oscillator on), and then set bits TCK2 to TCK0 in the TRCCR1 register to 110b (fOCO40M) or 111b (fOCO-F).

19.3.2 Buffer Operation

Bits BFC and BFD in the TRCMR register are used to select the TRCGRC or TRCGRD register as the buffer register for the TRCGRA or TRCGRB register.

- Buffer register for TRCGRA register: TRCGRC register
- Buffer register for TRCGRB register: TRCGRD register
- Buffer operation differs depending on the mode.

Table 19.6 lists the Buffer Operation in Each Mode, Figure 19.3 shows the Buffer Operation for Input Capture Function, and Figure 19.4 shows the Buffer Operation for Output Compare Function.

Function, Mode	Transfer Timing	Transfer Destination Register
Input capture function	Input capture signal input	Contents of TRCGRA (TRCGRB) register are transferred to buffer register
Output compare function PWM mode	Compare match between TRC register and TRCGRA (TRCGRB) register	Contents of buffer register are transferred to TRCGRA (TRCGRB) register
PWM2 mode	Compare match between TRC register and TRCGRA register TRCTRG pin trigger input	Contents of buffer register (TRCGRD) are transferred to TRCGRB register

Table 19.6 Buffer Operation in Each Mode

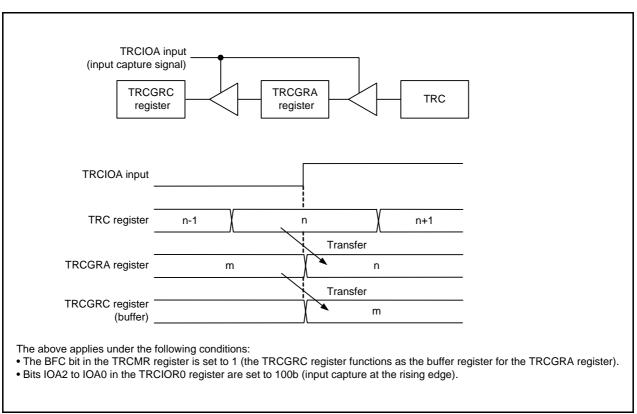


Figure 19.3 Buffer Operation for Input Capture Function

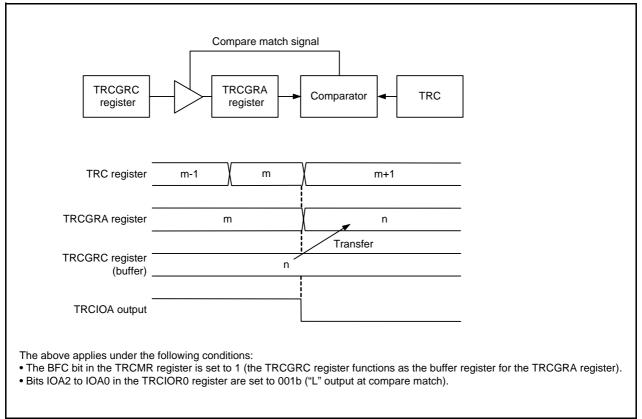
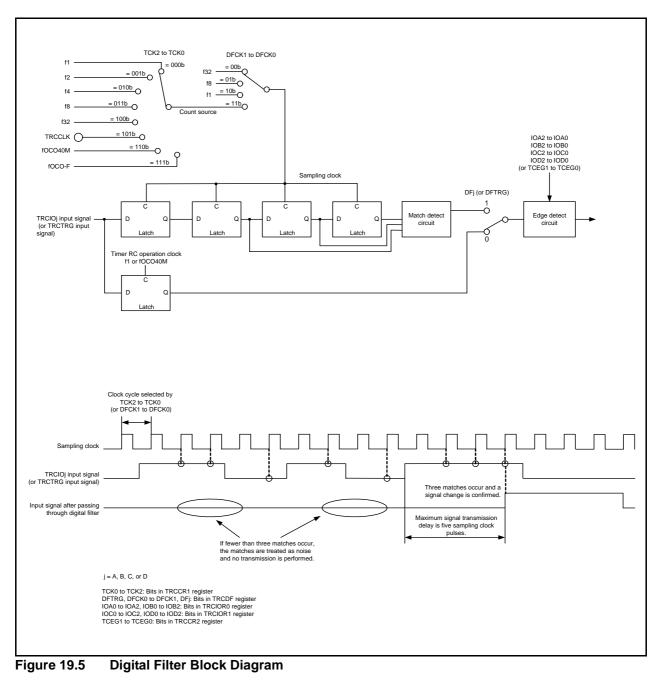


Figure 19.4 Buffer Operation for Output Compare Function

Make the following settings in timer mode.

- To use the TRCGRC register as the buffer register for the TRCGRA register: Set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.
- To use the TRCGRD register as the buffer register for the TRCGRB register:

Set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.


The output compare function, PWM mode, or PWM2 mode, and the TRCGRC or TRCGRD register is functioning as a buffer register, the IMFC bit or IMFD bit in the TRCSR register is set to 1 when a compare match with the TRC register occurs.

The input capture function and the TRCGRC register or TRCGRD register is functioning as a buffer register, the IMFC bit or IMFD bit in the TRCSR register is set to 1 at the input edge of a signal input to the TRCIOC pin or TRCIOD pin.

19.3.3 Digital Filter

The input to TRCTRG or TRCIOj (j = A, B, C, or D) is sampled, and the level is considered to be determined when three matches occur. The digital filter function and sampling clock are selected using the TRCDF register. Figure 19.5 shows a Digital Filter Block Diagram.

19.3.4 Forced Cutoff of Pulse Output

When using the timer mode's output compare function, the PWM mode, or the PWM2 mode, pulse output from the TRCIOj (j = A, B, C, or D) output pin can be forcibly cut off and the TRCIOj pin set to function as a programmable I/O port by means of input to the INTO pin.

A pin used for output by the timer mode's output compare function, the PWM mode, or the PWM2 mode can be set to function as the timer RC output pin by setting the Ej bit in the TRCOER register to 0 (timer RC output enabled). If "L" is input to the $\overline{INT0}$ pin while the PTO bit in the TRCOER register is set to 1 (pulse output forced cutoff signal input $\overline{INT0}$ enabled), bits EA, EB, EC, and ED in the TRCOER register are all set to 1 (timer RC output disabled, TRCIOj output pin functions as the programmable I/O port). When one or two cycles of the timer RC operation clock after "L" input to the $\overline{INT0}$ pin (refer to **Table 19.1 Timer RC Operation Clock**) has elapsed, the TRCIOj output pin becomes a programmable I/O port.

Make the following settings to use this function:

- Set the pin state following forced cutoff of pulse output (high impedance (input), "L" output, or "H" output). (refer to **7. I/O Ports**).
- Set the INT0EN bit in the INTEN register to 1 (INT0 input enabled) and the INT0PL bit to 0 (one edge), and set the POL bit in the INT0IC register to 0 (falling edge selected).
- Set the PD4_5 bit in the PD4 register to 0 (input mode).
- Select the INTO digital filter by bits INTOF1 to INTOF0 in the INTF register.
- Set the PTO bit in the TRCOER register to 1 (pulse output forced cutoff signal input INTO enabled).

The IR bit in the INTOIC register is set to 1 (interrupt request) in accordance with the setting of the POL bit in the INTOIC register and the INTOPL bit in the INTEN register, and a change in the INTO pin input (refer to **11.9 Notes on Interrupts**).

For details on interrupts, refer to **11. Interrupts**.

Figure 19.6 Forced Cutoff of Pulse Output

19.4 Timer Mode (Input Capture Function)

This function measures the width or period of an external signal. An external signal input to the TRCIOj (j = A, B, C, or D) pin acts as a trigger for transferring the contents of the TRC register (counter) to the TRCGRj register (input capture). The input capture function, or any other mode or function, can be selected for each individual pin. The TRCGRA register can also select fOCO128 signal as input-capture trigger input.

Table 19.7 lists the Specifications of Input Capture Function, Figure 19.7 shows a Block Diagram of Input Capture Function, Table 19.8 lists the Functions of TRCGRj Register when Using Input Capture Function, and Figure 19.8 shows an Operating Example of Input Capture Function.

Item	Specification
Count source	f1, f2, f4, f8, f32, fOCO40M, fOCO-F, or external signal (rising edge) input to TRCCLK pin
Count operation	Increment
Count period	 The CCLR bit in the TRCCR1 register is set to 0 (free running operation): 1/fk × 65,536 fk: Count source frequency The CCLR bit in the TRCCR1 register is set to 1 (TRC register set to 0000h at TRCGRA input capture): 1/fk × (n+1) n: TRCGRA register setting value
Count start condition	1 (count starts) is written to the TSTART bit in the TRCMR register.
Count stop condition	0 (count stops) is written to the TSTART bit in the TRCMR register. The TRC register retains a value before count stops.
Interrupt request generation timing	 Input capture (valid edge of TRCIOj input or fOCO128 signal edge) The TRC register overflows.
TRCIOA, TRCIOB, TRCIOC, and TRCIOD pin functions	Programmable I/O port or input capture input (selectable individually for each pin)
INT0 pin function	Programmable I/O port or INT0 interrupt input
Read from timer	The count value can be read by reading TRC register.
Write to timer	The TRC register can be written to.
Select functions	 Input capture input pin selection One or more of pins TRCIOA, TRCIOB, TRCIOC, and TRCIOD Input capture input valid edge selection Rising edge, falling edge, or both rising and falling edges Buffer operation (Refer to 19.3.2 Buffer Operation.) Digital filter (Refer to 19.3.3 Digital Filter.) Timing for setting the TRC register to 0000h Overflow or input capture Input-capture trigger selected fOCO128 can be selected for input-capture trigger input of the TRCGRA register.

j = A, B, C, or D

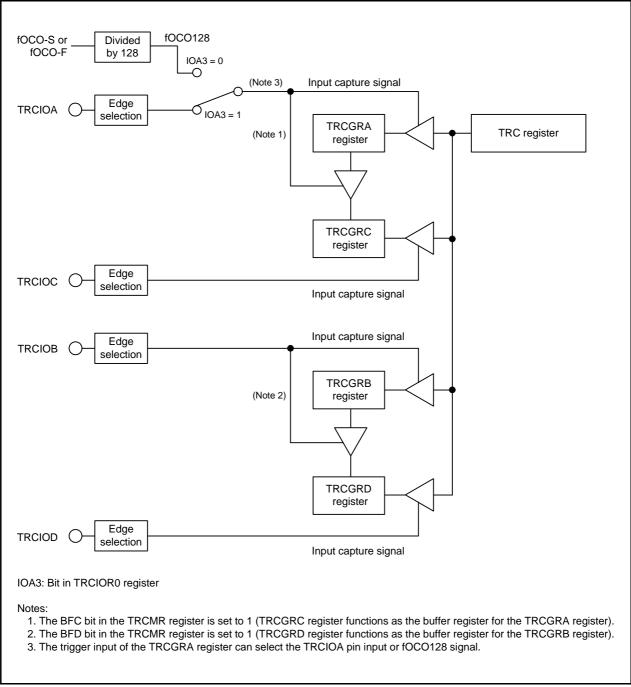


Figure 19.7 Block Diagram of Input Capture Function

19.4.1 Timer RC I/O Control Register 0 (TRCIOR0) for Input Capture Function

Ado	dress 0124	łh										
	Bit b	57	b6	b5	b4	b3	b2	b1	b0			
Sy	mbol -		IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0			
After F	Reset	1	0	0	0	1	0	0	0			
Bit	Symbol		Bit	Name		İ		Function		R/W		
b0 b1	IOA0 IOA1	TRCC	GRA contro	ıl bit		 b1 b0 0 0: Input capture to the TRCGRA register at the rising edge 0 1: Input capture to the TRCGRA register at the falling edge 1 0: Input capture to the TRCGRA register at both edges 1 1: Do not set. 						
b2	IOA2		GRA mode			Set to 1 (input capture) in the input capture function.						
b3	IOA3	TRCC bit ⁽³⁾	GRA input o	capture inp	out switch	0: fOCO128 signal 1: TRCIOA pin input						
b4 b5	IOB0 IOB1		GRB contro			 ^{b5 b4} 0 0: Input capture to the TRCGRB register at the rising edge 0 1: Input capture to the TRCGRB register at the falling edge 1 0: Input capture to the TRCGRB register at both edges 1 1: Do not set. 						
b6	IOB2	TRCC	GRB mode	select bit ((2)	Set to 1 (in	put capture	e) in the inp	put capture functior	n. R/W		

b7 Notes:

1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.

Nothing is assigned. If necessary, set to 0. When read, the content is 1.

2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

3. The IOA3 bit is enabled when the IOA2 bit is set to 1 (input capture function).

19.4.2 Timer RC I/O Control Register 1 (TRCIOR1) for Input Capture Function

Address ()125h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0
After Reset	1	0	0	0	1	0	0	0

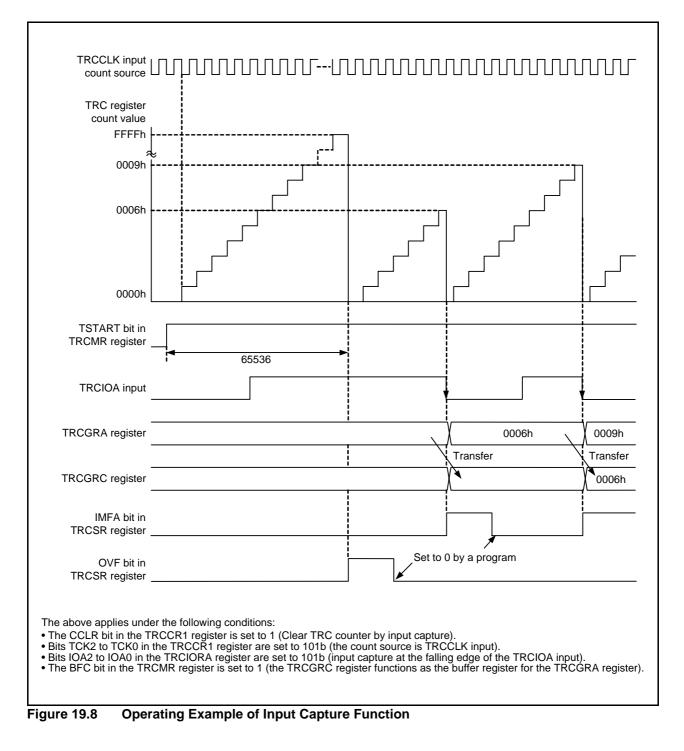
Bit	Symbol	Bit Name	Function	R/W
b0 b1	IOC0 IOC1	TRCGRC control bit	 b1 b0 0 0: Input capture to the TRCGRC register at the rising edge 0 1: Input capture to the TRCGRC register at the falling edge 1 0: Input capture to the TRCGRC register at both edges 1 1: Do not set. 	R/W R/W
b2	IOC2	TRCGRC mode select bit ⁽¹⁾	Set to 1 (input capture) in the input capture function.	R/W
b3	IOC3	TRCGRC register function select bit	Set to 1.	R/W
b4 b5	IOD0 IOD1	TRCGRD control bit	 ^{b5 b4} 0 0: Input capture to the TRCGRD register at the rising edge 0 1: Input capture to the TRCGRD register at the falling edge 1 0: Input capture to the TRCGRD register at both edges 1 1: Do not set. 	R/W R/W
b6	IOD2	TRCGRD mode select bit ⁽²⁾	Set to 1 (input capture) in the input capture function.	R/W
b7	IOD3	TRCGRD register function select bit	Set to 1.	R/W

Notes:

1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.

2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

Table 19.8	Functions of TRCGRj Register when Using Input Capture Function
------------	--


Register	Setting	Register Function	Input Capture Input Pin
TRCGRA	—	General register. Can be used to read the TRC register value	TRCIOA
TRCGRB		at input capture.	TRCIOB
TRCGRC	BFC = 0	General register. Can be used to read the TRC register value	TRCIOC
TRCGRD	BFD = 0	at input capture.	TRCIOD
TRCGRC	BFC = 1	Buffer registers. Can be used to hold transferred value from	TRCIOA
TRCGRD	BFD = 1	the general register. (Refer to 19.3.2 Buffer Operation .)	TRCIOB

j = A, B, C, or D

BFC, BFD: Bits in TRCMR register

19.4.3 Operating Example

19.5 Timer Mode (Output Compare Function)

This function detects when the contents of the TRC register (counter) and the TRCGRj register (j = A, B, C, or D) match (compare match). When a match occurs a signal is output from the TRCIOj pin at a given level. The output compare function, or other mode or function, can be selected for each individual pin.

Table 19.9 lists the Specifications of Output Compare Function, Figure 19.9 shows a Block Diagram of Output Compare Function, Table 19.10 lists the Functions of TRCGRj Register when Using Output Compare Function, and Figure 19.10 shows an Operating Example of Output Compare Function.

Item	Specification
Count source	f1, f2, f4, f8, f32, fOCO40M, fOCO-F, or external signal (rising edge) input to TRCCLK pin
Count operation	Increment
Count period	 The CCLR bit in the TRCCR1 register is set to 0 (free running operation): 1/fk × 65,536 fk: Count source frequency The CCLR bit in the TRCCR1 register is set to 1 (TRC register set to 0000h at TRCGRA compare match): 1/fk × (n+1) n: TRCGRA register setting value
Waveform output timing	Compare match
Count start condition	1 (count starts) is written to the TSTART bit in the TRCMR register.
Count stop condition	 When the CSEL bit in the TRCCR2 register is set to 0 (count continues after compare match with TRCGRA). 0 (count stops) is written to the TSTART bit in the TRCMR register. The output compare output pin retains output level before count stops, the TRC register retains a value before count stops. When the CSEL bit in the TRCCR2 register is set to 1 (count stops at compare match with TRCGRA register). The count stops at the compare match with the TRCGRA register. The output compare output pin retains the level after the output is changed by the compare match.
Interrupt request generation timing	 Compare match (contents of registers TRC and TRCGRj match) The TRC register overflows.
TRCIOA, TRCIOB, TRCIOC, and TRCIOD pin functions	Programmable I/O port or output compare output (Selectable individually for each pin)
INT0 pin function	Programmable I/O port, pulse output forced cutoff signal input, or INTO interrupt input
Read from timer	The count value can be read by reading the TRC register.
Write to timer	The TRC register can be written to.
Select functions	 Output compare output pin selection One or more of pins TRCIOA, TRCIOB, TRCIOC, and TRCIOD Compare match output level selection "L" output, "H" output, or toggle output Initial output level selection Sets output level for period from count start to compare match Timing for setting the TRC register to 0000h Overflow or compare match with the TRCGRA register Buffer operation (Refer to 19.3.2 Buffer Operation.) Pulse output forced cutoff signal input (Refer to 19.3.4 Forced Cutoff of Pulse Output.) Can be used as an internal timer by disabling timer RC output Changing output pins for registers TRCGRC and TRCGRD TRCGRC can be used for output control of the TRCIOA pin and TRCGRD can be used for output control of the TRCIOB pin. A/D trigger generation

 Table 19.9
 Specifications of Output Compare Function

j = A, B, C, or D

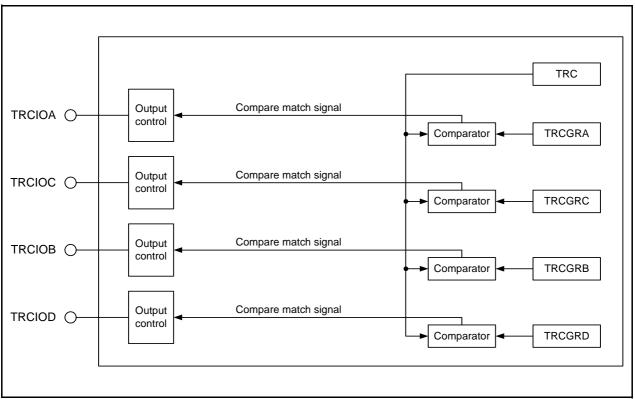


Figure 19.9 Block Diagram of Output Compare Function

19.5.1 Timer RC Control Register 1 (TRCCR1) for Output Compare Function

Address 0121h									
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	CCLR	TCK2	TCK1	TCK0	TOD	TOC	TOB	TOA	
After Reset	0	0	0	0	0	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	TOA	TRCIOA output level select bit ^(1, 2)	0: Initial output "L"	R/W
b1	TOB	TRCIOB output level select bit ^(1, 2)	1: Initial output "H"	R/W
b2	TOC	TRCIOC output level select bit ^(1, 2)		R/W
b3	TOD	TRCIOD output level select bit (1, 2)		R/W
b4	TCK0	Count source select bit ⁽¹⁾	b6 b5 b4 0 0 0: f1	R/W
b5	TCK1		0 0 1: f2	R/W
b6	TCK2		0 1 0: f4 0 1 1: f8 1 0 0: f32 1 0 1: TRCCLK input rising edge 1 1 0: fOCO40M	R/W
b7	CCLR	TRC counter clear select bit	 1 1 1: fOCO-F ⁽³⁾ Disable clear (free-running operation) 1: Clear by compare match in the TRCGRA register 	R/W

Notes:

- 1. Set to these bits when the TSTART bit in the TRCMR register is set to 0 (count stops).
- 2. If the pin function is set for waveform output (refer to **7.5 Port Settings**), the initial output level is output when the TRCCR1 register is set.
- 3. To select fOCO-F, set it to the clock frequency higher than the CPU clock frequency.

Table 19.10 Functions of TRCGRj Register when Using Output Compare Function

Register	Setting	Register Function	Output Compare Output Pin
TRCGRA	—	General register. Write a compare value to one of these	TRCIOA
TRCGRB	-	registers.	TRCIOB
TRCGRC	BFC = 0	General register. Write a compare value to one of these	TRCIOC
TRCGRD	BFD = 0	registers.	TRCIOD
TRCGRC	BFC = 1	Buffer register. Write the next compare value to one of	TRCIOA
TRCGRD	BFD = 1	these registers. (Refer to 19.3.2 Buffer Operation .)	TRCIOB

j = A, B, C, or D

BFC, BFD: Bits in TRCMR register

19.5.2 Timer RC I/O Control Register 0 (TRCIOR0) for Output Compare Function

Add	dress 0124	4h										
	Bit	b7	b6	b5	b4	b3	b2	b1	b0			
Sy	mbol		IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0			
After R	Reset	1	0	0	0	1	0	0	0			
		-		1								
Bit	Symbol			Name			ŀ	unction		R/W		
b0	IOA0	TRCO	GRA contro	ol bit	ľ	0 0. Disable i	nin output h	v compare	e match (TRCIO	DA pin		
b1	IOA1						s as the pro			R/W		
									in the TRCGR	A		
						register				-		
							ut by comp	are match	in the TRCGR	A		
						register						
						1 1: Toggle output by compare match in the TRCGRA						
						register						
b2	IOA2	TRC	GRA mode	select bit		· · ·	ut compare	e) in the ou	tput compare	R/W		
						function.						
b3	IOA3		GRA input	capture inp	out	Set to 1.						
		switc										
b4	IOB0	TRC	GRB contro	ol bit	1	5 b4 0 0: Disable i	nin outout h	w compare	e match (TRCIO	OB nin R/W		
b5	IOB1						s as the pro			R/W		
									in the TRCGR	в		
						register	at by compe			-		
						0	ut by comp	are match	in the TRCGR	в		
						register	, · · · ·					
						1 1: Toggle o	utput by co	mpare ma	tch in the TRC	GRB		
						register						
b6	IOB2	TRC	GRB mode	select bit	(2)	Set to 0 (outp	ut compare	e) in the ou	tput compare	R/W		
					1	function.						
b7	_	Nothi	ng is assig	ned. If nec	essary,	, set to 0. When read, the content is 1.						

Notes:

1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in theTRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.

2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

19.5.3 Timer RC I/O Control Register 1 (TRCIOR1) for Output Compare Function

Ado	dress 012	5h									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Sy	mbol l	DD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0		
After F	Reset	1	0	0	0	1	0	0	0		
Bit	Symbol	1	Bit	Name				Function			R/W
b0	IOC0		GRC contro			b1 b0		Tunction			R/W
b0 b1	IOC1					 0 0: Disable pin output by compare match 0 1: "L" output by compare match in the TRCGRC register 1 0: "H" output by compare match in the TRCGRC 					
	10.00				(1)	register 1 1: Toggle output by compare match in the TRCGRC register					
b2	IOC2	TRC	GRC mode	select bit	(1)	Set to 0 (output compare) in the output compare function.					
b3	IOC3	TRC	GRC regist	er function	select	0: TRCIOA output register					R/W
		bit	-			1: General register or buffer register					
b4	IOD0	TRC	GRD contro	ol bit		b5 b4					R/W
b5	IOD1					 0 0: Disable pin output by compare match 0 1: "L" output by compare match in the TRCGRD register 1 0: "H" output by compare match in the TRCGRD register 1 1: Toggle output by compare match in the TRCGRD register 					R/W
b6	IOD2	TRC	GRD mode	select bit	(2)	Set to 0 (output compare) in the output compare function.					R/W
b7	IOD3	TRC	GRD regist	er function	select	0: TRCIOB output register					

Notes:

bit

1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in theTRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.

1: General register or buffer register

2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in theTRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

19.5.4 Timer RC Control Register 2 (TRCCR2) for Output Compare Function

Address	Address 0130h										
Bit	b7	b6	b5	b4	b3	b2	b1	b0			
Symbol	TCEG1	TCEG0	CSEL			POLD	POLC	POLB			
After Reset	0	0	0	1	1	0	0	0	•		

Bit	Symbol	Bit Name	Function	R/W					
b0	POLB	PWM mode output level control bit B ⁽¹⁾	0: TRCIOB output level selected as "L" active 1: TRCIOB output level selected as "H" active	R/W					
b1	POLC	PWM mode output level control bit C ⁽¹⁾	0: TRCIOC output level selected as "L" active 1: TRCIOC output level selected as "H" active	R/W					
b2	POLD	PWM mode output level control bit D ⁽¹⁾	0: TRCIOD output level selected as "L" active 1: TRCIOD output level selected as "H" active	R/W					
b3	—	Nothing is assigned. If necessary, s	Nothing is assigned. If necessary, set to 0. When read, the content is 1.						
b4	—								
b5	CSEL	TRC count operation select bit ⁽²⁾	 0: Count continues at compare match with the TRCGRA register 1: Count stops at compare match with the TRCGRA register 	R/W					
b6	TCEG0	TRCTRG input edge select bit (3)	0 0: Disable the trigger input from the TRCTRG pin	R/W					
b7	TCEG1		 0 1: Rising edge selected 1 0: Falling edge selected 1 1: Both edges selected 	R/W					

Notes:

1. Enabled when in PWM mode.

2. Enabled when in output compare function, PWM mode, or PWM2 mode. For notes on PWM2 mode, refer to **19.9.6 TRCMR Register in PWM2 Mode**.

3. Enabled when in PWM2 mode.

19.5.5 Operating Example

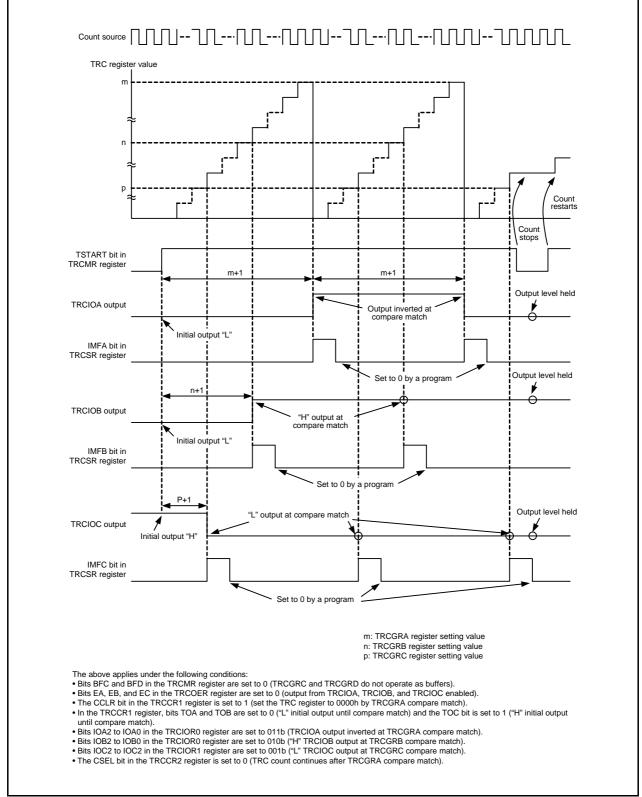
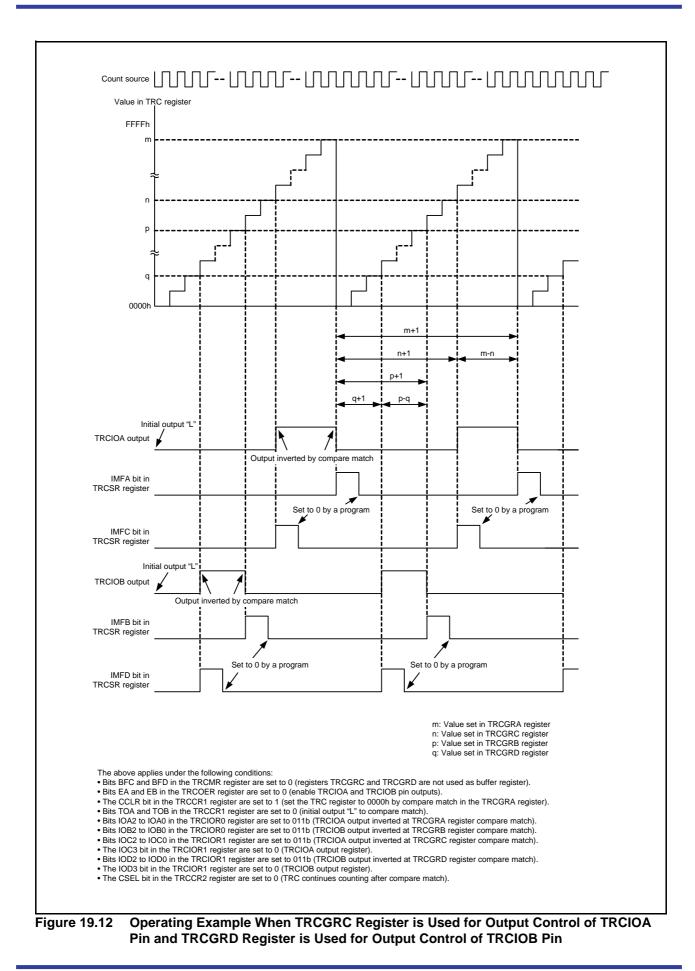


Figure 19.10 Operating Example of Output Compare Function

19.5.6 Changing Output Pins in Registers TRCGRC and TRCGRD

The TRCGRC register can be used for output control of the TRCIOA pin, and the TRCGRD register can be used for output control of the TRCIOB pin. Therefore, each pin output can be controlled as follows:

- TRCIOA output is controlled by the values in registers TRCGRA and TRCGRC.
- TRCIOB output is controlled by the values in registers TRCGRB and TRCGRD.


Change output pins in registers TRCGRC and TRCGRD as follows:

- Set the IOC3 bit in the TRCIOR1 register to 0 (TRCIOA output register) and set the IOD3 bit to 0 (TRCIOB output register).
- Set bits BFC and BFD in the TRCMR register to 0 (general register).
- Set different values in registers TRCGRC and TRCGRA. Also, set different values in registers TRCGRD and TRCGRB.

Figure 19.12 shows an Operating Example When TRCGRC Register is Used for Output Control of TRCIOA Pin and TRCGRD Register is Used for Output Control of TRCIOB Pin.

RENESAS

19.6 PWM Mode

This mode outputs PWM waveforms. A maximum of three PWM waveforms with the same period are output. The PWM mode, or the timer mode, can be selected for each individual pin. (However, since the TRCGRA register is used when using any pin for the PWM mode, the TRCGRA register cannot be used for the timer mode.) Table 19.11 lists the Specifications of PWM Mode, Figure 19.13 shows a PWM Mode Block Diagram, Table 19.12 lists the Functions of TRCGRh Register in PWM Mode, and Figures 19.14 and 19.15 show Operating Examples of PWM Mode.

Item	Specification
Count source	f1, f2, f4, f8, f32, fOCO40M, fOCO-F, or external signal (rising edge) input to TRCCLK pin
Count operation	Increment
PWM waveform	PWM period: 1/fk × (m+1) Active level width: 1/fk × (m-n) Inactive width: 1/fk × (n+1) fk: Count source frequency m: TRCGRA register setting value n: TRCGRj register setting value $\qquad \qquad $
Count start condition	1 (count starts) is written to the TSTART bit in the TRCMR register.
Count stop condition	 When the CSEL bit in the TRCCR2 register is set to 0 (count continues after compare match with TRCGRA). 0 (count stops) is written to the TSTART bit in the TRCMR register. PWM output pin retains output level before count stops, TRC register retains value before count stops. When the CSEL bit in the TRCCR2 register is set to 1 (count stops at compare match with TRCGRA register). The count stops at the compare match with the TRCGRA register. The PWM output pin retains the level after the output is changed by the compare match.
Interrupt request generation timing	Compare match (contents of registers TRC and TRCGRh match) The TRC register overflows.
TRCIOA pin function TRCIOB, TRCIOC, and	Programmable I/O port Programmable I/O port or PWM output (selectable individually for each pin)
TRCIOD pin functions	
INT0 pin function	Programmable I/O port, pulse output forced cutoff signal input, or INTO interrupt input
Read from timer	The count value can be read by reading the TRC register.
Write to timer	The TRC register can be written to.
Select functions	 One to three pins selectable as PWM output pins One or more of pins TRCIOB, TRCIOC, and TRCIOD Active level selectable for each pin Initial level selectable for each pin Buffer operation (Refer to 19.3.2 Buffer Operation.) Pulse output forced cutoff signal input (Refer to 19.3.4 Forced Cutoff of Pulse Output.) A/D trigger generation

Table 19.11	Specifications	of PWM Mode
-------------	----------------	-------------

j = B, C, or D

 $\mathsf{h}=\mathsf{A},\,\mathsf{B},\,\mathsf{C},\,\mathsf{or}\;\mathsf{D}$

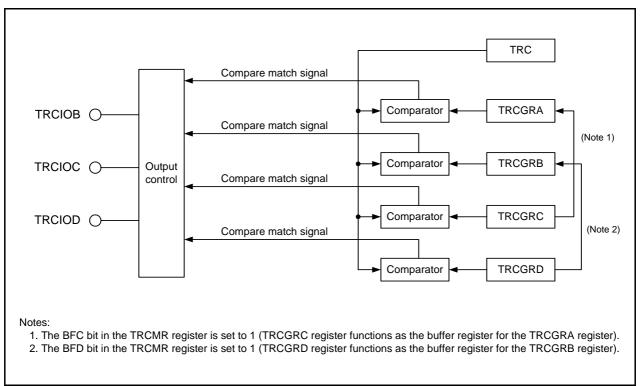


Figure 19.13 PWM Mode Block Diagram

19.6.1 Timer RC Control Register 1 (TRCCR1) in PWM Mode

Address	Address 0121h								
Bit	Bit b7 b6 b5 b4 b3 b2 b1 b0								
Symbol	CCLR	TCK2	TCK1	TCK0	TOD	TOC	TOB	TOA	
After Reset	0	0	0	0	0	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	TOA	TRCIOA output level select bit ⁽¹⁾	Disabled in PWM mode	R/W
b1	TOB	TRCIOB output level select bit (1, 2)	0: Initial output selected as non-active level	R/W
b2	TOC	TRCIOC output level select bit ^(1, 2)	1: Initial output selected as active level	R/W
b3	TOD	TRCIOD output level select bit ^(1, 2)		R/W
b4	TCK0	Count source select bit ⁽¹⁾	b6 b5 b4 0 0 0: f1	R/W
b5	TCK1		0 0 1: f2	R/W
b6	TCK2		0 1 0: f4	R/W
			0 1 1: f8	
			1 0 0: f32	
			1 0 1: TRCCLK input rising edge	
			1 1 0: fOCO40M	
			1 1 1: fOCO-F ⁽³⁾	
b7	CCLR	TRC counter clear select bit	0: Disable clear (free-running operation)	R/W
			1: Clear by compare match in the TRCGRA register	

Notes:

- 1. Set to these bits when the TSTART bit in the TRCMR register is set to 0 (count stops).
- 2. If the pin function is set for waveform output (refer to **7.5 Port Settings**), the initial output level is output when the TRCCR1 register is set.
- 3. To select fOCO-F, set it to the clock frequency higher than the CPU clock frequency.

19.6.2 Timer RC Control Register 2 (TRCCR2) in PWM Mode

Address	Address 0130h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	TCEG1	TCEG0	CSEL			POLD	POLC	POLB	
After Reset	0	0	0	1	1	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	POLB	PWM mode output level control bit B ⁽¹⁾	0: TRCIOB output level selected as "L" active 1: TRCIOB output level selected as "H" active	R/W
b1	POLC	PWM mode output level control bit C ⁽¹⁾	0: TRCIOC output level selected as "L" active 1: TRCIOC output level selected as "H" active	R/W
b2	POLD	PWM mode output level control bit D ⁽¹⁾	0: TRCIOD output level selected as "L" active 1: TRCIOD output level selected as "H" active	R/W
b3	—	Nothing is assigned. If necessary, s	set to 0. When read, the content is 1.	—
b4	—			
b5	CSEL	TRC count operation select bit ⁽²⁾	 0: Count continues at compare match with the TRCGRA register 1: Count stops at compare match with the TRCGRA register 	R/W
b6	TCEG0	TRCTRG input edge select bit ⁽³⁾	0 0: Disable the trigger input from the TRCTRG pin	R/W
b7	TCEG1		 0 1: Rising edge selected 1 0: Falling edge selected 1 1: Both edges selected 	R/W

Notes:

1. Enabled when in PWM mode.

2. Enabled when in output compare function, PWM mode, or PWM2 mode. For notes on PWM2 mode, refer to **19.9.6 TRCMR Register in PWM2 Mode**.

3. In timer mode and PWM mode these bits are disabled.

Table 19.12 Functions of TRCGRh Register in PWM Mode

Register	Setting	Register Function	PWM Output Pin
TRCGRA	—	General register. Set the PWM period.	—
TRCGRB	—	General register. Set the PWM output change point.	TRCIOB
TRCGRC	BFC = 0	General register. Set the PWM output change point.	TRCIOC
TRCGRD	BFD = 0		TRCIOD
TRCGRC	BFC = 1	Buffer register. Set the next PWM period. (Refer to 19.3.2 Buffer Operation .)	—
TRCGRD	BFD = 1	Buffer register. Set the next PWM output change point. (Refer to 19.3.2 Buffer Operation .)	TRCIOB

h = A, B, C, or D

BFC, BFD: Bits in TRCMR register

Note:

1. The output level does not change even when a compare match occurs if the TRCGRA register value (PWM period) is the same as the TRCGRB, TRCGRC, or TRCGRD register value.

19.6.3 Operating Example

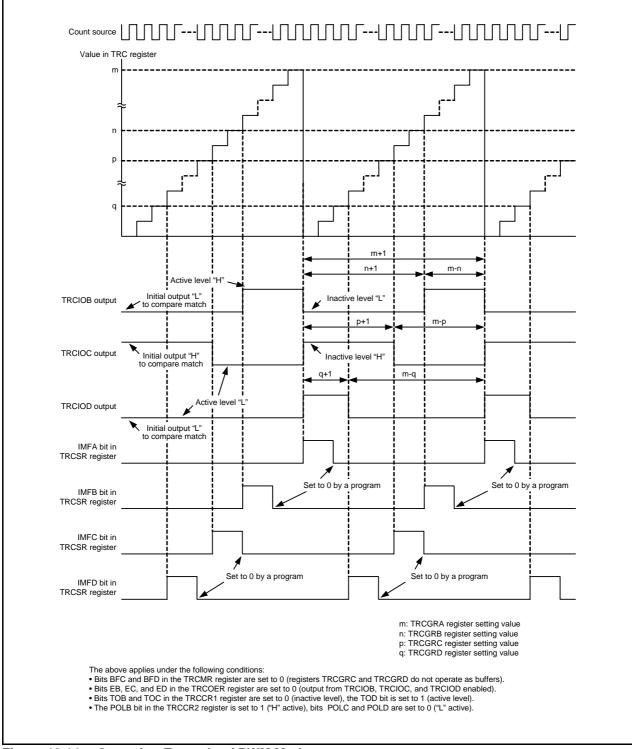


Figure 19.14 Operating Example of PWM Mode

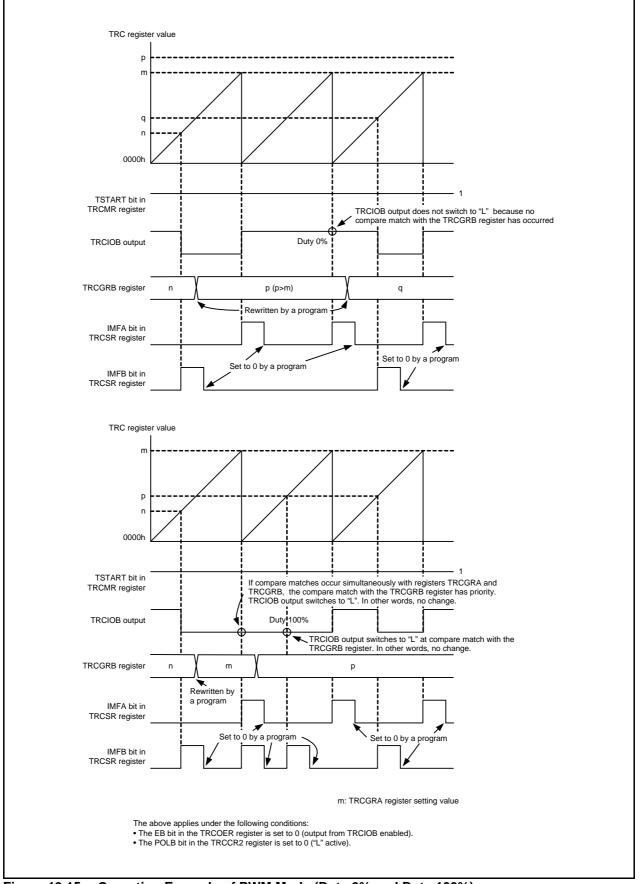


Figure 19.15 Operating Example of PWM Mode (Duty 0% and Duty 100%)

19.7 PWM2 Mode

This mode outputs a single PWM waveform. After a given wait duration has elapsed following the trigger, the pin output switches to active level. Then, after a given duration, the output switches back to inactive level. Furthermore, the counter stops at the same time the output returns to inactive level, making it possible to use PWM2 mode to output a programmable wait one-shot waveform.

Since timer RC uses multiple general registers in PWM2 mode, other modes cannot be used in conjunction with it. Figure 19.16 shows a PWM2 Mode Block Diagram, Table 19.13 lists the Specifications of PWM2 Mode, Table 19.14 lists the Functions of TRCGRj Register in PWM2 Mode, and Figures 19.17 to 19.19 show Operating Examples of PWM2 Mode.

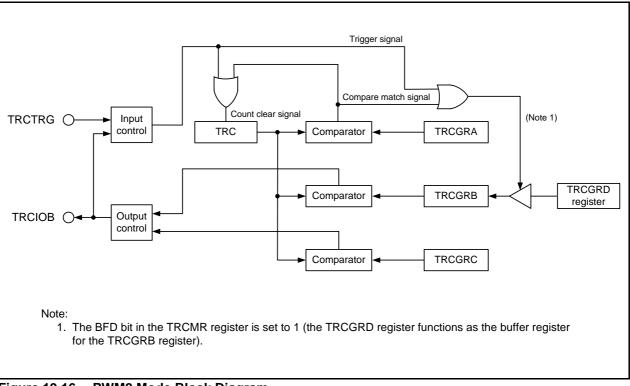


Figure 19.16 PWM2 Mode Block Diagram

Item	Specification					
Count source	f1, f2, f4, f8, f32, fOCO40M, fOCO-F, or external signal (rising edge) input to TRCCLK pin					
Count operation	Increment TRC register					
PWM waveform	PWM period: 1/fk × (m+1) (no TRCTRG input) Active level width: 1/fk × (n-p) Wait time from count start or trigger: 1/fk × (p+1) fk: Count source frequency m: TRCGRA register setting value, n: TRCGRB register setting value p: TRCGRC register setting value					
	TRCTRG input					
	(TRCTRG: Rising edge, active level is "H")					
Count start conditions	 Bits TCEG1 to TCEG0 in the TRCCR2 register are set to 00b (TRCTRG trigger disabled) or the CSEL bit in the TRCCR2 register is set to 0 (count continues). 1 (count starts) is written to the TSTART bit in the TRCMR register. Bits TCEG1 to TCEG0 in the TRCCR2 register are set to 01b, 10b, or 11b (TRCTRG trigger enabled) and the TSTART bit in the TRCMR register is set to 1 (count starts). A trigger is input to the TRCTRG pin 					
Count stop conditions	 O (count stops) is written to the TSTART bit in the TRCMR register while the CSEL bit in the TRCCR2 register is set to 0 or 1. The TRCIOB pin outputs the initial level in accordance with the value of the TOB bit in the TRCCR1 register. The TRC register retains the value before count stops. The count stops due to a compare match with TRCGRA while the CSEL bit in the TRCCR2 register is set to 1. The TRCIOB pin outputs the initial level. The TRC register retains the value before count stops if the CCLR bit in the TRCCR1 register is set to 0. The TRC register is set to 0.0000 hit the CCLR bit in the TRCCR1 register is set to 1. 					
Interrupt request generation timing	 Compare match (contents of TRC and TRCGRj registers match) The TRC register overflows 					
TRCIOA/TRCTRG pin function	Programmable I/O port or TRCTRG input					
TRCIOB pin function	PWM output					
TRCIOC and TRCIOD pin functions	Programmable I/O port					
INT0 pin function	Programmable I/O port, pulse output forced cutoff signal input, or INTO interrupt input					
Read from timer	The count value can be read by reading the TRC register.					
Write to timer	The TRC register can be written to.					
Select functions	 External trigger and valid edge selection The edge or edges of the signal input to the TRCTRG pin can be used as the PWM output trigger: rising edge, falling edge, or both rising and falling edges Buffer operation (Refer to 19.3.2 Buffer Operation.) Pulse output forced cutoff signal input (Refer to 19.3.4 Forced Cutoff of Pulse Output.) 					
j = A, B, or C	 Digital filter (Refer to 19.3.3 Digital Filter.) A/D trigger generation 					

Table 19.13 Specifications of PWM2 Mode

j = A, B, or C

19.7.1 Timer RC Control Register 1 (TRCCR1) in PWM2 Mode

Address	Address 0121h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	CCLR	TCK2	TCK1	TCK0	TOD	TOC	TOB	TOA	
After Reset	0	0	0	0	0	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	TOA	TRCIOA output level select bit ⁽¹⁾	Disabled in PWM2 mode	R/W
b1	ТОВ	TRCIOB output level select bit ^(1, 2)	 0: Active level "H" (Initial output "L" "H" output by compare match in the TRCGRC register "L" output by compare match in the TRCGRB register) 1: Active level "L" (Initial output "H" "L" output by compare match in the TRCGRC register "H" output by compare match in the TRCGRC register "H" output by compare match in the TRCGRB register) 	R/W
b2	TOC	TRCIOC output level select bit ⁽¹⁾	Disabled in PWM2 mode	R/W
b3	TOD	TRCIOD output level select bit ⁽¹⁾		R/W
b4 b5 b6	TCK0 TCK1 TCK2	Count source select bit ⁽¹⁾	b6 b5 b4 0 0 0: f1 0 0 1: f2 0 1 0: f4 0 1 1: f8 1 0 0: f32 1 0 1: TRCCLK input rising edge 1 1 0: fOCO40M 1 1 1: fOCO-F ⁽³⁾	R/W R/W R/W
b7	CCLR	TRC counter clear select bit	0: Disable clear (free-running operation) 1: Clear by compare match in the TRCGRA register	R/W

Notes:

1. Set to these bits when the TSTART bit in the TRCMR register is set to 0 (count stops).

2. If the pin function is set for waveform output (refer to **7.5 Port Settings**), the initial output level is output when the TRCCR1 register is set.

3. To select fOCO-F, set it to the clock frequency higher than the CPU clock frequency.

19.7.2 Timer RC Control Register 2 (TRCCR2) in PWM2 Mode

Address	Address 0130h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	TCEG1	TCEG0	CSEL			POLD	POLC	POLB	
After Reset	0	0	0	1	1	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	POLB	PWM mode output level control bit B ⁽¹⁾	0: TRCIOB output level selected as "L" active 1: TRCIOB output level selected as "H" active	R/W
b1	POLC	PWM mode output level control bit C ⁽¹⁾	0: TRCIOC output level selected as "L" active 1: TRCIOC output level selected as "H" active	R/W
b2	POLD	PWM mode output level control bit D ⁽¹⁾	0: TRCIOD output level selected as "L" active 1: TRCIOD output level selected as "H" active	R/W
b3	—	Nothing is assigned. If necessary, s	et to 0. When read, the content is 1.	—
b4	—	1		
b5	CSEL	TRC count operation select bit ⁽²⁾	 0: Count continues at compare match with the TRCGRA register 1: Count stops at compare match with the TRCGRA register 	R/W
b6	TCEG0	TRCTRG input edge select bit ⁽³⁾	0 0: Disable the trigger input from the TRCTRG pin	R/W
b7	TCEG1		 0 1: Rising edge selected 1 0: Falling edge selected 1 1: Both edges selected 	R/W

Notes:

1. Enabled when in PWM mode.

2. Enabled when in output compare function, PWM mode, or PWM2 mode. For notes on PWM2 mode, refer to **19.9.6 TRCMR Register in PWM2 Mode**.

3. Enabled when in PWM2 mode.

19.7.3 Timer RC Digital Filter Function Select Register (TRCDF) in PWM2 Mode

Address	Address 0131h											
Bit	b7	b6	b5	b4	b3	b2	b1	b0				
Symbol	DFCK1	DFCK0		DFTRG	DFD	DFC	DFB	DFA	1			
After Reset	0	0	0	0	0	0	0	0	-			

Bit	Symbol	Bit Name	Function	R/W
b0	DFA	TRCIOA pin digital filter function select bit ⁽¹⁾	0: Function is not used	R/W
b1	DFB	TRCIOB pin digital filter function select bit ⁽¹⁾	1: Function is used	R/W
b2	DFC	TRCIOC pin digital filter function select bit ⁽¹⁾		R/W
b3	DFD	TRCIOD pin digital filter function select bit ⁽¹⁾		R/W
b4	DFTRG	TRCTRG pin digital filter function select bit ⁽²⁾		R/W
b5		Nothing is assigned. If necessary, set to 0. When	nen read, the content is 0.	—
b6	DFCK0	Clock select bits for digital filter function ^(1, 2)	b7 b6 0 0: f32	R/W
b7	DFCK1		0 1: f8	R/W
			1 0: f1	
			1 1: Count source (clock selected by bits TCK2 to TCK0 in the TRCCR1 register)	

Notes:

- 1. These bits are enabled for the input capture function.
- 2. These bits are enabled when in PWM2 mode and bits TCEG1 to TCEG0 in the TRCCR2 register are set to 01b, 10b, or 11b (TRCTRG trigger input enabled).

Table 19.14 Functions of TRCGRj Register in PWM2 Mode

Register	Setting	Register Function	PWM2 Output Pin
TRCGRA	—	General register. Set the PWM period.	TRCIOB pin
TRCGRB ⁽¹⁾	—	General register. Set the PWM output change point.	
TRCGRC ⁽¹⁾	BFC = 0	General register. Set the PWM output change point (wait time after trigger).	
TRCGRD	BFD = 0	(Not used in PWM2 mode)	—
TRCGRD	BFD = 1	Buffer register. Set the next PWM output change point. (Refer to 19.3.2 Buffer Operation .)	TRCIOB pin

j = A, B, C, or D

BFC, BFD: Bits in TRCMR register

Note:

1. Do not set the TRCGRB and TRCGRC registers to the same value.

19.7.4 Operating Example

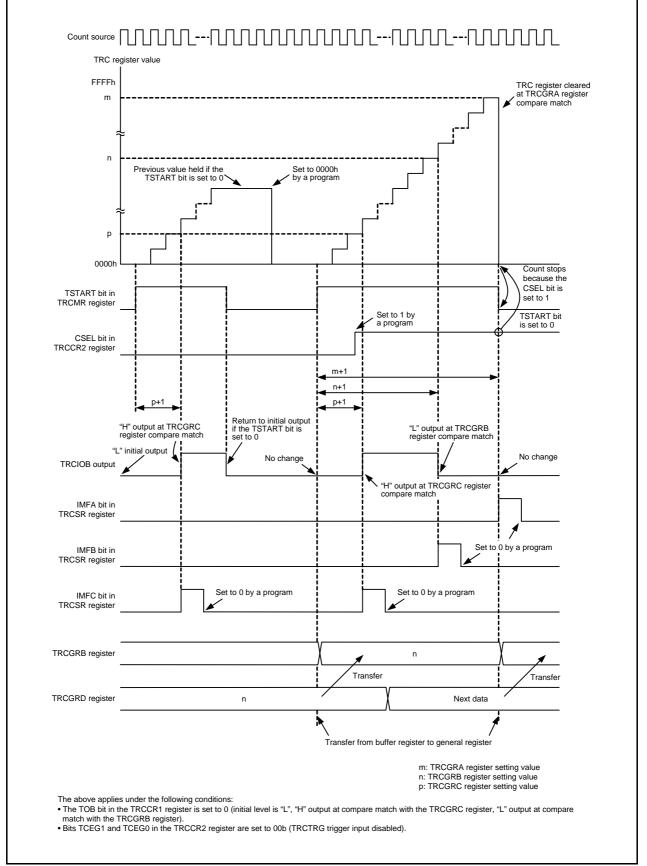


Figure 19.17Operating Example of PWM2 Mode (TRCTRG Trigger Input Disabled)

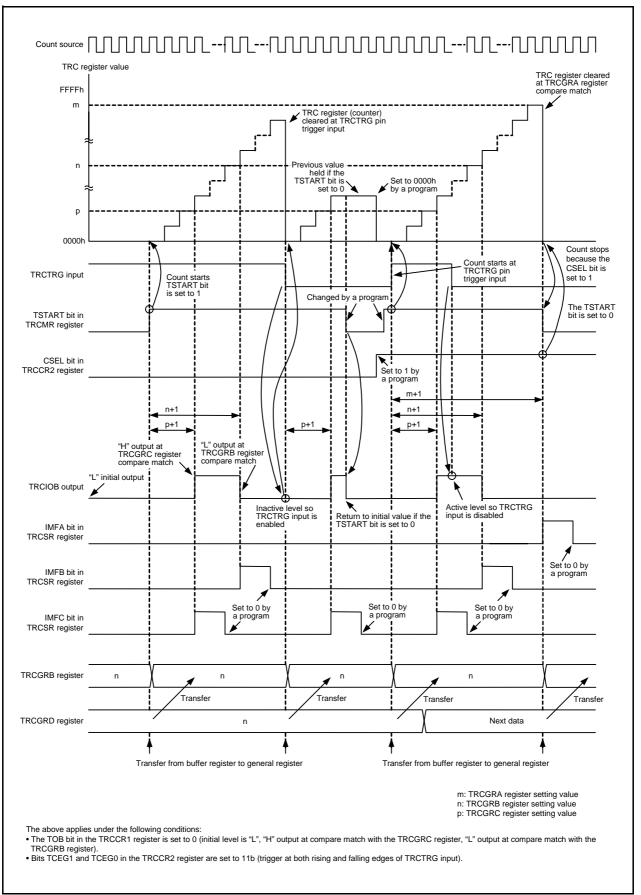


 Figure 19.18
 Operating Example of PWM2 Mode (TRCTRG Trigger Input Enabled)

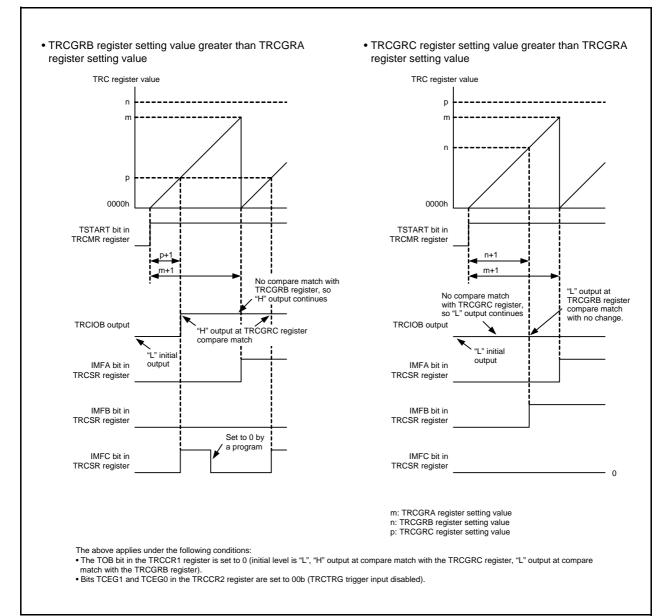


Figure 19.19 Operating Example of PWM2 Mode (Duty 0% and Duty 100%)

19.8 Timer RC Interrupt

Timer RC generates a timer RC interrupt request from five sources. The timer RC interrupt uses the single TRCIC register (bits IR and ILVL0 to ILVL2) and a single vector.

Table 19.15 lists the Registers Associated with Timer RC Interrupt, and Figure 19.20 shows a Timer RC Interrupt Block Diagram.

Table 19.15	Registers Associated with Timer RC Interrupt
-------------	--

Timer RC Status Register	Timer RC Interrupt Enable Register	Timer RC Interrupt Control Register
TRCSR	TRCIER	TRCIC

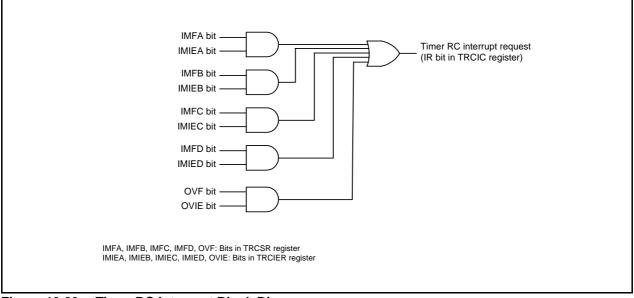


Figure 19.20 Timer RC Interrupt Block Diagram

Like other maskable interrupts, the timer RC interrupt is controlled by the combination of the I flag, IR bit, bits ILVL0 to ILVL2, and IPL. However, it differs from other maskable interrupts in the following respects because a single interrupt source (timer RC interrupt) is generated from multiple interrupt request sources.

- The IR bit in the TRCIC register is set to 1 (interrupt requested) when a bit in the TRCSR register is set to 1 and the corresponding bit in the TRCIER register is also set to 1 (interrupt enabled).
- The IR bit is set to 0 (no interrupt requested) when the bit in the TRCSR register or the corresponding bit in the TRCIER register is set to 0, or both are set to 0. In other words, the interrupt request is not maintained if the IR bit is once set to 1 but the interrupt is not acknowledged.
- If another interrupt source is triggered after the IR bit is set to 1, the IR bit remains set to 1 and does not change.
- If multiple bits in the TRCIER register are set to 1, use the TRCSR register to determine the source of the interrupt request.
- The bits in the TRCSR register are not automatically set to 0 when an interrupt is acknowledged. Set them to 0 within the interrupt routine. Refer to **19.2.5 Timer RC Status Register (TRCSR)**, for the procedure for setting these bits to 0.

Refer to **19.2.4 Timer RC Interrupt Enable Register (TRCIER)**, for details of the TRCIER register. Refer to **11.3 Interrupt Control**, for details of the TRCIC register and **11.1.5.2 Relocatable Vector Tables**, for information on interrupt vectors.

19.9 Notes on Timer RC

19.9.1 TRC Register

• The following note applies when the CCLR bit in the TRCCR1 register is set to 1 (clear TRC register at compare match with TRCGRA register).

When using a program to write a value to the TRC register while the TSTART bit in the TRCMR register is set to 1 (count starts), ensure that the write does not overlap with the timing with which the TRC register is set to 0000h.

If the timing of the write to the TRC register and the setting of the TRC register to 0000h coincide, the write value will not be written to the TRC register and the TRC register will be set to 0000h.

 Reading from the TRC register immediately after writing to it can result in the value previous to the write being read out. To prevent this, execute the JMP.B instruction between the read and the write instructions. Program Example
 MOV.W #XXXXh, TRC ; Write

xample	MOV.W	#XXXXh, TRC	; Write
	JMP.B	L1	; JMP.B instruction
L1:	MOV.W	TRC, DATA	; Read

19.9.2 TRCSR Register

Reading from the TRCSR register immediately after writing to it can result in the value previous to the write being read out. To prevent this, execute the JMP.B instruction between the read and the write instructions.

Program Example	MOV.B	#XXh, TRCSR	; Write
	JMP.B	L1	; JMP.B instruction
L1:	MOV.B	TRCSR, DATA	; Read

19.9.3 TRCCR1 Register

To set bits TCK2 to TCK0 in the TRCCR1 register to 111b (fOCO-F), set fOCO-F to the clock frequency higher than the CPU clock frequency.

19.9.4 Count Source Switching

• Stop the count before switching the count source.

Switching procedure

- (1) Set the TSTART bit in the TRCMR register to 0 (count stops).
- (2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
- After switching the count source from fOCO40M to another clock, allow a minimum of two cycles of f1 to elapse after changing the clock setting before stopping fOCO40M.
- Switching procedure
- (1) Set the TSTART bit in the TRCMR register to 0 (count stops).
- (2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
- (3) Wait for a minimum of two cycles of f1.
- (4) Set the FRA00 bit in the FRA0 register to 0 (high-speed on-chip oscillator off).

• After switching the count source from fOCO-F to fOCO40M, allow a minimum of two cycles of fOCO-F to elapse after changing the clock setting before stopping fOCO-F.

Switching procedure

- (1) Set the TSTART bit in the TRCMR register to 0 (count stops).
- (2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
- (3) Wait for a minimum of two cycles of fOCO-F.
- (4) Set the FRA00 bit in the FRA0 register to 0 (high-speed on-chip oscillator off).
- After switching the count source from fOCO-F to a clock other than fOCO40M, allow a minimum of one cycle of fOCO-F + fOCO40M to elapse after changing the clock setting before stopping fOCO-F. Switching procedure
- (1) Set the TSTART bit in the TRCMR register to 0 (count stops).
- (2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
- (3) Wait for a minimum of one cycle of fOCO-F + fOCO40M.
- (4) Set the FRA00 bit in the FRA0 register to 0 (high-speed on-chip oscillator off).

19.9.5 Input Capture Function

 Set the pulse width of the input capture signal as follows: [When the digital filter is not used]
 Three or more cycles of the timer RC operation clock (refer to Table 19.1 Timer RC Operation Clock)
 [When the digital filter is used]

Five cycles of the digital filter sampling clock + three cycles of the timer RC operating clock, minimum (refer to **Figure 19.5 Digital Filter Block Diagram**)

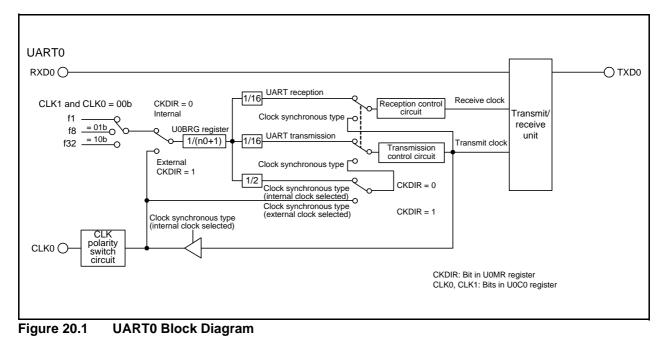
• The value of the TRC register is transferred to the TRCGRj register one or two cycles of the timer RC operation clock after the input capture signal is input to the TRCIOj (j = A, B, C, or D) pin (when the digital filter function is not used).

19.9.6 TRCMR Register in PWM2 Mode

When the CSEL bit in the TRCCR2 register is set to 1 (count stops at compare match with the TRCGRA register), do not set the TRCMR register at compare match timing of registers TRC and TRCGRA.

19.9.7 Count Source fOCO40M

The count source fOCO40M can be used with supply voltage VCC = 2.7 V to 5.5 V. For supply voltage other than that, do not set bits TCK2 to TCK0 in the TRCCR1 register to 110b (select fOCO40M as the count source).


20. Serial Interface (UART0)

The serial interface consists of two channels, UART0 and UART2. This chapter describes the UART0.

20.1 Overview

UART0 has a dedicated timer to generate a transfer clock. UART0 supports clock synchronous serial I/O mode and clock asynchronous serial I/O mode (UART mode).

Figure 20.1 shows a UARTO Block Diagram. Figure 20.2 shows a Block Diagram of UARTO Transmit/Receive Unit. Table 20.1 lists the Pin Configuration of UARTO.

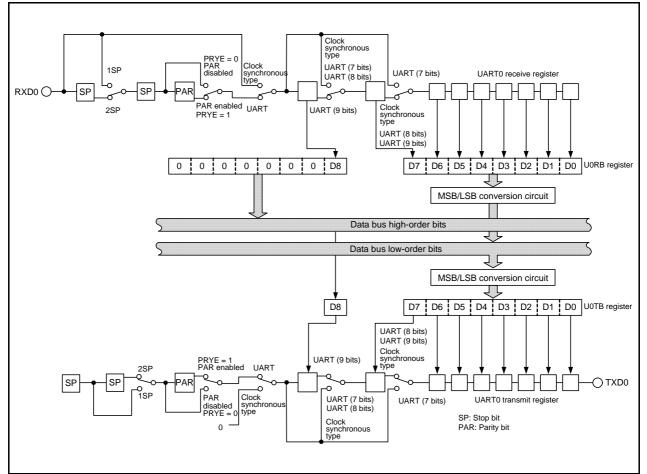
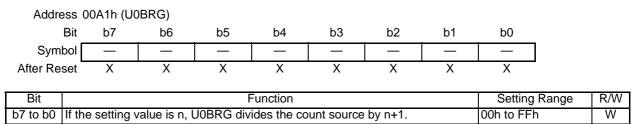


Figure 20.2 Block Diagram of UART0 Transmit/Receive Unit

Table 20.1 Pin Configuration of UART0

Pin Name	Assigned Pin	I/O	Function
TXD0	P1_4	Output	Serial data output
RXD0	P1_5	Input	Serial data input
CLK0	P1_6	I/O	Transfer clock I/O



20.2 Registers

20.2.1 UART0 Transmit/Receive Mode Register (U0MR)

Addre	ess 00A0	h (U0MR)							
	Bit b7	7 b6	b5	b4	b3	b2	b1	b0	
Sym	bol —	- PRYE	PRY	STPS	CKDIR	SMD2	SMD1	SMD0	
After Re	set 0	0	0	0	0	0	0	0	
Bit	Symbol	1	Bit Name				Function		R/W
							FUNCTION		
b0	SMD0	Serial I/O mod	e select bit		b2 b1 b0	Coriol intorf	ace disable	d	R/W
b1	SMD1							-	R/W
b2	SMD2							ial I/O mode	R/W
~-	0							lata 7 bits long	
								lata 8 bits long	
					1 1 0: L	JART mode	e, transfer c	lata 9 bits long	
					Other th	an above:	Do not set.		
b3	CKDIR	Internal/externation	al clock sel	ect bit	0: Intern	nal clock			R/W
					1: Exter	nal clock			
b4	STPS	Stop bit length	select bit		0: One s	stop bit			R/W
					1: Two s	stop bits			
b5	PRY	Odd/even parit	y select bit		Enabled	when PR	YE = 1		R/W
					0: Odd p	oarity			
					1: Even	parity			
b6	PRYE	Parity enable b	oit		0: Parity	/ disabled			R/W
					1: Parity	enabled			
b7		Reserved bit			Set to 0	•			R/W

20.2.2 UARTO Bit Rate Register (U0BRG)

Write to the U0BRG register while transmission and reception stop.

Use the MOV instruction to write to this register.

Set bits CLK0 and CLK1 in the U0C0 register before writing to the U0BRG register.

20.2.3	0,		ITansiin	Duner	Negiste		<i>,</i>			
Ad	dress (00A3h 1	to 00A2h (U0 ⁻	TB)						
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	_		—		_	—		—	
After I	Reset	Х	Х	Х	Х	Х	Х	Х	Х	
	Bit	b15	b14	b13	b12	b11	b10	b9	b8	
Sy	/mbol		—	—	—	—	—	—	—	
After I	Reset	Х	Х	Х	Х	Х	Х	Х	X	
Bit	Symi	ool				Functio	on			R/W
b0			ansmit data				-			W
b1	<u> </u>									
b2										
b3										
b4										
b5	-									
b6										
b7										
b8	—									
b9	—	No	othing is assig	ned. If neo	cessary, se	t to 0. Whe	en read, the	content is	undefined.	—
b10										
b11	—									
b12										
b13	—									
b14										
b15	-									

20.2.3 UART0 Transmit Buffer Register (U0TB)

If the transfer data is 9 bits long, write data to the high-order byte first, then low-order byte of the U0TB register.

Use the MOV instruction to write to this register.

20.2.4 UART0 Transmit/Receive Control Register 0 (U0C0)

Address	Address 00A4h (U0C0)											
Bit	b7	b6	b5	b4	b3	b2	b1	b0				
Symbol	UFORM	CKPOL	NCH		TXEPT	_	CLK1	CLK0				
After Reset	0	0	0	0	1	0	0	0				

Bit	Symbol	Bit Name	Function	R/W
b0 b1	CLK0 CLK1	BRG count source select bit ⁽¹⁾	b1 b0 0 0: f1 selected 0 1: f8 selected 1 0: f32 selected 1 1: Do not set.	R/W R/W
b2	—	Reserved bit	Set to 0.	R/W
b3	TXEPT	Transmit register empty flag	 0: Data present in the transmit register (transmission in progress) 1: No data in the transmit register (transmission completed) 	R
b4	—	Nothing is assigned. If necessary,	set to 0. When read, the content is 0.	—
b5	NCH	Data output select bit	0: TXD0 pin set to CMOS output 1: TXD0 pin set to N-channel open-drain output	R/W
b6	CKPOL	CLK polarity select bit	 0: Transmit data output at the falling edge and receive data input at the rising edge of the transfer clock 1: Transmit data output at the rising edge and receive data input at the falling edge of the transfer clock 	R/W
b7	UFORM	Transfer format select bit	0: LSB first 1: MSB first	R/W

Note:

1. If the BRG count source is switched, set the U0BRG register again.

20.2.5 UART0 Transmit/Receive Control Register 1 (U0C1)

Address 00A5h (U0C1)									
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	_	—	U0RRM	U0IRS	RI	RE	ΤI	TE	
After Reset	0	0	0	0	0	0	1	0	

Bit	Symbol	Bit Name	Function	R/W
b0	TE	Transmit enable bit	0: Transmission disabled	R/W
			1: Transmission enabled	
b1	TI	Transmit buffer empty flag	0: Data present in the U0TB register	R
			1: No data in the U0TB register	
b2	RE	Receive enable bit	0: Reception disabled	R/W
			1: Reception enabled	
b3	RI	Receive complete flag (1)	0: No data in the U0RB register	R
			1: Data present in the U0RB register	
b4	U0IRS	UART0 transmit interrupt source	0: Transmission buffer empty (TI = 1)	R/W
		select bit	1: Transmission completed (TXEPT = 1)	
b5	UORRM	UART0 continuous receive mode	0: Continuous receive mode disabled	R/W
		enable bit ⁽²⁾	1: Continuous receive mode enabled	
b6	—	Nothing is assigned. If necessary, se	et to 0. When read, the content is 0.	—
b7	—]		

Notes:

1. The RI bit is set to 0 when the higher byte of the U0RB register is read.

2. In UART mode, set the UORRM bit to 0 (continuous receive mode disabled).

20.2.6 UART0 Receive Buffer Register (U0RB)										
Address 00A7h to 00A6h (U0RB)										
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	—	—	—	—	—	—	—	—	
After F	After Reset		Х	Х	Х	Х	Х	Х	Х	
	Bit	b15	b14	b13	b12	b11	b10	b9	b8	
Sy	rmbol	SUM	PER	FER	OER	—	—	—	—	
After F	Reset	Х	Х	Х	Х	Х	Х	Х	Х	
Bit	Symbo	I		Bit Name				Functio	n	R/W
b0	_	—				Receiv	/e data (D7	to D0)		R
b1	—									
b2										
b3	_									
b4										
b5										
b6										
b7	—							`		
b8	—	—	Receive data (D8)							R
b9		Noth	Nothing is assigned. If necessary, set to 0. When read, the content is undefined.							
b10		_								
b11 b12	OER	0							R	
	UER	Over	Overrun error flag ⁽¹⁾				0: No overrun error 1: Overrun error			
b13	FER	Fram	Framing error flag ^(1, 2)				0: No framing error			
						1: Framing error				
b14	PER Parity error flag ^(1, 2)						0: No parity error			
							1: Parity error			
b15	b15 SUM Error sum flag ^(1, 2)						0: No error			
	1: Error									

Notes:

1. Bits SUM, PER, FER, and OER are set to 0 (no error) when either of the following is set:

• Bits SMD2 to SMD0 in the U0MR register are set to 000b (serial interface disabled), or

• The RE bit in the U0C1 register is set to 0 (reception disabled)

The SUM bit is set to 0 (no error) when all of bits PER, FER, and OER are set to 0 (no error).

Bits PER and FER are also set to 0 when the high-order byte of the U0RB register is read.

When setting bits SMD2 to SMD0 in the U0MR register to 000b, set the TE bit in the U0C1 register to 0 (transmission disabled) and the RE bit to 0 (reception disabled).

2. These error flags are invalid when bits SMD2 to SMD0 in the U0MR register are set to 001b (clock synchronous serial I/O mode). When read, the content is undefined.

Always read the U0RB register in 16-bit units.

20.2.7 UARTO Pin Select Register (U0SR)

Address 0188h											
	Bit	b7		b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	_		_		CLK0SEL0		RXD0SEL0	—	TXD0SEL0	
After F	Reset	0		0	0	0	0	0	0	0	
Bit	Symb	ol			Bit Name	;	İ	F	unction		R/W
b0	TXD0S	EL0	TXD0	pin sele	ect bit			0 pin not used			R/W
							_	4 assigned			
b1	 Nothing is assigned. If necessary, set 			to 0. Wh	en read, the co	ntent is	0.	—			
b2	RXD0S	EL0	RXD0) pin sel	ect bit		0: RXD	0 pin not used			R/W
							1: P1_	5 assigned			
b3	—		Nothir	ng is as	signed. If i	necessary, set	to 0. Wh	en read, the co	ntent is	0.	_
b4	CLK0SI	EL0	CLK0	pin sele	ect bit		0: CLK	0 pin not used			R/W
							1: P1_6	6 assigned			
b5	—		Nothir	ng is as	signed. If i	necessary, set	to 0. Wh	en read, the co	ntent is	0.	—
b6	—										
b7	—										

The UOSR register selects which pin is assigned to the UARTO I/O. To use the I/O pin for UARTO, set this register.

Set the U0SR register before setting the UART0 associated registers. Also, do not change the setting value in this register during UART0 operation.

20.2.8 Low-Voltage Signal Mode Control Register (TSMR)

Address	0190h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	I3LVM	I2LVM	I1LVM	IOLVM	U2LVM	—	UOLVM	LVMPR
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	LVMPR	Low-voltage signal mode protect bit	0: Write disabled	R/W
-			1: Write enabled ⁽¹⁾	
b1	UOLVM	UART0 low-voltage signal mode control bit ⁽¹⁾	0: Low-voltage signal mode disabled	R/W
			1: Low-voltage signal mode enabled ⁽²⁾	
b2		Reserved bit	Set to 0.	R/W
b3	U2LVM	UART2 low-voltage signal mode control bit ⁽¹⁾	0: Low-voltage signal mode disabled	R/W
			1: Low-voltage signal mode enabled ⁽²⁾	
b4	IOLVM	INT0 low-voltage signal mode control bit ⁽¹⁾	0: Low-voltage signal mode disabled	R/W
b5	I1LVM	INT1 low-voltage signal mode control bit ⁽¹⁾	1: Low-voltage signal mode enabled	R/W
b6	I2LVM	INT2 low-voltage signal mode control bit ⁽¹⁾		R/W
b7	I3LVM	INT3 low-voltage signal mode control bit ⁽¹⁾		R/W

Notes:

 When the LVMPR bit is set to 1 (write enabled), writing to bits UiLVM (i = 0 or 2) and IjLVM (j = 0 to 3) is enabled. Rewrite bits UiLVM (i = 0 or 2) and IjLVM (j = 0 to 3) after setting the LVMPR bit to 1. When writing 1 to the LVMPR bit, write 0 and then 1 continuously.

2. When the UiLVM (i = 0 or 2) bit is set to 1, the TxDi (i = 0 or 2) pin is set to N-channel open-drain output regardless of the setting of the NCH bit in the UiC0 (i = 0 or 2) register.

20.3 Clock Synchronous Serial I/O Mode

In clock synchronous serial I/O mode, data is transmitted and received using a transfer clock. Table 20.2 lists the Clock Synchronous Serial I/O Mode Specifications. Table 20.3 lists the Registers Used and Settings in Clock Synchronous Serial I/O Mode.

Table 20.2	Clock Synchronous Serial I/O Mode Specifications
------------	--

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clocks	 The CKDIR bit in the U0MR register is set to 0 (internal clock): fj/(2(n+1)) fj = f1, f8, f32 n = setting value in the U0BRG register: 00h to FFh The CKDIR bit is set to 1 (external clock): Input from the CLK0 pin
Transmit start conditions	To start transmission, the following requirements must be met: ⁽¹⁾ • The TE bit in the U0C1 register is set to 1 (transmission enabled). • The TI bit in the U0C1 register is set to 0 (data present in the U0TB register).
Receive start conditions	 To start reception, the following requirements must be met: ⁽¹⁾ The RE bit in the U0C1 register is set to 1 (reception enabled). The TE bit in the U0C1 register is set to 1 (transmission enabled). The TI bit in the U0C1 register is set to 0 (data present in the U0TB register).
Interrupt request generation timing	 For transmission: One of the following can be selected. The UOIRS bit is set to 0 (transmit buffer empty): When data is transferred from the UOTB register to the UART0 transmit register (at start of transmission). The UOIRS bit is set to 1 (transmission completed): When data transmission from the UART0 transmit register is completed. For reception: When data is transferred from the UART0 receive register to the UORB register (at completion of reception).
Error detection	Overrun error ⁽²⁾ This error occurs if the serial interface starts receiving the next unit of data before reading the U0RB register and receives the 7th bit of the next unit of data.
Selectable functions	 CLK polarity selection Transfer data input/output can be selected to occur synchronously with the rising or the falling edge of the transfer clock. LSB first, MSB first selection Whether transmitting or receiving data begins with bit 0 or begins with bit 7 can be selected. Continuous receive mode selection Reception is enabled immediately by reading the U0RB register.

Notes:

1. When an external clock is selected, the requirements must be met in either of the following states:

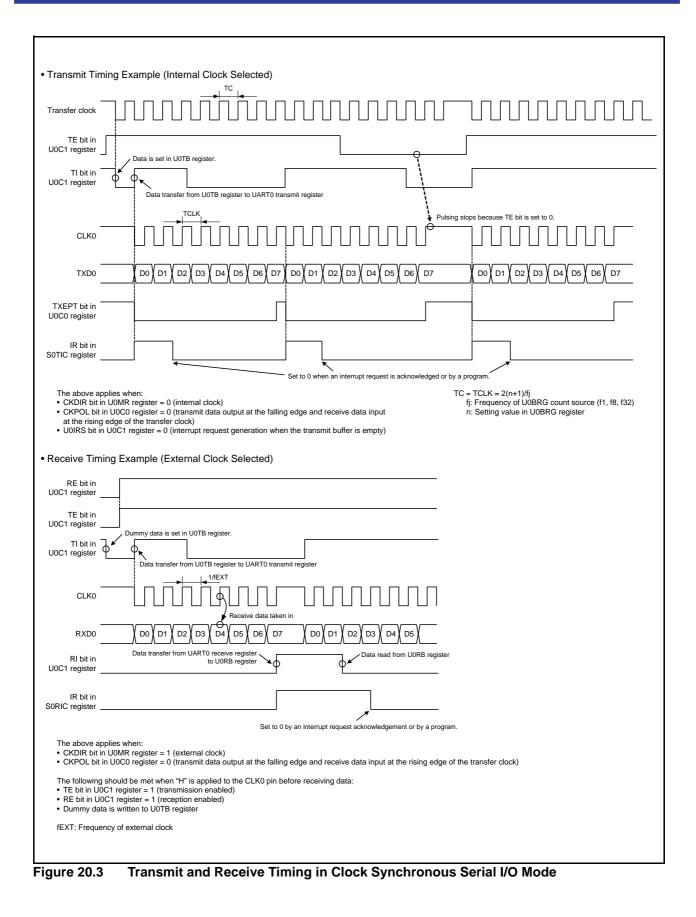
- The external clock is held high when the CKPOL bit in the U0C0 register is set to 0 (transmit data output at the falling edge and receive data input at the rising edge of the transfer clock)
- The external clock is held low when the CKPOL bit in the U0C0 register is set to 1 (transmit data output at the rising edge and receive data input at the falling edge of the transfer clock)
- 2. If an overrun error occurs, the receive data (b0 to b8) in the U0RB register will be undefined. The IR bit in the S0RIC register remains unchanged.

Register	Bit	Function
U0TB	b0 to b7	Set data transmission.
UORB	b0 to b7	Receive data can be read.
	OER	Overrun error flag
U0BRG	b0 to b7	Set a bit rate.
U0MR	SMD2 to SMD0	Set to 001b.
	CKDIR	Select the internal clock or external clock.
U0C0	CLK1, CLK0	Select the count source for the U0BRG register.
	TXEPT	Transmit register empty flag
	NCH	Select TXD0 pin output mode.
	CKPOL	Select the transfer clock polarity.
	UFORM	Select LSB first or MSB first.
U0C1	TE	Set to 1 to enable transmission/reception
	TI	Transmit buffer empty flag
	RE	Set to 1 to enable reception.
	RI	Receive complete flag
	U0IRS	Select the UART0 transmit interrupt source.
	U0RRM	Set to 1 to use continuous receive mode.

Table 20.3 Registers Used and Settings in Clock Synchronous Serial I/O Mode ⁽¹⁾

Note:

1. Set the bits not listed in this table to 0 when writing to the above registers in clock synchronous serial I/O mode.


Table 20.4 lists the I/O Pin Functions in Clock Synchronous Serial I/O Mode.

After UART0 operating mode is selected, the TXD0 pin outputs a "H" level until transfer starts. (If the NCH bit is set to 1 (N-channel open-drain output), this pin is in the high-impedance state.)

Pin Name	Function	Selection Method
TXD0 (P1_4)	Serial data output	TXD0SEL0 bit in U0SR register = 1
		For reception only:
		P1_4 can be used as a port by setting TXD0SEL0 bit = 0.
RXD0 (P1_5)	Serial data input	RXD0SEL0 bit in U0SR register = 1
		PD1_5 bit in PD1 register = 0
		For transmission only:
		P1_5 can be used as a port by setting RXD0SEL0 bit = 0.
CLK0 (P1_6)	Transfer clock output	CLK0SEL0 bit in U0SR register = 1
		CKDIR bit in U0MR register = 0
	Transfer clock input	CLK0SEL0 bit in U0SR register = 1
		CKDIR bit in U0MR register = 1
		PD1_6 bit in PD1 register = 0

Table 20.4 I/O Pin Functions in Clock Synchronous Serial I/O Mode

RENESAS

20.3.1 Measure for Dealing with Communication Errors

If communication is aborted or a communication error occurs while transmitting or receiving in clock synchronous serial I/O mode, follow the procedures below:

- (1) Set the TE bit in the U0C1 register to 0 (transmission disabled) and the RE bit to 0 (reception disabled).
- (2) Set bits SMD2 to SMD0 in the U0MR register to 000b (serial interface disabled).
- (3) Set bits SMD2 to SMD0 in the U0MR register to 001b (clock synchronous serial I/O mode).
- (4) Set the TE bit in the U0C1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled).

20.3.2 Polarity Select Function

Figure 20.4 shows the Transfer Clock Polarity. Use the CKPOL bit in the U0C0 register to select the transfer clock polarity.

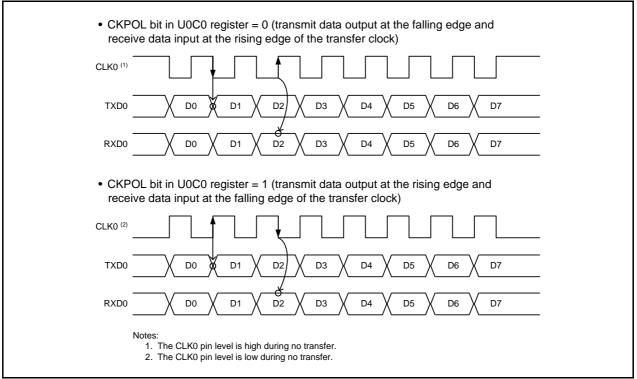


Figure 20.4 Transfer Clock Polarity

20.3.3 LSB First/MSB First Select Function

Figure 20.5 shows the Transfer Format. Use the UFORM bit in the U0C0 register to select the transfer format.

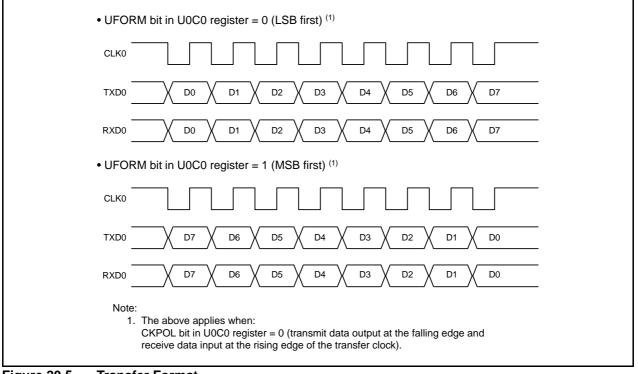


Figure 20.5 Transfer Format

20.3.4 Continuous Receive Mode

Continuous receive mode is selected by setting the U0RRM bit in the U0C1 register to 1 (continuous receive mode enabled). In this mode, reading the U0RB register sets the TI bit in the U0C1 register to 0 (data present in the U0TB register). If the U0RRM bit is set to 1, do not write dummy data to the U0TB register by a program.

20.4 Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows data transmission and reception after setting the desired bit rate and transfer data format. Table 20.5 lists the UART Mode Specifications. Table 20.6 lists the Registers Used and Settings in UART Mode.

Item	Specification
Transfer data formats	Character bits (transfer data): Selectable among 7, 8 or 9 bits
	Start bit: 1 bit
	Parity bit: Selectable among odd, even, or none
	Stop bits: Selectable among 1 or 2 bits
Transfer clocks	• The CKDIR bit in the U0MR register is set to 0 (internal clock): fj/(16(n+1)) fj = f1, f8, f32
	n = setting value in the U0BRG register: 00h to FFh
	• The CKDIR bit is set to 1 (external clock): fEXT/(16(n+1))
	fEXT: Input from the CLK0 pin
	n = setting value in the U0BRG register: 00h to FFh
Transmit start conditions	To start transmission, the following requirements must be met:
	 The TE bit in the U0C1 register is set to 1 (transmission enabled). The TI bit in the U0C1 register is set to 0 (data present in the U0TB register).
Receive start conditions	To start reception, the following requirements must be met: • The RE bit in the U0C1 register is set to 1 (reception enabled). • Start bit detection
Interrupt request	For transmission: One of the following can be selected.
generation timing	• The U0IRS bit is set to 0 (transmit buffer empty):
	When data is transferred from the U0TB register to the UART0 transmit register (at start of transmission).
	• The UOIRS bit is set to 1 (transfer completed):
	When data transmission from the UART0 transmit register is completed. For reception:
	• When data is transferred from the UART0 receive register to the U0RB register (at completion of reception).
Error detection	• Overrun error ⁽¹⁾
	This error occurs if the serial interface starts receiving the next unit of data before reading the U0RB register and receive the bit one before the last stop bit of the next unit of data.
	Framing error
	This error occurs when the set number of stop bits is not detected. ⁽²⁾ • Parity error
	This error occurs when parity is enabled, and the number of 1's in the parity and character bits do not match the set number of 1's. ⁽²⁾
	• Error sum flag
	This flag is set to 1 if an overrun, framing, or parity error occurs.

Table 20.5 UART Mode Specifications

Notes:

- 1. If an overrun error occurs, the receive data (b0 to b8) in the U0RB register will be undefined.
- 2. The framing error flag and the parity error flag are set to 1 when data is transferred from the UART0 receive register to the U0RB register.

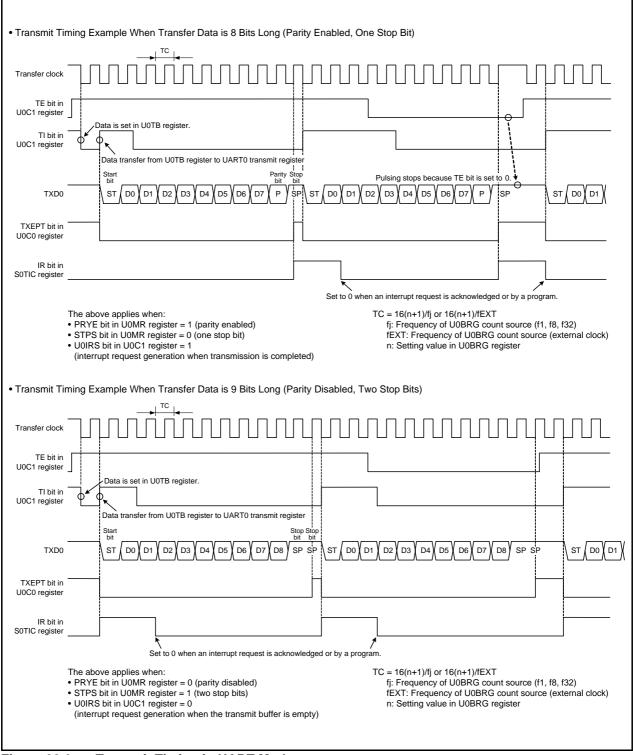
Register	Bit	Function
U0TB	b0 to b8	Set transmit data. (1)
U0RB	b0 to b8	Receive data can be read. ⁽²⁾
	OER, FER, PER, SUM	Error flag
U0BRG	b0 to b7	Set a bit rate.
UOMR	SMD2 to SMD0	Set to 100b when transfer data is 7 bits long. Set to 101b when transfer data is 8 bits long. Set to 110b when transfer data is 9 bits long.
	CKDIR	Select the internal clock or external clock.
	STPS	Select the stop bit.
	PRY, PRYE	Select whether parity is included and whether odd or even.
U0C0	CLK0, CLK1	Select the count source for the U0BRG register.
	TXEPT	Transmit register empty flag
	NCH	Select TXD0 pin output mode.
	CKPOL	Set to 0.
	UFORM	Select LSB first or MSB first when transfer data is 8 bits long. Set to 0 when transfer data is 7 bits or 9 bits long.
U0C1	TE	Set to 1 to enable transmission.
	TI	Transmit buffer empty flag
	RE	Set to 1 to enable reception.
	RI	Receive complete flag
	U0IRS	Select the UART0 transmit interrupt source.
	UORRM	Set to 0.

Table 20.6	Registers Used and Settings in UART Mode
------------	--

Notes:

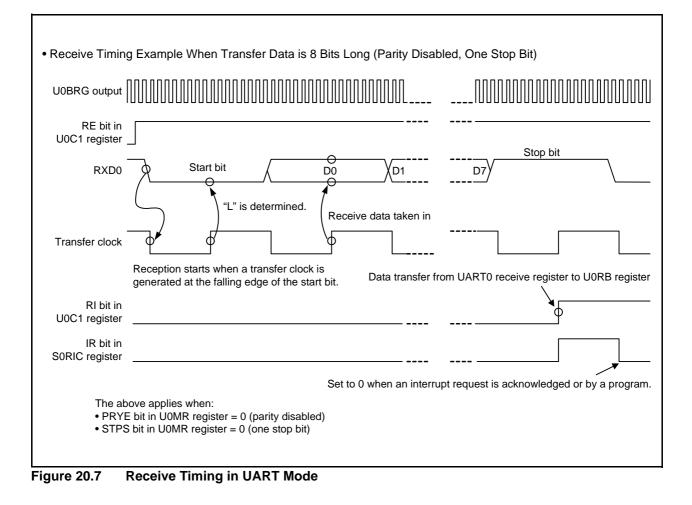
1. The bits used for transmission/receive data are as follows:

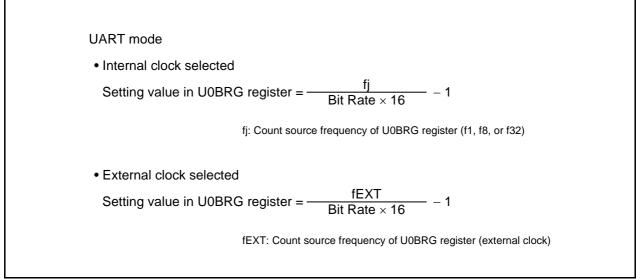
- Bits b0 to b6 when transfer data is 7 bits long
- Bits b0 to b7 when transfer data is 8 bits long
- Bits b0 to b8 when transfer data is 9 bits long
- 2. The contents of the following are undefined:
 - Bits 7 and 8 when the transfer data is 7 bits long
 - Bit 8 when the transfer data is 8 bits long


Table 20.7 lists the I/O Pin Functions in UART Mode.

After the UART0 operating mode is selected, the TXD0 pin outputs a "H" level until transfer starts. (If the NCH bit is set to 1 (N-channel open-drain output), this pin is in the high-impedance state.)

Pin name	Function	Selection Method
TXD0 (P1_4)	Serial data output	TXD0SEL0 bit in U0SR register = 1
		For reception only:
		P1_4 can be used as a port by setting TXD0SEL0 bit = 0 .
RXD0 (P1_5)	Serial data input	RXD0SEL0 bit in U0SR register = 1
		PD1_5 bit in PD1 register = 0
		For transmission only:
		P1_5 can be used as a port by setting RXD0SEL0 bit = 0.
CLK0 (P1_6)	Programmable I/O port	CLK0SEL0 bit in U0SR register = 0 (CLK0 pin not used)
	Transfer clock input	CLK0SEL0 bit in U0SR register = 1
		CKDIR bit in U0MR register = 1
		PD1_6 bit in PD1 register = 0


Table 20.7 I/O Pin Functions in UART Mode


Transmit Timing in UART Mode

20.4.1 Bit Rate

In UART mode, the bit rate is the frequency divided by the U0BRG register and divided by 16.

Table 20.8	Bit Rate Setting Example in UART Mode (Internal Clock Selected)
------------	---

	U0BRG	Systen	n Clock = 20 I	ИНz	System Clock = 18.432 MHz ⁽¹⁾			System Clock = 8 MHz		
Bit Rate (bps)	Count Source	U0BRG Setting Value	Actual Time (bps)	Setting Error (%)	U0BRG Setting Value	Actual Time (bps)	Setting Error (%)	U0BRG Setting Value	Actual Time (bps)	Setting Error (%)
1200	f8	129 (81h)	1201.92	0.16	119 (77h)	1200.00	0.00	51 (33h)	1201.92	0.16
2400	f8	64 (40h)	2403.85	0.16	59 (3Bh)	2400.00	0.00	25 (19h)	2403.85	0.16
4800	f8	32 (20h)	4734.85	-1.36	29 (1Dh)	4800.00	0.00	12 (0Ch)	4807.69	0.16
9600	f1	129 (81h)	9615.38	0.16	119 (77h)	9600.00	0.00	51 (33h)	9615.38	0.16
14400	f1	86 (56h)	14367.82	-0.22	79 (4Fh)	14400.00	0.00	34 (22h)	14285.71	-0.79
19200	f1	64 (40h)	19230.77	0.16	59 (3Bh)	19200.00	0.00	25 (19h)	19230.77	0.16
28800	f1	42 (2Ah)	29069.77	0.94	39 (27h)	28800.00	0.00	16 (10h)	29411.76	2.12
38400	f1	32 (20h)	37878.79	-1.36	29 (1Dh)	38400.00	0.00	12 (0Ch)	38461.54	0.16
57600	f1	21 (15h)	56818.18	-1.36	19 (13h)	57600.00	0.00	8 (08h)	55555.56	-3.55
115200	f1	10 (0Ah)	113636.36	-1.36	9 (09h)	115200.00	0.00		_	—

Note:

1. For the high-speed on-chip oscillator, the correction value in the FRA4 register should be written into the FRA1 register and the correction value in the FRA5 register should be written into the FRA3 register.

This applies when the high-speed on-chip oscillator is selected as the system clock and bits FRA22 to FRA20 in the FRA2 register are set to 000b (divide-by-2 mode). For the precision of the high-speed on-chip oscillator, refer to **27. Electrical Characteristics**.

20.4.2 Measure for Dealing with Communication Errors

If communication is aborted or a communication error occurs while transmitting or receiving in UART mode, follow the procedures below:

- (1) Set the TE bit in the U0C1 register to 0 (transmission disabled) and the RE bit to 0 (reception disabled).
- (2) Set bits SMD2 to SMD0 in the U0MR register to 000b (serial interface disabled).
- (3) Set bits SMD2 to SMD0 in the U0MR register to 100b (UART mode, transfer data 7 bits long), 101b (UART mode, transfer data 8 bits long), or 110b (UART mode, transfer data 9 bits long).
- (4) Set the TE bit in the U0C1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled).

20.5 Low-Voltage Signal Mode

Serial interface (UART0 and UART2) communication and the INT input for the INT interrupt can be performed using a low-voltage signal. Table 20.9 lists the Pins Usable for Inputting and Outputting Low-Voltage Signal. Depending on the setting of the TSMR register, the pins enabled for low-voltage signal mode is switched from

schmitt input to CMOS input when they are used as input.

Set the input threshold values for CMOS input using registers VLT0 and VLT1.

When low-voltage signal mode is used, all inputs are set to CMOS input. Since schmitt input is disabled, always take countermeasures against noise.

Table 20.9	Pins Usable for Inputting and Outputting Low-Voltage Signal
------------	---

F	Peripheral Function Name	Pin
Serial interface	UART0 Clock synchronous serial I/O Clock asynchronous serial I/O	CLK0, RXD0, TXD0
	UART2 Clock synchronous serial I/O Clock asynchronous serial I/O Special mode 1 (I ² C mode) Special mode 2 (SSU mode) Multiprocessor communication function	<u>CLK2, RXD2,</u> TXD2, CTS2, RTS2, SCL2, SDA2
INT	INTO to INT3	INT0 to INT3

20.6 Notes on Serial Interface (UART0)

• When reading data from the UORB register either in clock synchronous serial I/O mode or in clock asynchronous serial I/O mode, always read data in 16-bit units.

When the high-order byte of the U0RB register is read, bits PER and FER in the U0RB register and the RI bit in the U0C1 register are set to 0.

To check receive errors, read the UORB register and then use the read data.

Program example to read the receive buffer register: MOV.W 00A6H, R0 ; Read the U0RB register

• When writing data to the U0TB register in clock asynchronous serial I/O mode with 9-bit transfer data length, write data to the high-order byte first and then the low-order byte, in 8-bit units.

Program example to write to the transmit buffer register:

MOV.B	#XXH, 00A3H	; Write to the high-order byte of the U0TB register
MOV.B	#XXH, 00A2H	; Write to the low-order byte of the U0TB register

21. Serial Interface (UART2)

The serial interface consists of two channels, UART0 and UART2. This chapter describes the UART2.

21.1 Overview

UART2 has a dedicated timer to generate a transfer clock.

Figure 21.1 shows a UART2 Block Diagram. Figure 21.2 shows a Block Diagram of UART2 Transmit/Receive Unit. Table 21.1 lists the Pin Configuration of UART2.

UART2 has the following modes:

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode)
- Special mode 1 (I²C mode)
- Special mode 2 (SSU mode)

• Multiprocessor communication function

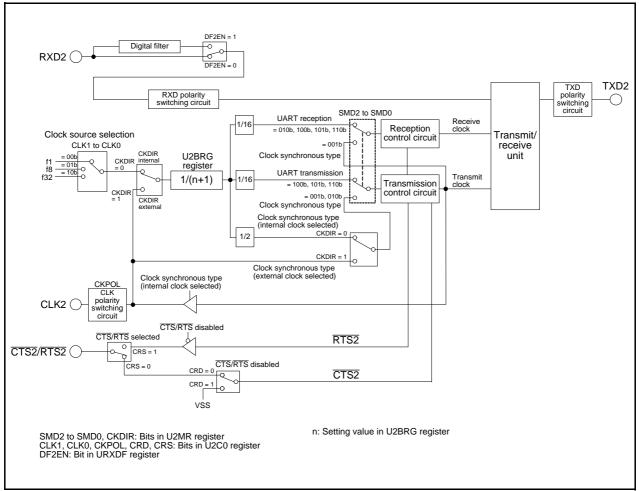
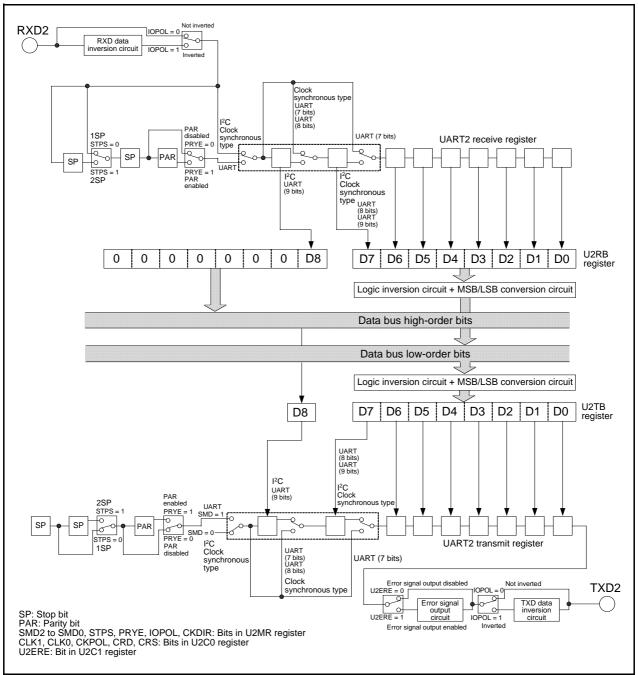
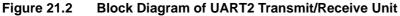
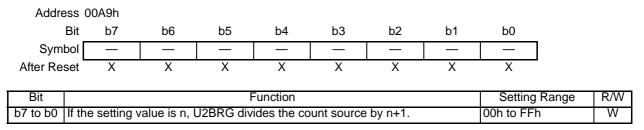




Figure 21.1 UART2 Block Diagram

Table 21.1	Pin Configuration of UART2
------------	----------------------------

Pin Name	Assigned Pin	I/O	Function
TXD2	P2_0, P2_2, P3_4, or P3_7	Output	Serial data output
RXD2	P2_0, P2_2, P3_4, P3_7, or P4_5	Input	Serial data input
CLK2	P2_1 or P3_5	I/O	Transfer clock I/O
CTS2	P3_1 or P3_3	Input	Transmit control input
RTS2	P3_1 or P3_3	Output	Receive control input
SCL2	P2_0, P2_2, P3_4, P3_7, or P4_5	I/O	I ² C mode clock I/O
SDA2	P2_0, P2_2, P3_4, or P3_7	I/O	I ² C mode data I/O



21.2 Registers

21.2.1 UART2 Transmit/Receive Mode Register (U2MR)

Addr	ress 00/	A8h									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Syn	nbol IC	OPOL	PRYE	PRY	STPS	CKDIR	SMD2	SMD1	SMD0		
After Re	eset	0	0	0	0	0	0	0	0		
Bit	Symbo			Bit Name				Functio	n		R/W
b0	SMD		ial I/O mod		ł	b2 b1 b0		1 dilotio			R/W
b0	SMD			0 301000 01	L C C C C C C C C C C C C C C C C C C C	0 0 0: 3	Serial inter	face disabl	ed		R/W
b1 b2	SMD					001:0	Clock sync	hronous se	erial I/O mo	de	R/W
02	SIVID	2				010:1	² C mode				r/ vv
						100:0	UART mod	e, transfer	data 7 bits	long	
						101:0	UART mod	e, transfer	data 8 bits	long	
						110:0	UART mod	e, transfer	data 9 bits	long	
						Other the	han above:	Do not se	t.		
b3	CKDI	R Inte	rnal/extern	al clock se	lect bit	0: Inter	nal clock				R/W
						1: Exte	rnal clock				
b4	STPS	S Sto	o bit length	select bit		0: One	stop bit				R/W
						1: Two	stop bits				
b5	PRY	Odd	l/even pari	ty select bi	t	Enable	d when PR	YE = 1			R/W
						0: Odd	parity				
						1: Even	n parity				
b6	PRYE	E Par	ity enable k	oit		0: Parit	y disabled				R/W
						1: Parit	y enabled				
b7	IOPO	L TXI	D, RXD I/O	polarity sv	vitch bit	0: Not i	nverted				R/W
						1: Inver	ted				

21.2.2 UART2 Bit Rate Register (U2BRG)

Write to the U2BRG register while transmission and reception stop. Use the MOV instruction to write to this register.

Set bits CLK1 to CLK0 in the U2C0 register before writing to the U2BRG register.

21.2.3	UA	ART2	Transmit	Buffer	Registe	r (U2TB	5)			
Ado	dress (0ABh to	o 00AAh							
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	mbol	—	—	—	—	—	—	—	—	
After F	Reset	Х	Х	Х	Х	Х	Х	Х	Х	
	Bit	b15	b14	b13	b12	b11	b10	b9	b8	
Sy	mbol	_	_		—	_		_	MPTB	
After F	Reset	Х	Х	Х	Х	Х	Х	Х	Х	
Bit	Syı	mbol				Func	tion			R/W
b0	-		Transmit da	ita (D7 to I	D0)					W
b1	-	_								
b2	-									
b3	-									
b4	-									
b5	-		-							
b6	-		_							
b7		-								
b8	MI	PTB	Transmit da [When the r Transmit da [When the r • To transfe • To transfe	nultiproces ita (D8) nultiproces r an ID, se r data, set	ssor comm t the MPTE the MPTB	unication fu bit to 1. bit to 0.	inction is u	sed]		W
b9	-		Nothing is a	assigned. I	f necessary	/, set to 0. \	Nhen read,	, the conter	nt is 0.	—
b10										
b11	-									
b12	-		1							
b13	-		4							
b14	-		1							
b15	-									

Note:

1. Set bits b0 to b7 after setting the MPTB bit.

21.2.4 UART2 Transmit/Receive Control Register 0 (U2C0)

Address	00ACh							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	UFORM	CKPOL	NCH	CRD	TXEPT	CRS	CLK1	CLK0
After Reset	0	0	0	0	1	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0 b1	CLK0 CLK1	U2BRG count source select bit ⁽¹⁾	b1 b0 0 0: f1 selected 0 1: f8 selected 1 0: f32 selected 1 1: Do not set.	R/W R/W
b2	CRS	CTS/RTS function select bit	Enabled when CRD = 0 0: $\overline{\text{CTS}}$ function selected 1: $\overline{\text{RTS}}$ function selected	R/W
b3	TXEPT	Transmit register empty flag	 0: Data present in the transmit register (transmission in progress) 1: No data in the transmit register (transmission completed) 	R
b4	CRD	CTS/RTS disable bit	0: <u>CTS/RTS</u> function enabled 1: CTS/RTS function disabled	R/W
b5	NCH	Data output select bit	0: Pins TXD2/SDA2, SCL2 set to CMOS output 1: Pins TXD2/SDA2, SCL2 set to N-channel open-drain output	R/W
b6	CKPOL	CLK polarity select bit	 0: Transmit data output at the falling edge and receive data input at the rising edge of the transfer clock 1: Transmit data output at the rising edge and receive data input at the falling edge of the transfer clock 	R/W
b7	UFORM	Transfer format select bit ⁽²⁾	0: LSB first 1: MSB first	R/W

Notes:

1. If bits CLK1 to CLK0 are switched, set the U2BRG register again.

2. The UFORM bit is enabled when bits SMD2 to SMD0 in the U2MR register are set to 001b (clock synchronous serial I/O mode), or set to 101b (UART mode, transfer data 8 bits long).

Set the UFORM bit to 1 when bits SMD2 to SMD0 are set to 010b (I²C mode), and to 0 when bits SMD2 to SMD0 are set to 100b (UART mode, transfer data 7 bits long) or 110b (UART mode, transfer data 9 bits long).

21.2.5 UART2 Transmit/Receive Control Register 1 (U2C1)

Address	00ADh								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	U2ERE	U2LCH	U2RRM	U2IRS	RI	RE	TI	TE	1
After Reset	0	0	0	0	0	0	1	0	•

Bit	Symbol	Bit Name	Function	R/W
b0	TE	Transmit enable bit	0: Transmission disabled 1: Transmission enabled	R/W
b1	TI	Transmit buffer empty flag	0: Data present in the U2TB register 1: No data in the U2TB register	R
b2	RE	Receive enable bit	0: Reception disabled 1: Reception enabled	R/W
b3	RI	Receive complete flag	0: No data in the U2RB register 1: Data present in the U2RB register	R
b4	U2IRS	UART2 transmit interrupt source select bit	0: Transmit buffer empty (TI = 1) 1: Transmission completed (TXEPT = 1)	R/W
b5	U2RRM	UART2 continuous receive mode enable bit	0: Continuous receive mode disabled 1: Continuous receive mode enabled	R/W
b6	U2LCH	Data logic select bit ⁽¹⁾	0: Not inverted 1: Inverted	R/W
b7	U2ERE	Error signal output enable bit	0: Output disabled 1: Output enabled	R/W

Note:

The U2LCH bit is enabled when bits SMD2 to SMD0 in the U2MR register are set to 001b (clock synchronous serial I/O mode), 100b (UART mode, transfer data 7 bits long), or 101b (UART mode, transfer data 8 bits long). Set the U2LCH bit to 0 when bits SMD2 to SMD0 are set to 010b (I²C mode) or 110b (UART mode, transfer data 9 bits long).

-				J	(,			
Add	dress 00AF	h to 00AEh							
	Bit b	7 b6	b5	b4	b3	b2	b1	b0	
Sy	mbol –	- —	—	—	—	—	—	—	
After R	Reset X	X	Х	Х	Х	Х	Х	Х	
	Bit b1	5 b14	b13	b12	b11	b10	b9	b8	
Sv	mbol SU		FER	OER		_		MPRB	
After R			X	X	X	X	X	X	
Bit	Symbol	E	Bit Name				Function		R/W
b0	—				Receive d	lata (D7 to	D0)		R
b1		_							
b2 b3	_	_							
b3 b4		_							
b4 b5	_	_							
b6	_	-							
b7	_	_							
b8	MPRB	—			Receive d	lata (D8) ⁽¹⁾)		R
						e multiproce	essor com	munication fur	nction is
					not used]				
					Receive d		ssor com	munication fur	action is
					used]	multiproce	5501 0011	nunication fui	
						e MPRB bi	t is set to	0, received D0) to D7
					are data				
							t is set to	1, received D0) to D7
b9		Nothing is as	signed If n	000000011/	are ID fie		no content	is undefined	
b9 b10			Signeu. Il li	ecessaiy,	361 IU U. WI	ilen ieau, li			
b11	_	Reserved bit			Set to 0.				R/W
b12	OER	Overrun error	r flag ⁽¹⁾		0: No ove	rrun error			R
					1: Overrui				
b13	FER	Framing error	r flag ^(1, 2)		0: No fram				R
h 4 4			(1 0)		1: Framing				
b14	PER	Parity error fla	ag (1, 2)		0: No pari 1: Parity e				R
		1			1. Failty 6				
b15	SUM	Error sum flag	a (1, 2)		0: No erro	r			R

21.2.6 UART2 Receive Buffer Register (U2RB)

Notes:

 When bits SMD2 to SMD0 in the U2MR register are set to 000b (serial interface disabled) or the RE bit in the U2C1 register is set to 0 (reception disabled), all of bits SUM, PER, FER, and OER are set to 0 (no error). The SUM bit is set to 0 (no error) when all of bits PER, FER, and OER are set to 0 (no error). Bits PER and FER are set to 0 by reading the lower byte of the U2RB register.

When setting bits SMD2 to SMD0 in the U2MR register to 000b, set the TE bit in the U2C1 register to 0 (transmission disabled) and the RE bit to 0 (reception disabled).

2. These error flags are disabled when bits SMD2 to SMD0 in the U2MR register are set to 001b (clock synchronous serial I/O mode) or to 010b (I²C mode). When read, the content is undefined.

Always read the U2RB register in 16-bit units.

21.2.7 UART2 Digital Filter Function Select Register (URXDF)

Ado	dress 00E	30h									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Sy	mbol	—	_		—	—	DF2EN	_	_]	
After F	Reset	0	0	0	0	0	0	0	0	-	
Bit	Symbol	1	R	Bit Name				Function		R/	ΛΛ
	Cymbol								<u> </u>		
b0	_	Noth	ing is assig	ined. If nec	essary, se	t to 0. Whe	en read, the	content is	0.	-	-
b1											
b2	DF2EN	RXD	2 digital filt	er enable b	oit (1)	0: RXD2	2 digital filter	r disabled		R/	/W
			0			1: RXD	2 digital filter	enabled			
b3		Noth	ing is assig	ned. If nec	essary, se	t to 0. Whe	en read, the	content is	0.	-	_
b4	_										
b5											
b6											
b7											

Note:

 The RXD2 digital filter can be used only in clock asynchronous serial I/O (UART) mode. When bits SMD2 to SMD0 in the U2MR register are set to 001b (clock synchronous serial I/O mode) or 010b (I²C mode), set the DF2EN bit to 0 (RXD2 digital filter disabled).

21.2.8 UART2 Special Mode Register 5 (U2SMR5)

Ad	dress 00	0BBh								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	ymbol	_	_	—	MPIE	—	—	—	MP	
After I	Reset	0	0	0	0	0	0	0	0	
Bit	Symbo	ol	B	it Name				Function	l	R/W
b0	MP		processor o le bit	communic	ation	-			tion disabled tion enabled ⁽¹⁾	R/W
b1	—	Noth	ing is assig	ned. If neo	cessary, set	to 0. Whe	n read, the	e content is	0.	—
b2	—									
b3	—									
b4	MPIE	contr	processor (rol bit			(multipro When the result: • Receivising registe • On rec multipr receive commutipr	e data in w red. Setting r and bits (r to 1 is dis eiving rece ocessor bit operation unication is	mmunication is set to 1, which the m g of the RI DER and F sabled. eive data in t is 1, the M other than performed	PIE bit is set to 0 and multiprocessor	
b5	_	Noth	ing is assig	ned. If neo	cessary, set	to 0. Whe	n read, the	e content is	0.	—
b6										
b7	_	Rese	erved bit			Set to 0.				R/W

Note:

1. When the MP bit is set to 1 (multiprocessor communication enabled), the settings of bits PRY and PRYE in the U2MR register are disabled. If bits SMD2 to SMD0 in the U2MR register are set to 001b (clock synchronous serial I/O mode), set the MP bit to 0 (multiprocessor communication disabled).

21.2.9 UART2 Special Mode Register 4 (U2SMR4)

Address (00BCh							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	SWC9	SCLHI	ACKC	ACKD	STSPSEL	STPREQ	RSTAREQ	STAREQ
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	STAREQ	Start condition generate bit ⁽¹⁾	0: Clear 1: Start	R/W
b1	RSTAREQ	Restart condition generate bit ⁽¹⁾	0: Clear 1: Start	R/W
b2	STPREQ	Stop condition generate bit ⁽¹⁾	0: Clear 1: Start	R/W
b3	STSPSEL	SCL, SDA output select bit	0: Start and stop conditions not output 1: Start and stop conditions output	R/W
b4	ACKD	ACK data bit	0: ACK 1: NACK	R/W
b5	ACKC	ACK data output enable bit	0: Serial interface data output 1: ACK data output	R/W
b6	SCLHI	SCL output stop enable bit	0: Disabled 1: Enabled	R/W
b7	SWC9	SCL wait bit 3	0: SCL "L" hold disabled 1: SCL "L" hold enabled	R/W

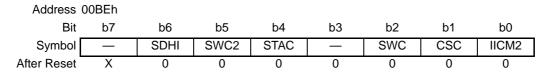
Note:

1. This bit is set to 0 when each condition is generated.

21.2.10 UART2 Special Mode Register 3 (U2SMR3)

Address (00BDh
-----------	-------

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	DL2	DL1	DL0	_	NODC	_	CKPH	
After Reset	0	0	0	Х	0	Х	0	Х


Bit	Symbol	Bit Name	Function	R/W
b0	_	Nothing is assigned. If necessary, set t	to 0. When read, the content is undefined.	—
b1	CKPH	Clock phase set bit	0: No clock delay	R/W
			1: With clock delay	
b2	—	Nothing is assigned. If necessary, set t	o 0. When read, the content is undefined.	—
b3	NODC	Clock output select bit	0: CLK2 set to CMOS output	R/W
			1: CLK2 set to N-channel open-drain output	
b4	—	Nothing is assigned. If necessary, set t	o 0. When read, the content is undefined.	—
b5	DL0	SDA2 digital delay setup bit (1, 2)	b7 b6 b5	R/W
b6	DL1		0 0 0: No delay	R/W
b7	DL2		0 0 1: 1 to 2 cycle(s) of U2BRG count source 0 1 0: 2 to 3 cycles of U2BRG count source	R/W
			0 1 1: 3 to 4 cycles of U2BRG count source	
			1 0 0: 4 to 5 cycles of U2BRG count source	
			1 0 1: 5 to 6 cycles of U2BRG count source	
			1 1 0: 6 to 7 cycles of U2BRG count source	
			1 1 1: 7 to 8 cycles of U2BRG count source	

Notes:

1. Bits DL2 to DL0 are used to generate a delay in SDA2 output digitally in I²C mode. In other than I²C mode, set these bits to 000b (no delay).

2. The amount of delay varies with the load on pins SCL2 and SDA2. When an external clock is used, the amount of delay increases by about 100 ns.

21.2.11 UART2 Special Mode Register 2 (U2SMR2)

Bit	Symbol	Bit Name	Function	R/W
b0	IICM2	I ² C mode select bit 2	Refer to Table 21.12 I ² C Mode Functions.	R/W
b1	CSC	Clock synchronization bit	0: Disabled 1: Enabled	R/W
b2	SWC	SCL wait output bit	0: Disabled 1: Enabled	R/W
b3	—	Reserved bit	Set to 0.	R/W
b4	STAC	UART2 initialization bit	0: Disabled 1: Enabled	R/W
b5	SWC2	SCL wait output bit 2	0: Transfer clock 1: "L" output	R/W
b6	SDHI	SDA output disable bit	0: Enabled 1: Disabled (high-impedance)	R/W
b7	—	Nothing is assigned. If necessary, se	et to 0. When read, the content is undefined.	—

21.2.12 UART2 Special Mode Register (U2SMR)

Ado	dress 00	OBF	h									
	Bit	b	7	b6	b5	b4	b3	b2	b1	b0		
Sy	mbol		-		_			BBS	_	IICM		
After F	Reset	Х	(0	0	0	0	0	0	0		
Bit	Symbo	ol		В	it Name				Function	1	R/W	
b0	IICM	1	I ² C m	ode select	bit		0: Other	than I ² C m	ode		R/W	
							1: I ² C m	ode				
b1			Rese	rved bit			Set to 0.				R/W	
b2	BBS	I	Bus b	ousy flag (1)			0: Stop condition detected				
							1: Start of	condition de	etected (bu	isy)		
b3	—		Rese	rved bits			Set to 0.				R/W	
b4	_											
b5												
b6												
b7			Nothi	ng is assig	ned. If nec	essary, se	t to 0. Whe	n read, the	content is	undefined.	—	

Note:

1. The BBS bit is set to 0 by writing 0 by a program (Writing 1 has no effect).

Ado	dress (018Ah								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	mbol		RXD2SEL2	RXD2SEL1	RXD2SEL0	—	TXD2SEL2	TXD2SEL1	TXD2SEL0	
After F	Reset	0	0	0	0	0	0	0	0	
Bit	Syn	nbol	E	Bit Name			Fu	nction		R/W
b0 b1 b2	TXD2	2SEL0 2SEL1 2SEL2	TXD2/SDA2 pir	n select bit		0 0 1: P3 0 1 0: P3 0 1 1: Do 1 0 0: P2 1 0 1: Do 1 1 0: Do 1 1 1: P2	_0 assigned not set.	not used		R/W R/W R/W
b3 b4 b5 b6	RXD2	– 2SEL0 2SEL1 2SEL2	Reserved bit RXD2/SCL2 pir	n select bit		0 0 1: P3 0 1 0: P3 0 1 1: P4 1 0 0: P2 1 0 1: Do 1 1 0: Do		not used		R/W R/W R/W R/W
b7	_	_	Reserved bit			Set to 0.				R/W

21.2.13 UART2 Pin Select Register 0 (U2SR0)

The U2SR0 register selects which pin is assigned to the UART2 I/O. To use the I/O pin for UART2, set this register.

Set the U2SR0 register before setting the UART2 associated registers. Also, do not change the setting value in this register during UART2 operation.

R/W

R/W

R/W

R/W

R/W

R/W

b7

Address 018Bh Bit b7 b6 b5 b4 b3 b2 b1 b0 CLK2SEL2 Symbol CTS2SEL1 CTS2SEL0 CLK2SEL1 CLK2SEL0 After Reset 0 0 0 0 0 0 0 0 Bit Symbol Bit Name Function b0 CLK2SEL0 CLK2 pin select bit b2 b1 b0 0 0 0: CLK2 pin not used CLK2SEL1 b1 0 0 1: P3_5 assigned b2 CLK2SEL2 0 1 0: Do not set. 0 1 1: Do not set. 1 0 0: P2_1 assigned Other than above: Do not set. b3 Nothing is assigned. If necessary, set to 0. When read, the content is 0. b4 CTS2SEL0 b5 b4 CTS2/RTS2 pin select bit 0 0: CTS2/RTS2 pin not used CTS2SEL1 b5 0 1: P3_3 assigned 1 0: P3_1 assigned 1 1: Do not set. Nothing is assigned. If necessary, set to 0. When read, the content is 0. b6 —

21.2.14 UART2 Pin Select Register 1 (U2SR1)

The U2SR1 register selects which pin is assigned to the UART2 I/O. To use the I/O pin for UART2, set this register.

Set the U2SR1 register before setting the UART2 associated registers. Also, do not change the setting value in this register during UART2 operation.

21.2.15 Low-Voltage Signal Mode Control Register (TSMR)

Address	0190h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	I3LVM	I2LVM	I1LVM	IOLVM	U2LVM		UOLVM	LVMPR
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	LVMPR	Low-voltage signal mode protect bit	0: Write disabled	R/W
			1: Write enabled ⁽¹⁾	
b1	UOLVM	UART0 low-voltage signal mode control bit ⁽¹⁾	0: Low-voltage signal mode disabled	R/W
			1: Low-voltage signal mode enabled ⁽²⁾	
b2	—	Reserved bit	Set to 0.	R/W
b3	U2LVM	UART2 low-voltage signal mode control bit ⁽¹⁾	0: Low-voltage signal mode disabled	R/W
			1: Low-voltage signal mode enabled ⁽²⁾	
b4	IOLVM	INTO low-voltage signal mode control bit ⁽¹⁾	0: Low-voltage signal mode disabled	R/W
b5	I1LVM	INT1 low-voltage signal mode control bit ⁽¹⁾	1: Low-voltage signal mode enabled	R/W
		INT TIOW-VOILage signal mode control bit (1)		
b6	I2LVM	INT2 low-voltage signal mode control bit ⁽¹⁾		R/W
b7	I3LVM	INT3 low-voltage signal mode control bit (1)		R/W

Notes:

 When the LVMPR bit is set to 1 (write enabled), writing to bits UiLVM (i = 0 or 2) and IjLVM (j = 0 to 3) is enabled. Rewrite bits UiLVM (i = 0 or 2) and IjLVM (j = 0 to 3) after setting the LVMPR bit to 1. When writing 1 to the LVMPR bit, write 0 and then 1 continuously.

2. When the UiLVM (i = 0 or 2) bit is set to 1, the TxDi (i = 0 or 2) pin is set to N-channel open-drain output regardless of the setting of the NCH bit in the UiC0 (i = 0 or 2) register.

21.3 Clock Synchronous Serial I/O Mode

In clock synchronous serial I/O mode, data is transmitted and received using a transfer clock. Table 21.2 lists the Clock Synchronous Serial I/O Mode Specifications. Table 21.3 lists the Registers Used and Settings in Clock Synchronous Serial I/O Mode.

Table 21.2	Clock Synchronous Serial I/O Mode Specifications
------------	---

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	 The CKDIR bit in the U2MR register is set to 0 (internal clock): fj/(2(n+1)) fj = f1, f8, f32 n = setting value in the U2BRG register: 00h to FFh The CKDIR bit is set to 1 (external clock): Input from the CLK2 pin
Transmit/receive control	Selectable from the $\overline{\text{CTS}}$ function, $\overline{\text{RTS}}$ function, or $\overline{\text{CTS}}/\overline{\text{RTS}}$ function disabled.
Transmit start conditions	To start transmission, the following requirements must be met: ⁽¹⁾ • The TE bit in the U2C1 register is set to 1 (transmission enabled) • The TI bit in the U2C1 register is set to 0 (data present in the U2TB register) • If the CTS function is selected, input to the CTS2 pin = "L".
Receive start conditions	To start reception, the following requirements must be met: ⁽¹⁾ • The RE bit in the U2C1 register is set to 1 (reception enabled). • The TE bit in the U2C1 register is set to 1 (transmission enabled). • The TI bit in the U2C1 register is set to 0 (data present in the U2TB register).
Interrupt request generation timing	 For transmission, one of the following conditions can be selected. The U2IRS bit in the U2C1 register is set to 0 (transmit buffer empty): When data is transferred from the U2TB register to the UART2 transmit register (at start of transmission). The U2IRS bit is set to 1 (transmission completed): When data transmission from the UART2 transmit register is completed. For reception When data is transferred from the UART2 receive register to the U2RB register (at completion of reception).
Error detection	Overrun error ⁽²⁾ This error occurs if the serial interface starts receiving the next unit of data before reading the U2RB register and receives the 7th bit of the next unit of data.
Selectable functions	 CLK polarity selection Transfer data I/O can be selected to occur synchronously with the rising or falling edge of the transfer clock. LSB first, MSB first selection Whether transmitting or receiving data begins with bit 0 or begins with bit 7 can be selected. Continuous receive mode selection Reception is enabled immediately by reading the U2RB register. Serial data logic switching This function inverts the logic value of the transmit/receive data.

Notes:

1. When an external clock is selected, the requirements must be met in either of the following states:

- The external clock is held high when the CKPOL bit in the U2C0 register is set to 0 (transmit data output at the falling edge and receive data input at the rising edge of the transfer clock)
- The external clock is held low when the CKPOL bit in the U2C0 register is set to 1 (transmit data output at the rising edge and receive data input at the falling edge of the transfer clock)
- 2. If an overrun error occurs, the receive data in the U2RB register will be undefined. The IR bit in the S2RIC register does not change to 1 (interrupt requested).

Register	Bit	Function
U2TB (1)	b0 to b7	Set transmit data.
U2RB ⁽¹⁾	b0 to b7	Receive data can be read.
	OER	Overrun error flag
U2BRG	b0 to b7	Set a bit rate.
U2MR ⁽¹⁾	SMD2 to SMD0	Set to 001b.
	CKDIR	Select the internal clock or external clock.
	IOPOL	Set to 0.
U2C0	CLK1, CLK0	Select the count source for the U2BRG register.
	CRS	Select either $\overline{\text{CTS}}$ or $\overline{\text{RTS}}$ to use functions.
	TXEPT	Transmit register empty flag
	CRD	Enable or disable the $\overline{\text{CTS}}$ or $\overline{\text{RTS}}$ function.
	NCH	Select TXD2 pin output mode.
	CKPOL	Select the transfer clock polarity.
	UFORM	Select LSB first or MSB first.
U2C1	TE	Set to 1 to enable transmission/reception.
	TI	Transmit buffer empty flag
	RE	Set to 1 to enable reception.
	RI	Receive complete flag
	U2IRS	Select the source of UART2 transmit interrupt.
	U2RRM	Set to 1 to use continuous receive mode.
	U2LCH	Set to 1 to use inverted data logic.
	U2ERE	Set to 0.
U2SMR	b0 to b7	Set to 0.
U2SMR2	b0 to b7	Set to 0.
U2SMR3	b0 to b2	Set to 0.
	NODC	Select clock output mode.
	b4 to b7	Set to 0.
U2SMR4	b0 to b7	Set to 0.
URXDF	DF2EN	Set to 0.
U2SMR5	MP	Set to 0.

Table 21.3	Registers Used and	Settings in Clock	Synchronous S	Serial I/O Mode
------------	--------------------	-------------------	---------------	-----------------

Note:

1. Set the bits not listed in this table to 0 when writing to the above registers in clock synchronous serial I/O mode.

Table 21.4 lists the Pin Functions in Clock Synchronous Serial I/O Mode (Multiple Transfer Clock Output Pin Function Not Selected).

Note that for a period from when UART2 operating mode is selected to when transfer starts, the TXD2 pin outputs a "H" level. (When N-channel open-drain output is selected, this pin is in the high-impedance state.) Figure 21.3 shows the Transmit and Receive Timing in Clock Synchronous Serial I/O Mode.

Table 21.4	Pin Functions in Clock Synchronous Serial I/O Mode (Multiple Transfer Clock Output
	Pin Function Not Selected)

Pin Name	Function	Selection Method
TXD2 (P3_4 or P3_7)	Serial data output	 TXD2 (P3_4) Bits TXD2SEL1 to TXD2SEL0 in U2SR0 register = 10b (P3_4) TXD2 (P3_7) Bits TXD2SEL1 to TXD2SEL0 in U2SR0 register = 01b (P3_7) For reception only: P3_4 and P3_7 can be used as ports by setting TXD2SEL1 to TXD2SEL0 to 00b.
RXD2 (P3_4, P3_7, or P4_5)	Serial data input	 RXD2 (P3_4) Bits RXD2SEL1 to RXD2SEL0 in U2SR0 register = 01b (P3_4) PD3_4 bit in PD3 register = 0 RXD2 (P3_7) Bits RXD2SEL1 to RXD2SEL0 in U2SR0 register = 10b (P3_7) PD3_7 bit in PD3 register = 0 RXD2 (P4_5) Bits RXD2SEL1 to RXD2SEL0 in U2SR0 register = 11b (P4_5) PD4_5 bit in PD4 register = 0 For transmission only: P3_4, P3_7, and P4_5 can be used as ports by setting RXD2SEL1 to RXD2SEL0 to 00b.
CLK2 (P3_5)	Transfer clock output Transfer clock input	CLK2SEL0 bit in U2SR1 register = 1 CKDIR bit in U2MR register = 0 CLK2SEL0 bit in U2SR1 register = 1
		CKDIR bit in U2MR register = 1 PD3_5 bit in PD3 register = 0
CTS2/RTS2 (P3_3)	CTS input	CTS2SEL0 bit in U2SR1 register = 1 CRD bit in U2C0 register = 0 CRS bit in U2C0 register = 0 PD3_3 bit in PD3 register = 0
	RTS output	CTS2SEL0 bit in U2SR1 register = 1 CRD bit in U2C0 register = 0 CRS bit in U2C0 register = 1
	I/O port	CTS2SEL0 bit in U2SR1 register = 0

(1) Transmit Timing Example (Internal Clock Selected)	
TE bit in U2C1 register Data is set in U2TB register.	
TI bit in U2C1 register Data transfer from U2TB register to UART2 transmit register	
CTS2	0.
)7
TXEPT flag in U2C0 register	
IR bit in S2TIC register	
Set to 0 when an interrupt request is acknowledged or by a program.	
 CKDIR bit in U2MR register = 0 (internal clock) CRD bit in U2C0 register = 0 (CTS/RTS function enabled), CRS bit = 0 (CTS function selected) CKPOL bit in U2C0 register = 0 (transmit data output at the falling edge and receive data input at the rising edge of the transfer clock) U2IRS bit in U2C1 register = 0 (interrupt request generation when the U2TB register is empty) (2) Receive Timing Example (External Clock Selected) 	
U2C1 register	
TE bit in U2C1 register Dummy data is set in U2TB register	
TI bit in U2C1 register Data transfer from U2TB register to UART2 transmit register	
RTS2	
RXD2 D0\D1\D2\D3\D4\D5\D6\D7\D0\D1\D2\D3\D4\D5\D6\D7\D0\D1\D2\D3\D4\D5\D6\D7\D0\D1\D2\D3\D4\D5\D6\D7\D0\D1\D2\D3\D4\D5\D6\	
RI bit in register to U2RB register U2C1 register	
IR bit in S2RIC register	
Set to 0 when an interrupt request is acknowledged or by a program.	
OER flag in U2RB register	
The above applies when: Make sure the following conditions are met • CKDIR bit in U2MR register = 1 (external clock) when the CLK2 pin input before receiving data is • CRD bit in U2C0 register = 0 (CTS/RTS function enabled), TE bit in U2C0 register = 1 (transmission enabled), • CRP bit in U2C0 register = 0 (transmit data output at the falling edge and receive data input at the rising edge of the transfer clock) • Dummy data is written to U2TB register	ed)
fEXT: Frequency of external clock	

Figure 21.3 Transmit and Receive Timing in Clock Synchronous Serial I/O Mode

RENESAS

21.3.1 Measure for Dealing with Communication Errors

If communication is aborted or a communication error occurs while transmitting or receiving in clock synchronous serial I/O mode, follow the procedures below:

- (1) Set the TE bit in the U2C1 register to 0 (transmission disabled) and the RE bit to 0 (reception disabled).
- (2) Set bits SMD2 to SMD0 in the U2MR register to 000b (serial interface disabled).
- (3) Set bits SMD2 to SMD0 in the U2MR register to 001b (clock synchronous serial I/O mode).
- (4) Set the TE bit in the U2C1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled).

21.3.2 CLK Polarity Select Function

Use the CKPOL bit in the U2C0 register to select the transfer clock polarity. Figure 21.4 shows the Transfer Clock Polarity.

CLK2	"H" output from CLK2 pi during no transfer
TXD2	D0 D1 D2 D3 D4 D5 D6 D7
RXD2	10 D1 12 D3 D4 D5 D6 D7
receive	data input at the falling edge of the transfer clock) "L" output from CLK2 pir during no transfer
TXD2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
RXD2	$10 \ D1 \ D2 \ D3 \ D4 \ D5 \ D6 \ D7$

Figure 21.4 Transfer Clock Polarity

21.3.3 LSB First/MSB First Select Function

Use the UFORM bit in the U2C0 register to select the transfer format. Figure 21.5 shows the Transfer Format.

(1) UFORM Bit in U2C0 Register = 0 (LSB first)
CLK2
TXD2 D0 D1 D2 D3 D4 D5 D6 D7
RXD2 D0 \ D1 \ D2 \ D3 \ D4 \ D5 \ D6 \ D7
(2) UFORM Bit in U2C0 Register = 1 (MSB first)
CLK2
TXD2 D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0
RXD2 D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0
 The above applies when: CKPOL bit in U2C0 register = 0 (transmit data output at the falling edge and receive data input at the rising edge of the transfer clock) U2LCH bit in U2C1 register = 0 (not inverted)

Figure 21.5 Transfer Format

21.3.4 Continuous Receive Mode

In continuous receive mode, receive operation is enabled when the receive buffer register is read. It is not necessary to write dummy data to the transmit buffer register to enable receive operation in this mode. However, a dummy read of the receive buffer register is required when starting the operating mode.

When the U2RRM bit in the U2C1 register is set to 1 (continuous receive mode), the TI bit in the U2C1 register is set to 0 (data present in the U2TB register) by reading the U2RB register. If the U2RRM bit is set to 1, do not write dummy data to the U2TB register by a program.

21.3.5 Serial Data Logic Switching Function

If the U2LCH bit in the U2C1 register is set to 1 (inverted), the data written to the U2TB register has its logic inverted before being transmitted. Similarly, the received data has its logic inverted when read from the U2RB register. Figure 21.6 shows the Serial Data Logic Switching.

(1) U2LCH Bit in U2C1 Register = 0 (not inverted)
Transfer Clock
TXD2 <u>D0 (D1) D2 (D3) D4 (D5) D6 (D7</u> (not inverted)
(2) U2LCH Bit in U2C1 Register = 1 (inverted)
Transfer Clock
TXD2
The above applies when: • CKPOL bit in U2C0 register = 0 (transmit data output at the falling edge of the transfer clock) • UFORM bit in U2C0 register = 0 (LSB first)

Figure 21.6 Serial Data Logic Switching

21.3.6 CTS/RTS Function

The $\overline{\text{CTS}}$ function is used to start transmit and receive operation when "L" is applied to the $\overline{\text{CTS2}/\text{RTS2}}$ pin. Transmit and receive operation begins when the $\overline{\text{CTS2}/\text{RTS2}}$ pin is held low. If the "L" signal is switched to "H" during a transmit or receive operation, the operation stops before the next data.

For the $\overline{\text{RTS}}$ function, the $\overline{\text{CTS2}/\text{RTS2}}$ pin outputs "L" when the MCU is ready for a receive operation. The output level goes high at the first falling edge of the CLK2 pin.

- The CRD bit in the U2C0 register = 1 ($\overline{\text{CTS}}/\overline{\text{RTS}}$ function disabled) The $\overline{\text{CTS2}}/\overline{\text{RTS2}}$ pin operates as the programmable I/O function.
- The CRD bit = 0, CRS bit = 0 ($\overline{\text{CTS}}$ function selected)
- The $\overline{\text{CTS2}}/\overline{\text{RTS2}}$ pin operates as the $\overline{\text{CTS}}$ function.
- The CRD bit = 0, CRS bit = 1 ($\overline{\text{RTS}}$ function selected) The $\overline{\text{CTS2}}/\overline{\text{RTS2}}$ pin operates as the $\overline{\text{RTS}}$ function.

21.4 Clock Asynchronous Serial I/O (UART) Mode

In UART mode, data is transmitted and received after setting the desired bit rate and transfer data format. Table 21.5 lists the UART Mode Specifications. Table 21.6 lists the Registers Used and Settings in UART Mode.

Item	Specification				
Transfer data format	 Character bits (transfer data): Selectable from 7, 8, or 9 bits Start bit: 1 bit 				
	 Parity bit: Selectable from odd, even, or none Stop bits: Selectable from 1 bit or 2 bits 				
Transfer clock	 The CKDIR bit in the U2MR register is set to 0 (internal clock): fj/(16(n+1)) fj = f1, f8, f32 n = setting value in the U2BRG register: 00h to FFh The CKDIR bit is set to 1 (external clock): fEXT/(16(n+1)) fEXT: Input from CLK2 pin n: Setting value in the U2BRG register: 00h to FFh 				
Transmit/receive control	Selectable from the $\overline{\text{CTS}}$ function, $\overline{\text{RTS}}$ function, or $\overline{\text{CTS}}/\overline{\text{RTS}}$ function disabled.				
Transmit start conditions	 To start transmission, the following requirements must be met: The TE bit in the U2C1 register is set to 1 (transmission enabled). The TI bit in the U2C1 register is set to 0 (data present in the U2TB register). If the CTS function is selected, input to the CTS2 pin = "L". 				
Receive start conditions	To start reception, the following requirements must be met: • The RE bit in the U2C1 register is set to 1 (reception enabled). • Start bit detection				
Interrupt request generation timing	 For transmission, one of the following conditions can be selected. The U2IRS bit in the U2C1 register is set to 0 (transmit buffer empty): When data is transferred from the U2TB register to the UART2 transmit register (at start of transmission). The U2IRS bit is set to 1 (transmission completed): When data transmission from the UART2 transmit register is completed. For reception When data is transferred from the UART2 receive register to the U2RB register (at completion of reception). 				
Error detection	 Overrun error ⁽¹⁾ This error occurs if the serial interface starts receiving the next unit of data before reading the U2RB register and receives the bit one before the last stop bit of the next unit of data. Framing error ⁽²⁾ This error occurs when the set number of stop bits is not detected. Parity error ⁽²⁾ This error occurs when if parity is enabled, the number of 1's in the parity and character bits does not match the set number of 1's. Error sum flag This flag is set to 1 if an overrun, framing, or parity error occurs. 				
Selectable functions	 LSB first, MSB first selection Whether transmitting or receiving data begins with bit 0 or begins with bit 7 can be selected. Serial data logic switching This function inverts the logic of the transmit/receive data. The start and stop bits are not inverted. TXD, RXD I/O polarity switching This function inverts the polarities of the TXD pin output and RXD pin input. The logic levels of all I/O data are inverted. RXD2 digital filter selection The RXD2 input signal can be enabled or disabled. 				

Table 21.5UART Mode Specifications

Notes:

1. If an overrun error occurs, the receive data in the U2RB register will be undefined.

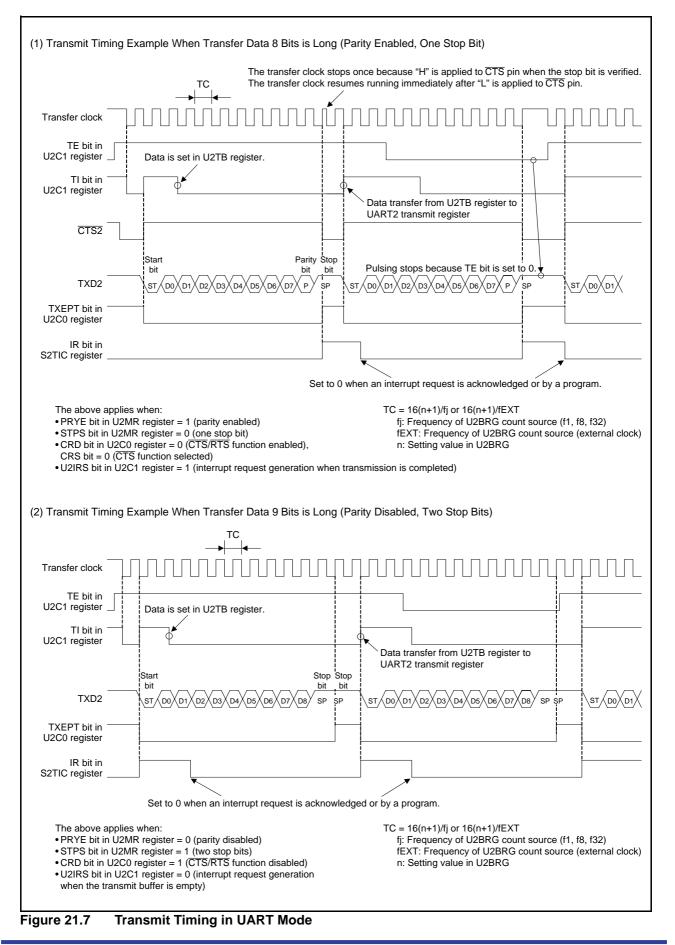
2. The framing error flag and the parity error flag are set to 1 when data is transferred from the UART2 receive register to the U2RB register.

Register	Bit	Function		
U2TB	b0 to b8	Set transmit data. ⁽¹⁾		
U2RB	b0 to b8	Receive data can be read. ^(1, 2)		
OER, FER, PER, SUM		Error flag		
U2BRG	b0 to b7	Set a bit rate.		
U2MR	SMD2 to SMD0	Set to 100b when transfer data is 7 bits long.		
		Set to 101b when transfer data is 8 bits long.		
		Set to 110b when transfer data is 9 bits long.		
	CKDIR	Select the internal clock or external clock.		
	STPS	Select the stop bit.		
	PRY, PRYE	Select whether parity is included and whether odd or even.		
	IOPOL	Select the TXD/RXD I/O polarity.		
U2C0	CLK0, CLK1	Select the count source for the U2BRG register.		
	CRS	Select CTS or RTS to use functions.		
	TXEPT	Transmit register empty flag		
	CRD	Enable or disable the CTS or RTS function.		
	NCH	Select TXD2 pin output mode.		
	CKPOL	Set to 0.		
	UFORM	Select LSB first or MSB first when transfer data is 8 bits long. Set to 0 when transfer data is 7 or 9 bits long.		
U2C1	TE	Set to 1 to enable transmission.		
	TI	Transmit buffer empty flag		
	RE	Set to 1 to enable reception.		
	RI	Receive complete flag		
	U2IRS	Select the UART2 transmit interrupt source.		
	U2RRM	Set to 0.		
	U2LCH	Set to 1 to use inverted data logic.		
	U2ERE	Set to 0.		
U2SMR	b0 to b7	Set to 0.		
U2SMR2	b0 to b7	Set to 0.		
U2SMR3	b0 to b7	Set to 0.		
U2SMR4	b0 to b7	Set to 0.		
URXDF	DF2EN	Select the digital filter disabled or enabled.		
U2SMR5	MP	Set to 0.		

Notes:

1. The bits used for transmit/receive data are as follows:

- Bits b0 to b6 when transfer data is 7 bits long
- Bits b0 to b7 when transfer data is 8 bits long
- Bits b0 to b8 when transfer data is 9 bits long
- 2. The contents of the following are undefined:
 - Bits b7 and b8 when transfer data is 7 bits long
 - Bit b8 when transfer data is 8 bits long


Table 21.7 lists the I/O Pin Functions in UART Mode.

Note that for a period from when the UART2 operating mode is selected to when transfer starts, the TXD2 pin outputs "H". (When N-channel open-drain output is selected, this pin is in the high-impedance state.) Figure 21.7 shows the Transmit Timing in UART Mode. Figure 21.8 shows the Receive Timing in UART Mode.

Pin Name	Function	Selection Method		
TXD2 (P3_4 or P3_7)	Serial data output	 When TXD2 (P3_4) Bits TXD2SEL1 to TXD2SEL0 in U2SR0 register = 10b (P3_4) When TXD2 (P3_7) Bits TXD2SEL1 to TXD2SEL0 in U2SR0 register = 01b (P3_7) For reception only: P3_4 and P3_7 can be used as ports by setting TXD2SEL1 to TXD2SEL0 to 00b. 		
RXD2 (P3_4, P3_7, or P4_5)	Serial data input	 When RXD2 (P3_4) Bits RXD2SEL1 to RXD2SEL0 in U2SR0 register = 01b (P3_4) PD3_4 bit in PD3 register = 0 When RXD2 (P3_7) Bits RXD2SEL1 to RXD2SEL0 in U2SR0 register = 10b (P3_7) PD3_7 bit in PD3 register = 0 When RXD2 (P4_5) Bits RXD2SEL1 to RXD2SEL0 in U2SR0 register = 11b (P4_5) PD4_5 bit in PD4 register = 0 For transmission only: P3_4, P3_7, and P4_5 can be used as ports by setting RXD2SEL1 to RXD2SEL0 to 00b. 		
CLK2 (P3_5)	I/O port Transfer clock input	CLK2SEL0 bit in U2SR1 register = 0 t CLK2SEL0 bit in U2SR1 register = 1 CKDIR bit in U2MR register = 1 PD3_5 bit in PD3 register = 0		
CTS2/RTS2 (P3_3)CTS inputCTS2SEL0 bit in U2SR1 regis CRD bit in U2C0 register = 0 CRS bit in U2C0 register = 0 PD3_3 bit in PD3 register = 0		CRS bit in U2C0 register = 0 PD3_3 bit in PD3 register = 0		
	RTS output	CTS2SEL0 bit in U2SR1 register = 1 CRD bit in U2C0 register = 0 CRS bit in U2C0 register = 1 CTS2SEL0 bit in U2SR1 register = 0		
		01020LU bit ill 02001 register = 0		

 Table 21.7
 I/O Pin Functions in UART Mode

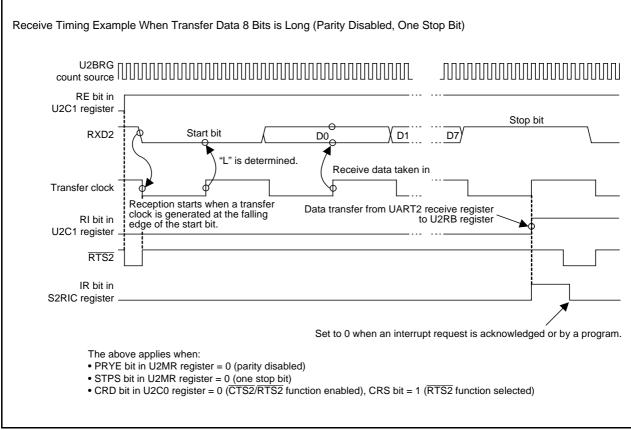


Figure 21.8 Receive Timing in UART Mode

21.4.1 Bit Rate

In UART mode, the bit rate is the frequency divided by the U2BRG register divided by 16. Table 21.8 lists the Bit Rate Setting Example in UART Mode (Internal Clock Selected).

	U2BRG	Systen	System Clock = 20 MHz System Clock = 18.432 MHz ⁽¹⁾		System Clock = 8 MHz					
Bit Rate (bps)	Count Source	U2BRG Setting Value	Actual Time (bps)	Setting Error (%)	U2BRG Setting Value	Actual Time (bps)	Setting Error (%)	U2BRG Setting Value	Actual Time (bps)	Setting Error (%)
1200	f8	129 (81h)	1201.92	0.16	119 (77h)	1200.00	0.00	51 (33h)	1201.92	0.16
2400	f8	64 (40h)	2403.85	0.16	59 (3Bh)	2400.00	0.00	25 (19h)	2403.85	0.16
4800	f8	32 (20h)	4734.85	-1.36	29 (1Dh)	4800.00	0.00	12 (0Ch)	4807.69	0.16
9600	f1	129 (81h)	9615.38	0.16	119 (77h)	9600.00	0.00	51 (33h)	9615.38	0.16
14400	f1	86 (56h)	14367.82	-0.22	79 (4Fh)	14400.00	0.00	34 (22h)	14285.71	-0.79
19200	f1	64 (40h)	19230.77	0.16	59 (3Bh)	19200.00	0.00	25 (19h)	19230.77	0.16
28800	f1	42 (2Ah)	29069.77	0.94	39 (27h)	28800.00	0.00	16 (10h)	29411.76	2.12
38400	f1	32 (20h)	37878.79	-1.36	29 (1Dh)	38400.00	0.00	12 (0Ch)	38461.54	0.16
57600	f1	21 (15h)	56818.18	-1.36	19 (13h)	57600.00	0.00	8 (08h)	55555.56	-3.55
115200	f1	10 (0Ah)	113636.36	-1.36	9 (09h)	115200.00	0.00		—	—

 Table 21.8
 Bit Rate Setting Example in UART Mode (Internal Clock Selected)

Note:

1. For the high-speed on-chip oscillator, the correction value in the FRA4 register should be written into the FRA1 register and the correction value in the FRA5 register should be written into the FRA3 register.

This applies when the high-speed on-chip oscillator is selected as the system clock and bits FRA22 to FRA20 in the FRA2 register are set to 000b (divide-by-2 mode). For the precision of the high-speed on-chip oscillator, refer to **27. Electrical Characteristics**.

21.4.2 Measure for Dealing with Communication Errors

If communication is aborted or a communication error occurs while transmitting or receiving in UART mode, follow the procedures below:

- (1) Set the TE bit in the U2C1 register to 0 (transmission disabled) and the RE bit to 0 (reception disabled).
- (2) Set bits SMD2 to SMD0 in the U2MR register to 000b (serial interface disabled).
- (3) Set bits SMD2 to SMD0 in the U2MR register to 100b (UART mode, transfer data 7 bits long), 101b (UART mode, transfer data 8 bits long), or 110b (UART mode, transfer data 9 bits long).
- (4) Set the TE bit in the U2C1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled).

21.4.3 LSB First/MSB First Select Function

As shown in Figure 21.9, use the UFORM bit in the U2C0 register to select the transfer format. This function is enabled when transfer data is 8 bits long. Figure 21.9 shows the Transfer Format.

CLK2	
TXD2	ST _ D0 _ D1 _ D2 _ D3 _ D4 _ D5 _ D6 _ D7 _ P _ SP
RXD2	ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
(2) UFOR	M Bit in U2C0 Register = 1 (MSB first)
CLK2	
TXD2	ST D7 D6 D5 D4 D3 D2 D1 D0 P SP
RXD2	ST / D7 / D6 / D5 / D4 / D3 / D2 / D1 / D0 / P / SP
The shove a	ST: Start bit P: Parity bit SP: Stop bit
 CKPOL bit receive data 	in U2C0 register = 0 (transmit data output at the falling edge and a input at the rising edge of the transfer clock) in U2C1 register = 0 (not inverted)
 STPS bit in 	n U2MR register = 0 (one stop bit) n U2MR register = 1 (parity enabled)

Figure 21.9 Transfer Format

21.4.4 Serial Data Logic Switching Function

The data written to the U2TB register has its logic inverted before being transmitted. Similarly, the received data has its logic inverted when read from the U2RB register. Figure 21.10 shows the Serial Data Logic Switching.

I)
<u>X D6 X D7 X P Y SP</u>
<u>\ D6 \ D7 \ P</u> \ SP
ST: Start bit P: Parity bit SP: Stop bit
ing edge of the transfer clock)

Figure 21.10 Serial Data Logic Switching

21.4.5 TXD and RXD I/O Polarity Inverse Function

This function inverts the polarities of the TXD2 pin output and RXD2 pin input. The logic levels of all I/O data (including bits for start, stop, and parity) are inverted. Figure 21.11 shows the TXD and RXD I/O Inversion.

(1) IOPOL Bit in U2MR Register = 0 (not inverted)	
TXD2 ST (D0) D1) D2) D3) D4) D5) D4	6 (D7 P) SP
RXD2ST (D0) D1) D2) D3) D4) D5) D1	6 (D7) P SP
(2) IOPOL Bit in U2MR Register = 1 (inverted)	
Transfer clock	
TXD2 (inverted) ST \ D0 \ D1 \ D2 \ D3 \ D4 \ D5 \ D0	<u>6 ↓ D7 ↓ P</u> ↓ SP
RXD2 (inverted) ST <u>V D0 V D1 V D2 V D3 V D4 V D5 V D</u>	6 (D7 (P) SP
The above applies when:	ST: Start bit
UFORM bit in U2C0 register = 0 (LSB first)	P: Parity bit
 STPS bit in U2MR register = 0 (one stop bit) PRYE bit in U2MR register = 1 (parity enabled) 	SP: Stop bit

Figure 21.11 TXD and RXD I/O Inversion

21.4.6 CTS/RTS Function

The $\overline{\text{CTS}}$ function is used to start transmit operation when "L" is applied to the $\overline{\text{CTS2}/\text{RTS2}}$ pin. Transmit operation begins when the $\overline{\text{CTS2}/\text{RTS2}}$ pin is held low. If the "L" signal is switched to "H" during transmit operation, the operation stops after the ongoing transmit/receive operation is completed.

When the $\overline{\text{RTS}}$ function is used, the $\overline{\text{CTS2}/\text{RTS2}}$ pin outputs "L" when the MCU is ready for a receive operation.

- The CRD bit in the U2C0 register = 1 ($\overline{\text{CTS}}/\overline{\text{RTS}}$ function disabled)
- The $\overline{\text{CTS2}/\text{RTS2}}$ pin operates as the programmable I/O function.
- The CRD bit = 0, CRS bit = 0 ($\overline{\text{CTS}}$ function selected)
- The $\overline{\text{CTS2}/\text{RTS2}}$ pin operates as the $\overline{\text{CTS}}$ function. • The CRD bit = 0, CRS bit = 1 ($\overline{\text{RTS}}$ function selected)
- The $\overline{\text{CTS2}}/\overline{\text{RTS2}}$ pin operates as the $\overline{\text{RTS}}$ function.

21.4.7 RXD2 Digital Filter Select Function

When the DF2EN bit in the URXDF register is set to 1 (RXD2 digital filer enabled), the RXD2 input signal is loaded internally via the digital filter circuit for noise reduction. The noise canceller consists of three cascaded latch circuits and a match detection circuit. The RXD2 input signal is sampled on the internal basic clock with a frequency 16 times the bit rate. It is recognized as a signal and the level is passed forward to the next circuit when three latch outputs match. When the outputs do not match, the previous value is retained.

In other words, when the level is changed within three clocks, the change is recognized as not a signal but noise. Figure 21.12 shows a Block Diagram of RXD2 Digital Filter Circuit.

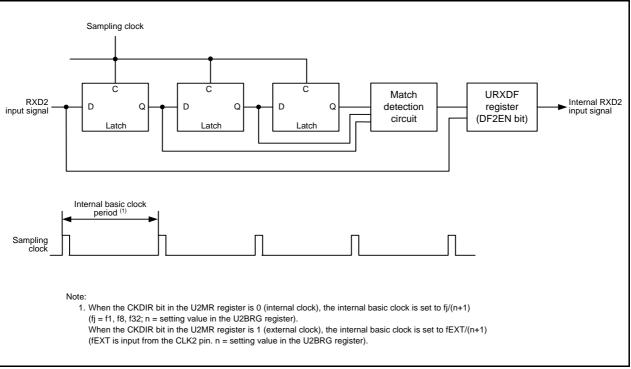


Figure 21.12 Block Diagram of RXD2 Digital Filter Circuit

21.5 Special Mode 1 (I²C Mode)

 I^2C mode is provided for use as a simplified I^2C interface compatible mode. Table 21.9 lists the I^2C Mode Specifications. Tables 21.10 and 21.11 list the registers used in I^2C mode and the settings. Table 21.12 lists the I^2C Mode Functions, Figure 21.13 shows an I^2C Mode Block Diagram, and Figure 21.14 shows the Transfer to U2RB Register and Interrupt Timing.

As shown in Table 21.12, the MCU is placed in I²C mode by setting bits SMD2 to SMD0 to 010b and the IICM bit to 1. Because SDA2 transmit output has a delay circuit attached, SDA2 output does not change state until SCL2 goes low and remains stably low.

Item Specification	
Transfer data format	Transfer data length: 8 bits
Transfer clock	 Master mode The CKDIR bit in the U2MR register is set to 0 (internal clock): fj/(2(n+1)) fj = f1, f8, f32 n = setting value in the U2BRG register: 00h to FFh Slave mode The CKDIR bit is set to 1 (external clock): Input from the SCL2 pin
Transmit start conditions	To start transmission, the following requirements must be met: ⁽¹⁾ • The TE bit in the U2C1 register is set to 1 (transmission enabled). • The TI bit in the U2C1 register is set to 0 (data present in the U2TB register).
Receive start conditions	 To start reception, the following requirements must be met: ⁽¹⁾ The RE bit in the U2C1 register is set to 1 (reception enabled). The TE bit in the U2C1 register is set to 1 (transmission enabled). The TI bit in the U2C1 register is set to 0 (data present in the U2TB register).
Interrupt request generation timing	Start/stop condition detection, no acknowledgement detection, or acknowledgement detection
Error detection	Overrun error ⁽²⁾ This error occurs if the serial interface starts receiving the next unit of data before reading the U2RB register and receives the 8th bit of the next unit of data.
Selectable functions	 SDA2 digital delay No digital delay or a delay of 2 to 8 U2BRG count source clock cycles can be selected. Clock phase setting With or without clock delay can be selected.

Table 21.9 I²C Mode Specifications

Notes:

1. When an external clock is selected, the requirements must be met while the external clock is held high.

2. If an overrun error occurs, the received data in the U2RB register will be undefined. The IR bit in the S2RIC register remains unchanged.

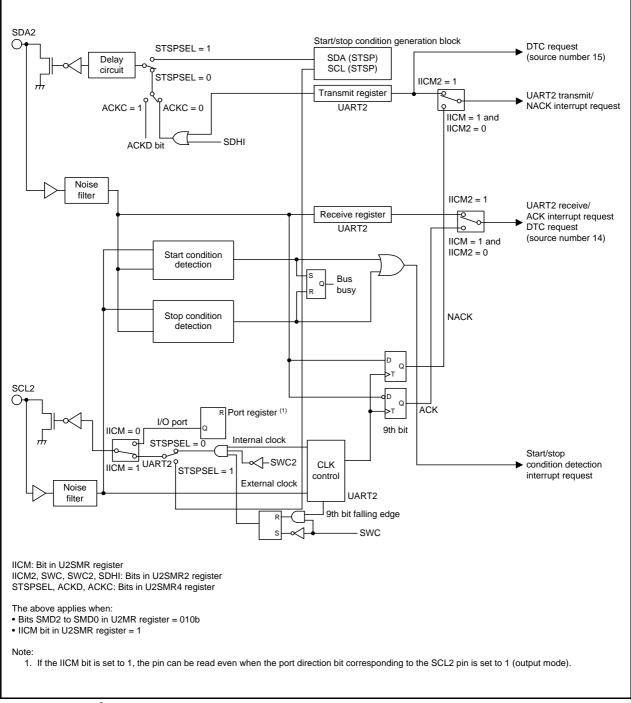


Figure 21.13 I²C Mode Block Diagram

Deviates	D:4	Function				
Register	Bit	Master	Slave			
U2TB (1)	b0 to b7	Set transmit data.	Set transmit data.			
U2RB (1)	b0 to b7	Receive data can be read.	Receive data can be read.			
	b8	ACK or NACK is set in this bit.	ACK or NACK is set in this bit.			
	OER	Overrun error flag	Overrun error flag			
U2BRG	b0 to b7	Set a bit rate.	Disabled			
U2MR (1)	SMD2 to SMD0	Set to 010b.	Set to 010b.			
	CKDIR	Set to 0.	Set to 1.			
	IOPOL	Set to 0.	Set to 0.			
U2C0	CLK1, CLK0	Select the count source for the U2BRG register.	Disabled			
	CRS	Disabled because CRD = 1.	Disabled because CRD = 1.			
	TXEPT	Transmit register empty flag	Transmit register empty flag			
	CRD	Set to 1.	Set to 1.			
	NCH	Set to 1.	Set to 1.			
	CKPOL	Set to 0.	Set to 0.			
	UFORM	Set to 1.	Set to 1.			
U2C1	TE	Set to 1 to enable transmission.	Set to 1 to enable transmission.			
	TI	Transmit buffer empty flag	Transmit buffer empty flag			
	RE	Set to 1 to enable reception.	Set to 1 to enable reception.			
	RI	Receive complete flag	Receive complete flag			
	U2IRS	Set to 1.	Set to 1.			
	U2RRM, U2LCH, U2ERE	Set to 0.	Set to 0.			
U2SMR	IICM	Set to 1.	Set to 1.			
	BBS	Bus busy flag	Bus busy flag			
	b3 to b7	Set to 0.	Set to 0.			
U2SMR2	IICM2	Refer to Table 21.12 I ² C Mode Functions.	Refer to Table 21.12 I²C Mode Functions.			
	CSC	Set to 1 to enable clock synchronization.	Set to 0.			
	SWC	Set to 1 to fix SCL2 output low at the falling edge of the 9th bit of clock.	Set to 1 to fix SCL2 output low at the falling edge of the 9th bit of clock.			
	STAC	Set to 0.	Set to 1 to initialize UART2 at start condition detection			
	SWC2	Set to 1 to forcibly pull SCL2 low.	Set to 1 to forcibly pull SCL2 output low.			
	SDHI	Set to 1 to disable SDA2 output.	Set to 1 to disable SDA2 output.			
	b7	Set to 0.	Set to 0.			
U2SMR3	b0, b2, b4, and NODC	Set to 0.	Set to 0.			
	СКРН	Refer to Table 21.12 I ² C Mode Functions.	Refer to Table 21.12 I ² C Mode Functions.			
	DL2 to DL0	Set the amount of SDA2 digital delay.	Set the amount of SDA2 digital delay.			

Table 21.10 Registers Used and Settings in I²C Mode (1)

Note:

1. Set the bits not listed in this table to 0 when writing to the above registers in I^2C mode.

Register	Bit	Function		
Register	DIL	Master	Slave	
U2SMR4	STAREQ	Set to 1 to generate a start condition.	Set to 0.	
	RSTAREQ	Set to 1 to generate a restart condition.	Set to 0.	
	STPREQ	Set to 1 to generate a stop condition.	Set to 0.	
	STSPSEL	Set to 1 to output each condition.	Set to 0.	
ACKD		Select ACK or NACK.	Select ACK or NACK.	
	ACKC	Set to 1 to output ACK data.	Set to 1 to output ACK data.	
SCLHI		Set to 1 to stop SCL2 output when a stop condition is detected.	Set to 0.	
	SWC9	Set to 0.	Set to 1 to hold SCL2 low at the falling edge of the 9th bit of clock.	
URXDF	DF2EN	Set to 0.	Set to 0.	
U2SMR5	MP	Set to 0.	Set to 0.	

Table 21.11	Registers Used and Settings in I ² C Mode (2)

Table 21.12 I ² C Mode Function
--

	Clock Synchronous	I ² C Mode (SMD2 to SMD0 = 010b, IICM = 1)			
Function	Serial I/O Mode	IICM2 = 0 (NACK/ACK interrupt)		IICM2 = 1 (UART transmit/receive interrupt)	
TUNCION	(SMD2 to SMD0 = 001b, IICM = 0)	CKPH = 0 (No Clock Delay)	CKPH = 1 (With Clock Delay)	CKPH = 0 (No Clock Delay)	CKPH = 1 (With Clock Delay)
Source of UART2 bus	of UART2 bus —		tion or stop condition d		
collision interrupt (1, 5)		(Refer to Table 21.13	3 STSPSEL Bit Functi	ons)	
Source of UART2 transmit/NACK2 (1, 6)	UART2 transmission Transmission started or completed (selectable by U2IRS bit)	No acknowledgment Rising edge of SCL2		UART2 transmission Rising edge of SCL2 9th bit	UART2 transmission Falling edge of SCL2 next to 9th bit
Source of UART2 receive/ACK2 ^(1, 6)	UART2 reception When 8th bit received CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	5		UART2 reception Falling edge of SCL2 9th bit	
Timing for transferring data from UART reception shift register to U2RB register	CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Rising edge of SCL2	9th bit	Falling edge of SCL2 9th bit	Falling and rising edges of SCL2 9th bit
UART2 transmission output delay	No delay	With delay			
TXD2/SDA2 functions	TXD2 output	SDA2 I/O			
RXD2/SCL2 functions	RXD2 input	SCL2 I/O			
CLK2 functions CLK2 input or output port - selected		— (Cannot be used in I ² C mode.)			
Noise filter width	15 ns	200 ns			
Read of RXD2 and SCL2 pin levels	Possible when the corresponding port direction bit = 0	Possible regardless of the content of the corresponding port direction bit.		on bit.	
Initial value of TXD2 and SDA2 outputs	CKPOL = 0 ("H") CKPOL = 1 ("L")	The value set in the port register before setting I ² C mode. ⁽²⁾			
Initial and end values of SCL2	-	"H"	"L"	"H"	"L"
DTC source number 14 ⁽⁶⁾	UART2 reception When 8th bit received CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Acknowledgment det	ection (ACK)	UART2 reception Falling edge of SCL2	9th bit
DTC source number 15 ⁽⁶⁾	UART2 transmission Transmission started or completed (selectable by U2IRS bit)	UART2 transmission Rising edge of SCL2 9th bit	UART2 transmission Falling edge of SCL2 next to 9th bit	UART2 transmission Rising edge of SCL2 9th bit	UART2 transmission Falling edge of SCL2 next to 9th bit
Storage of receive data	1st to 8th bits of the received data are stored in bits b0 to b7 in the	1st to 8th bits of the r stored in bits b7 to b0	received data are) in the U2RB register.	1st to 7th bits of the received data are stor bits b6 to b0 in the U2RB register. 8th bit stored in bit b8 in the U2RB register.	
	U2RB register.				1st to 8th bits are stored in bits b7 to b0 in the U2RB register. ⁽³⁾
Read of receive data	The U2RB register status	is read.			Bits b6 to b0 in the U2RB register are read as bits b7 to b1. Bit b8 in the U2RB register is read as bit b0. ⁽⁴⁾

Notes:

1. If the source of any interrupt is changed, the IR bit in the interrupt control register for the changed interrupt may inadvertently be set to 1 (interrupt requested). (Refer to 11.9 Notes on Interrupts.)

If one of the bits listed below is changed, the interrupt source, the interrupt timing, and others change. Therefore, always be sure to set the IR bit to 0 (interrupt not requested) after changing these bits.

Bits SMD2 to SMD0 in the U2MR register, the IICM bit in the U2SMR register, the IICM2 bit in the U2SMR2 register, and the CKPH bit in the U2SMR3 register.

2. Set the initial value of SDA2 output while bits SMD2 to SMD0 in the U2MR register are 000b (serial interface disabled).

3. Second data transfer to the U2RB register (rising edge of SCL2 9th bit)

4. First data transfer to the U2RB register (falling edge of SCL2 9th bit)

5. Refer to Figure 21.16 STSPSEL Bit Functions.

6. Refer to Figure 21.14 Transfer to U2RB Register and Interrupt Timing.

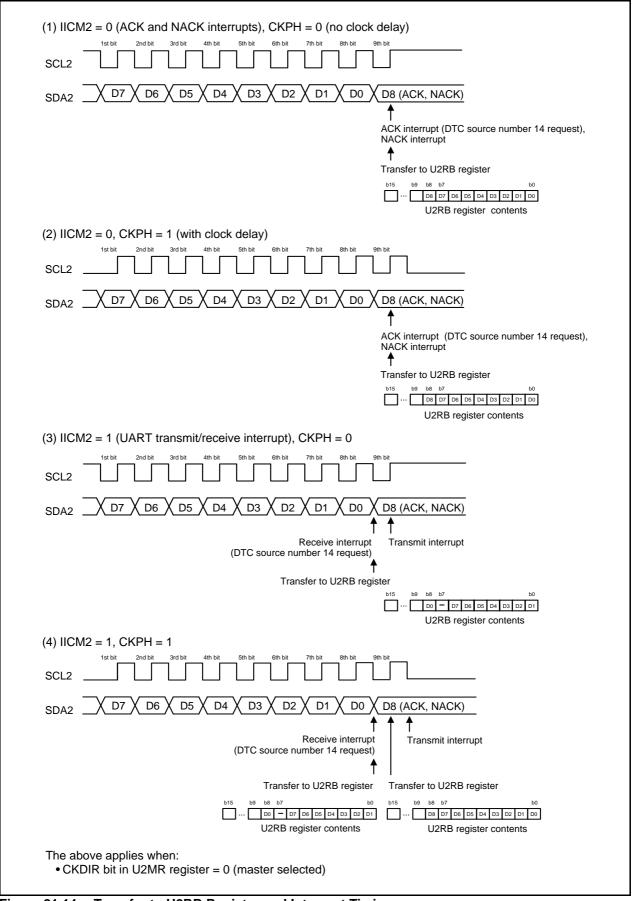


Figure 21.14 Transfer to U2RB Register and Interrupt Timing

RENESAS

21.5.1 Detection of Start and Stop Conditions

Whether a start or a stop condition has been detected is determined.

A start condition detect interrupt request is generated when the SDA2 pin changes state from high to low while the SCL2 pin is in the high state. A stop condition detect interrupt request is generated when the SDA2 pin changes state from low to high while the SCL2 pin is in the high state.

Because the start and stop condition detect interrupts share an interrupt control register and vector, check the BBS bit in the U2SMR register to determine which interrupt source is requesting the interrupt.

Figure 21.15 shows the Detection of Start and Stop Conditions.

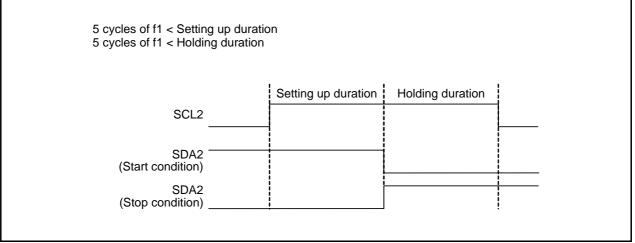


Figure 21.15 Detection of Start and Stop Conditions

21.5.2 Output of Start and Stop Conditions

Table 21.13 STSPSEL Bit Functions

A start condition is generated by setting the STAREQ bit in the U2SMR4 register to 1 (start). A restart condition is generated by setting the RSTAREQ bit in the U2SMR4 register to 1 (start). A stop condition is generated by setting the STPREQ bit in the U2SMR4 register to 1 (start). The output procedure is as follows:

(1) Set the STAREQ bit, RSTAREQ bit or STPREQ bit to 1 (start).

(2) Set the STSPSEL bit in the U2SMR4 register to 1 (output).

Table 21.13 lists the STSPSEL Bit Functions. Figure 21.16 shows the STSPSEL Bit Functions.

Function	STSPSEL = 0	STSPSEL = 1
Output of pins SCL2 and SDA2	Output of transfer clock and data Output of start/stop conditions is accomplished by a program using ports (not automatically generated in hardware)	Output of start/stop conditions according to bits STAREQ, RSTAREQ, and STPREQ
Start/stop condition interrupt request generation timing	Detection of start/stop conditions	Completion of start/stop condition generation

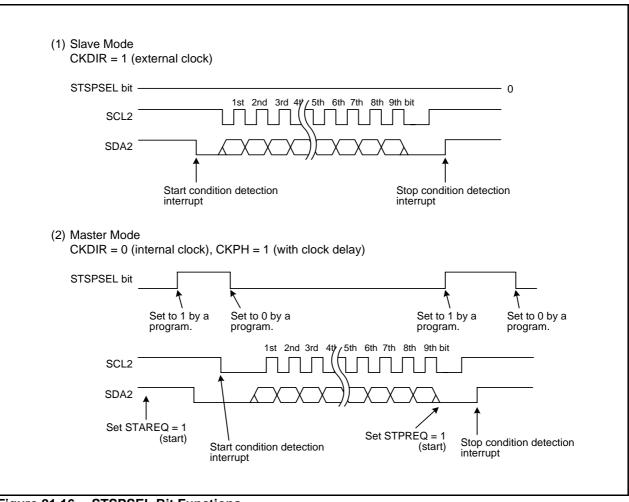


Figure 21.16 STSPSEL Bit Functions

21.5.3 Transfer Clock

The transfer clock is used to transmit and receive data as is shown in Figure 21.14 Transfer to U2RB Register and Interrupt Timing.

The CSC bit in the U2SMR2 register is used to synchronize an internally generated clock (internal SCL2) and an external clock supplied to the SCL2 pin. When the CSC bit is set to 1 (clock synchronization enabled), if a falling edge on the SCL2 pin is detected while the internal SCL2 is high, the internal SCL2 goes low. The value in the U2BRG register is reloaded and counting of the low-level intervals starts. If the internal SCL2 changes state from low to high while the SCL2 pin is low, counting stops. If the SCL2 pin goes high, counting restarts.

In this way, the UART2 transfer clock is equivalent to AND of the internal SCL2 and the clock signal applied to the SCL2 pin. The transfer clock works from a half cycle before the falling edge of the internal SCL2 1st bit to the rising edge of the 9th bit. To use this function, select an internal clock for the transfer clock.

The SWC bit in the U2SMR2 register determines whether the SCL2 pin is fixed low or freed from low-level output at the falling edge of the 9th clock pulse.

If the SCLHI bit in the U2SMR4 register is set to 1 (enabled), SCL2 output is turned off (placed in the high-impedance state) when a stop condition is detected.

Setting the SWC2 bit in the U2SMR2 register to 1 ("L" output) makes it possible to forcibly output a low-level signal from the SCL2 pin even while sending or receiving data. Setting the SWC2 bit to 0 (transfer clock) allows the transfer clock to be output from or supplied to the SCL2 pin, instead of outputting a low-level signal. If the SWC9 bit in the U2SMR4 register is set to 1 (SCL "L" hold enabled) when the CKPH bit in the U2SMR3 register is 1, the SCL2 pin is fixed low at the falling edge of the clock pulse next to the 9th. Setting the SWC9 bit to 0 (SCL "L" hold disabled) frees the SCL2 pin from low-level output.

21.5.4 SDA Output

The data written to bits b7 to b0 (D7 to D0) in the U2TB register is output in descending order from D7. The 9th bit (D8) is ACK or NACK.

Set the initial value of SDA2 transmit output when IICM is set to 1 (I²C mode) and bits SMD2 to SMD0 in the U2MR register are set to 000b (serial interface disabled).

Bits DL2 to DL0 in the U2SMR3 register allow addition of no delays or a delay of 2 to 8 U2BRG count source clock cycles to the SDA2 output.

Setting the SDHI bit in the U2SMR2 register to 1 (SDA output disabled) forcibly places the SDA2 pin in the high-impedance state. Do not write to the SDHI bit at the rising edge of the UART2 transfer clock.

21.5.5 SDA Input

When the IICM2 bit is set to 0, the 1st to 8th bits (D7 to D0) of received data are stored in bits b7 to b0 in the U2RB register. The 9th bit (D8) is ACK or NACK.

When the IICM2 bit is set to 1, the 1st to 7th bits (D7 to D1) of received data are stored in bits b6 to b0 in the U2RB register and the 8th bit (D0) is stored in bit b8 in the U2RB register. Even when the IICM2 bit is set to 1, if the CKPH bit is 1, the same data as when the IICM2 bit is 0 can be read by reading the U2RB register after the rising edge of 9th bit of the clock.

21.5.6 ACK and NACK

If the STSPSEL bit in the U2SMR4 register is set to 0 (start and stop conditions not output) and the ACKC bit in the U2SMR4 register is set to 1 (ACK data output), the value of the ACKD bit in the U2SMR4 register is output from the SDA2 pin.

If the IICM2 bit is set to 0, a NACK interrupt request is generated if the SDA2 pin remains high at the rising edge of the 9th bit of transmit clock pulse. An ACK interrupt request is generated if the SDA2 pin is low at the rising edge of the 9th bit of the transmit clock.

If ACK2 (UART2 reception) is selected to generate a DTC request source, a DTC transfer can be activated by detection of an acknowledge.

21.5.7 Initialization of Transmission/Reception

If a start condition is detected while the STAC bit is set to 1 (UART2 initialization enabled), the serial interface operates as described below.

- The transmit shift register is initialized, and the contents of the U2TB register are transferred to the transmit shift register. In this way, the serial interface starts sending data when the next clock pulse is applied. However, the UART2 output value does not change state and remains the same as when a start condition was detected until the first bit of data is output in synchronization with the input clock.
- The receive shift register is initialized, and the serial interface starts receiving data when the next clock pulse is applied.
- The SWC bit is set to 1 (SCL wait output enabled). Consequently, the SCL2 pin is pulled low at the falling edge of the 9th clock pulse.

Note that when UART2 transmission/reception is started using this function, the TI bit does not change state. Select the external clock as the transfer clock to start UART2 transmission/reception with this setting.

21.6 Special Mode 2 (SSU Mode)

In special mode 2, serial communication can be performed between one master device and multiple slave devices. The transfer clock polarity and phase can be selected. Table 21.14 lists the Special Mode 2 Specifications. Table 21.15 lists the Registers Used and Settings in Special Mode 2. Figure 21.17 shows the Communication Control Example (UART2) in Special Mode 2.

Item	Specification	
Transfer data format	Transfer data length: 8 bits	
Transfer clock	 Master mode The CKDIR bit in the U2MR register is set to 0 (internal clock): fj/(2(n+1)) fj = f1, f2, f8, f32 n = setting value in the U2BRG register: 00h to FFh Slave mode The CKDIR bit is set to 1 (external clock selected): Input from the CLK2 pin 	
Transmit/receive control	Controlled by I/O ports	
Transmit start conditions	 To start transmission, the following requirements must be met: ⁽¹⁾ The TE bit in the U2C1 register is set to 1 (transmission enabled). The TI bit in the U2C1 register is set to 0 (data present in the U2TB register). 	
Receive start conditions To start reception, the following requirements must be met: (1) • The RE bit in the U2C1 register is set to 1 (reception enabled). • The TE bit in the U2C1 register is set to 1 (transmission enabled). • The TI bit in the U2C1 register is set to 0 (data present in the U2TB register).		
Interrupt request generation timing	 For transmission, one of the following conditions can be selected. The U2IRS bit in the U2C1 register is set to 0 (transmit buffer empty): When data is transferred from the U2TB register to the UART2 transmit register (at start of transmission). The U2IRS bit is set to 1 (transmission completed): When data transmission from the UART2 transmit register is completed. For reception When data is transferred from the UART2 receive register to the U2RB register (at completion of reception). 	
Error detection	Overrun error ⁽²⁾ This error occurs if the serial interface starts receiving the next unit of data before reading the U2RB register and receives the 7th bit of the next unit of data.	
Selectable function	Clock phase setting Four combinations of transfer clock polarities and phases can be selected.	

Table 21.14 Special Mode 2 Specifications

Notes:

- 1. When an external clock is selected, the requirements must be met in either of the following states: the external clock is held high when the CKPOL bit in the U2C0 register is set to 0 (transmit data output at the falling edge and receive data input at the rising edge of the transfer clock); the external clock is held low when the CKPOL bit is set to 1 (transmit data output at the rising edge and receive data input at the falling edge and receive data input at the rising edge and receive data input at the falling edge.
- 2. If an overrun error occurs, the received data in the U2RB register will be undefined. The IR bit in the S2RIC register remains unchanged.

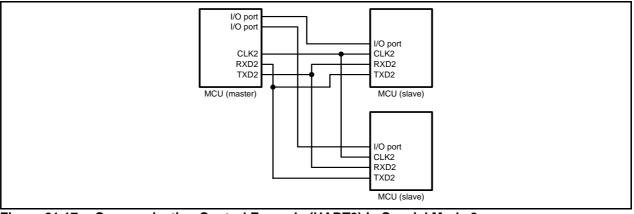


Figure 21.17 Communication Control Example (UART2) in Special Mode 2

Register	Bit	Function	
U2TB (1)	b0 to b7	Set transmit data.	
U2RB ⁽¹⁾	b0 to b7	Receive data can be read.	
	OER	Overrun error flag	
U2BRG	b0 to b7	Set a bit rate.	
U2MR ⁽¹⁾	SMD2 to SMD0	Set to 001b.	
	CKDIR	Set to 0 in master mode or 1 in slave mode.	
	IOPOL	Set to 0.	
U2C0	CLK0, CLK1	Select the count source for the U2BRG register.	
	CRS	Disabled because CRD = 1.	
	TXEPT	Transmit register empty flag	
	CRD	Set to 1.	
	NCH	Select TXD2 pin output mode.	
	CKPOL	Clock phases can be set in combination with the CKPH bit in the U2SMR3 register.	
	UFORM	Set to 0.	
U2C1	TE	Set to 1 to enable transmission/reception.	
	TI	Transmit buffer empty flag	
	RE	Set to 1 to enable reception.	
	RI	Receive complete flag	
	U2IRS	Select the UART2 transmit interrupt source.	
	U2RRM, U2LCH, U2ERE	Set to 0.	
U2SMR	b0 to b7	Set to 0.	
U2SMR2	b0 to b7	Set to 0.	
U2SMR3	СКРН	Clock phases can be set in combination with the CKPOL bit in the U2C0 register.	
	NODC	Set to 0.	
	b0, b2, b4 to b7	Set to 0.	
U2SMR4	b0 to b7	Set to 0.	
URXDF	DF2EN	Select the digital filter disabled or enabled.	
U2SMR5	MP	Set to 0.	

Table 21.15	Registers Used and Settings in Special Mode 2
-------------	---

Note:

1. Set the bits not listed in this table to 0 when writing to the above registers in special mode 2.

21.6.1 Clock Phase Setting Function

One of four combinations of transfer clock phases and polarities can be selected using the CKPH bit in the U2SMR3 register and the CKPOL bit in the U2C0 register.

Make sure the transfer clock polarity and phase are the same for the master and salve devices to be used for communication.

Figure 21.18 shows the Transmit and Receive Timing in Master Mode (Internal Clock).

Figure 21.19 shows the Transmit and Receive Timing (CKPH = 0) in Slave Mode (External Clock) and Figure 21.20 shows the Transmit and Receive Timing (CKPH = 1) in Slave Mode (External Clock).

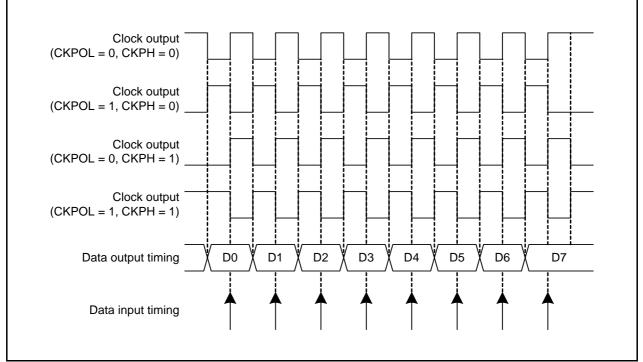


Figure 21.18 Transmit and Receive Timing in Master Mode (Internal Clock)

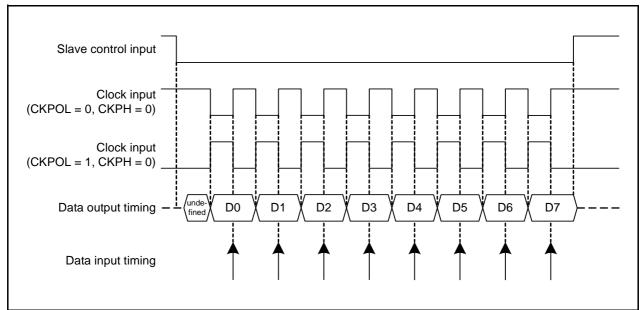


Figure 21.19 Transmit and Receive Timing (CKPH = 0) in Slave Mode (External Clock)

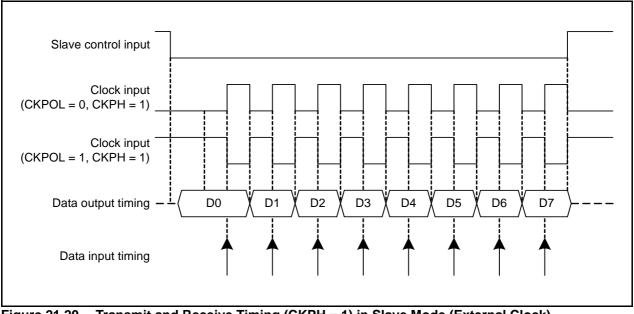


Figure 21.20 Transmit and Receive Timing (CKPH = 1) in Slave Mode (External Clock)

21.7 Multiprocessor Communication Function

When the multiprocessor communication function is used, data transmission/reception can be performed between a number of processors sharing communication lines by asynchronous serial communication, in which a multiprocessor bit is added to the data. For multiprocessor communication, each receiving station is addressed by a unique ID code. The serial communication cycle consists of two component cycles; an ID transmission cycle for specifying the receiving station, and a data transmission cycle for the specified receiving station. The multiprocessor bit is used to differentiate between the ID transmission cycle and the data transmission cycle. When the multiprocessor bit is set to 1, the cycle is an ID transmission cycle; when the multiprocessor bit is set to 0, the cycle is a data transmission cycle. Figure 21.21 shows an Inter-Processor Communication Example Using Multiprocessor Format (Data AAh Transmission to Receiving Station A).

The transmitting station first sends the ID code of the receiving station to perform communication as communication data with a 1 multiprocessor bit added. It then sends transmit data as communication data with a 0 multiprocessor bit added.

When communication data in which the multiprocessor bit is 1 is received, the receiving station compares that data with its own ID. If they match, the data to be sent next is received. If they do not match, the receive station continues to skip communication data until data in which the multiprocessor bit is 1 is again received.

UART2 uses the MPIE bit in the U2SMR5 register to implement this function. When the MPIE bit is set to 1, data transfer from the UART2 receive register to the U2RB register, receive error detection, and the settings of the status flags, the RI bit in the U2C1 register, bits FER and OER in the U2RB register, are disabled until data in which the multiprocessor bit is 1 is received. On receiving a receive character in which the multiprocessor bit is 1, the MPRB bit in the U2RB register is set to 1 and the MPIE in the U2SMR5 register bit is set to 0, thus normal reception is resumed.

When the multiprocessor format is specified, the parity bit specification is invalid. All other bit settings are the same as those in normal asynchronous mode (UART mode). The clock used for multiprocessor communication is the same as that in normal asynchronous mode (UART mode).

Figure 21.22 shows a Block Diagram of Multiprocessor Communication Function. Table 21.16 lists the Registers and Settings in Multiprocessor Communication Function.

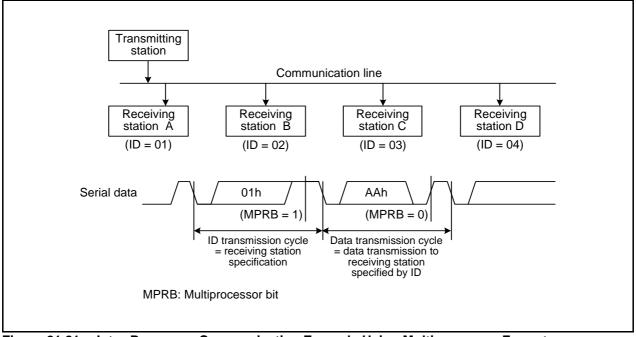


Figure 21.21 Inter-Processor Communication Example Using Multiprocessor Format (Data AAh Transmission to Receiving Station A)

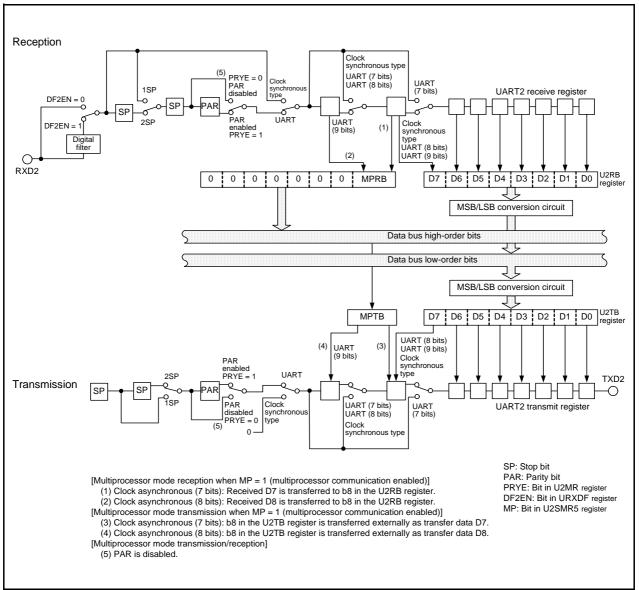


Figure 21.22 Block Diagram of Multiprocessor Communication Function

Table 21.16	Registers and Settin	igs in Multiprocessor Communication Function	
Register	Bit	Function	
U2TB (1)	b0 to b7	Set transmit data.	
	MPTB	Set to 0 or 1.	
U2RB ⁽²⁾	b0 to b7	Receive data can be read.	
	MPRB	Multiprocessor bit	
	OER, FER, SUM	Error flag	
U2BRG	b0 to b7	Set the transfer rate.	
U2MR	SMD2 to SMD0	Set to 100b when transfer data is 7 bits long.	
		Set to 101b when transfer data is 8 bits long.	
	CKDIR	Select the internal clock or external clock.	
	STPS	Select the stop bit.	
	PRY, PRYE	Parity detection function disabled	
	IOPOL	Set to 0.	
U2C0	CLK0, CLK1	Select the U2BRG count source.	
	CRS	CTS or RTS function disabled	
	TXEPT	Transmit register empty flag	
	CRD	Set to 0.	
	NCH	Select TXD2 pin output mode.	
	CKPOL	Set to 0.	
	UFORM	Set to 0.	
U2C1	TE	Set to 1 to enable transmission.	
	TI	Transmit buffer empty flag	
	RE	Set to 1 to enable reception.	
	RI	Receive complete flag	
	U2IRS	Select the UART2 transmit interrupt source.	
	U2LCH	Set to 0.	
	U2ERE	Set to 0.	
U2SMR	b0 to b7	Set to 0.	
U2SMR2	b0 to b7	Set to 0.	
U2SMR3	b0 to b7	Set to 0.	
U2SMR4	b0 to b7	Set to 0.	
U2SMR5	MP	Set to 1.	
	MPIE	Set to 1.	
URXDF	DF2EN	Select the digital filter enabled or disabled.	

Table 21.16	Registers and Set	ttings in Multiprocessor	Communication Function
-------------	-------------------	--------------------------	-------------------------------

Notes:

1. Set the MPTB bit to 1 when the ID data frame is transmitted. Set this bit to 0 when the data frame is transmitted.

2. If the MPRB bit is set to 1, received D7 to D0 are ID fields. If the MPRB bit is set to 0, received D7 to D0 are data fields.

21.7.1 Multiprocessor Transmission

Figure 21.23 shows a Sample Flowchart of Multiprocessor Data Transmission. Set the MPBT bit in the U2TB register to 1 for ID transmission cycles. Set the MPBT bit in the U2TB register to 0 for data transmission cycles. Other operations are the same as in universal asynchronous receiver/transmitter mode (UART mode).

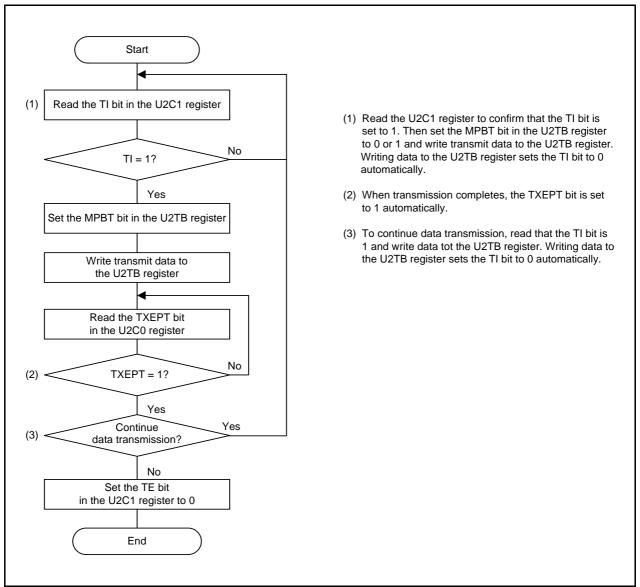


Figure 21.23 Sample Flowchart of Multiprocessor Data Transmission

21.7.2 Multiprocessor Reception

Figure 21.24 shows a Sample Flowchart of Multiprocessor Data Reception. When the MPIE bit in the U2SMR5 register is set to 1, communication data is ignored until data in which the multiprocessor bit is 1 is received. Communication data with a 1 multiprocessor bit added is transferred to the U2RB register as receive data. At this time, a reception complete interrupt request is generated. Other operations are the same as in universal asynchronous receiver/transmitter mode (UART mode). Figure 21.25 shows a Receive Operation Example during Multiprocessor Communication (with 8-Bit Data/Multiprocessor Bit/One-Stop Bit).

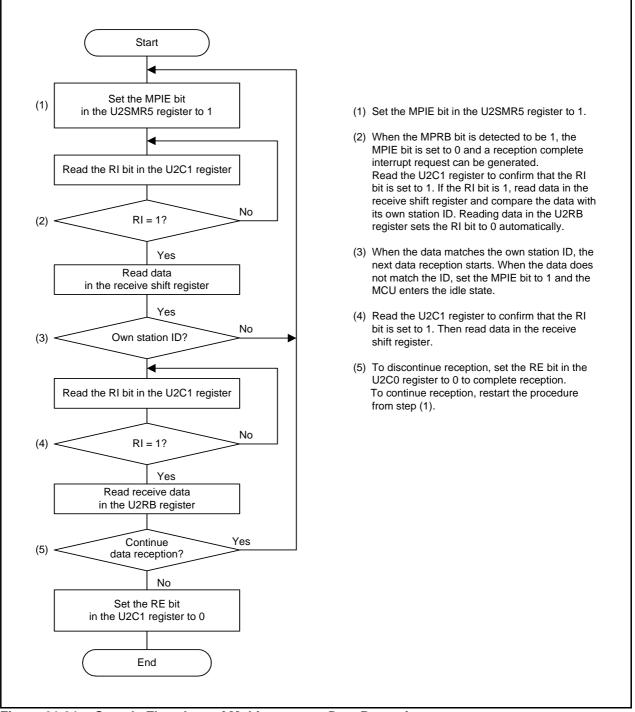
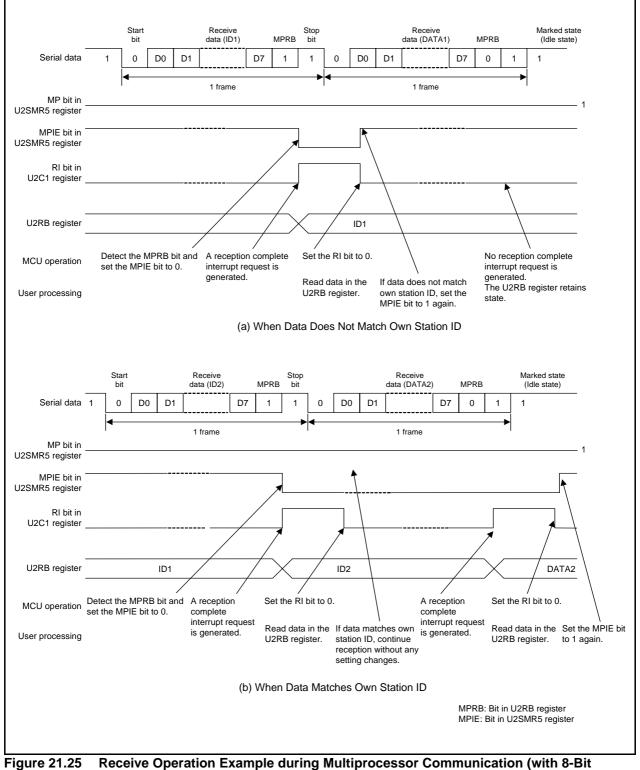



Figure 21.24 Sample Flowchart of Multiprocessor Data Reception

R8C/3JT Group

Data/Multiprocessor Bit/One-Stop Bit)

21.7.3 RXD2 Digital Filter Select Function

When the DF2EN bit in the URXDF register is set to 1 (RXD2 digital filer enabled), the RXD2 input signal is loaded internally via the digital filter circuit for noise reduction. The noise canceller consists of three cascaded latch circuits and a match detection circuit. The RXD2 input signal is sampled on the internal basic clock with a frequency 16 times the bit rate. It is recognized as a signal and the level is passed forward to the next circuit when three latch outputs match. When the outputs do not match, the previous value is retained.

In other words, when the level is changed within three clocks, the change is recognized as not a signal but noise. Figure 21.26 shows a Block Diagram of RXD2 Digital Filter Circuit.

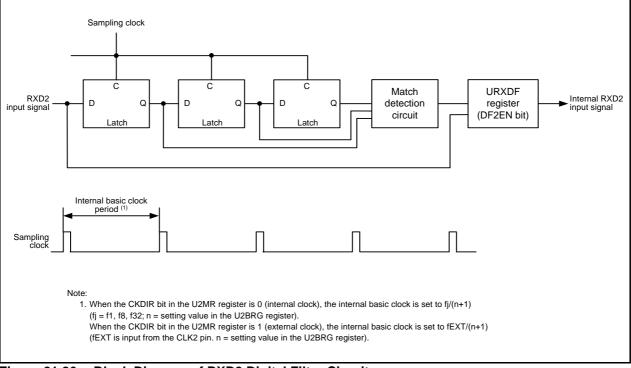


Figure 21.26 Block Diagram of RXD2 Digital Filter Circuit

21.8 Low-Voltage Signal Mode

Serial interface (UART0 and UART2) communication and the INT input for the INT interrupt can be performed using a low-voltage signal. Table 21.17 lists the Pins Usable for Inputting and Outputting Low-Voltage Signal. Depending on the setting of the TSMR register, the pins enabled for low-voltage signal mode is switched from schmitt input to CMOS input when they are used as input.

Set the input threshold values for CMOS input using registers VLT0 and VLT1.

When low-voltage signal mode is used, all inputs are set to CMOS input. Since schmitt input is disabled, always take countermeasures against noise.

Table 21.17	Pins Usable for Inputting and Outputting Low-Voltage Signal
-------------	---

Periph	Pin	
Serial interface	UART0 Clock synchronous serial I/O Clock asynchronous serial I/O	CLK0, RXD0, TXD0
	UART2 Clock synchronous serial I/O Clock asynchronous serial I/O Special mode 1 (I ² C mode) Special mode 2 (SSU mode) Multiprocessor communication function	<u>CLK2</u> , <u>RXD2</u> , TXD2, CTS2, RTS2, SCL2, SDA2
INT	INTO to INT3	INT0 to INT3

21.9 Notes on Serial Interface (UART2)

21.9.1 Clock Synchronous Serial I/O Mode

21.9.1.1 Transmission/Reception

When the $\overline{\text{RTS}}$ function is used with an external clock, the $\overline{\text{RTS2}}$ pin outputs "L," which informs the transmitting side that the MCU is ready for a receive operation. The $\overline{\text{RTS2}}$ pin outputs "H" when a receive operation starts. Therefore, the transmitting and receive timing can be synchronized by connecting the $\overline{\text{RTS2}}$ pin to the $\overline{\text{CTS2}}$ pin of the transmitting side. The $\overline{\text{RTS}}$ function is disabled when an internal clock is selected.

21.9.1.2 Transmission

If an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit in the U2C0 register is set to 0 (transmit data output at the falling edge and receive data input at the rising edge of the transfer clock), or while the external clock is held low when the CKPOL bit is set to 1 (transmit data output at the rising edge and receive data input at the falling edge of the transfer clock).

- The TE bit in the U2C1 register = 1 (transmission enabled)
- The TI bit in the U2C1 register = 0 (data present in the U2TB register)
- If the $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTS2}}$ pin = "L"

21.9.1.3 Reception

In clock synchronous serial I/O mode, the shift clock is generated by activating the transmitter. Set the UART2associated registers for transmit operation even if the MCU is used for receive operation only. Dummy data is output from the TXD2 pin while receiving.

When an internal clock is selected, the shift clock is generated by setting the TE bit in the U2C1 register to 1 (transmission enabled) and placing dummy data in the U2TB register. When an external clock is selected, set the TE bit to 1 (transmission enabled), place dummy data in the U2TB register, and input an external clock to the CLK2 pin to generate the shift clock.

If data is received consecutively, an overrun error occurs when the RE bit in the U2C1 register is set to 1 (data present in the U2RB register) and the next receive data is received in the UART2 receive register. Then, the OER bit in the U2RB register is set to 1 (overrun error). At this time, the U2RB register value is undefined. If an overrun error occurs, the IR bit in the S2RIC register remains unchanged.

To receive data consecutively, set dummy data in the low-order byte in the U2TB register per each receive operation.

If an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit is set to 0, or while the external clock is held low when the CKPOL bit is set to 1.

- The RE bit in the U2C1 register = 1 (reception enabled)
- The TE bit in the U2C1 register = 1 (transmission enabled)
- The TI bit in the U2C1 register = 0 (data present in the U2TB register)

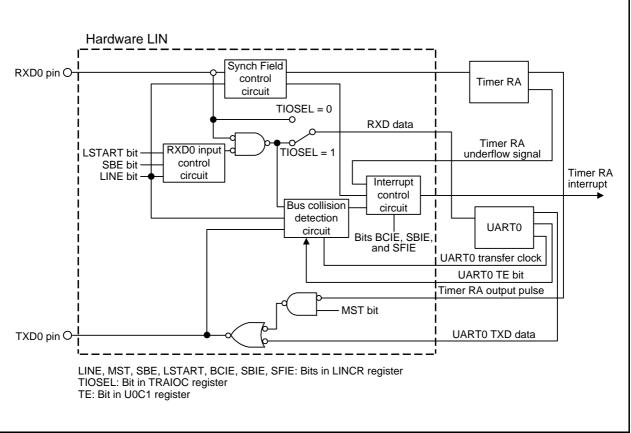
21.9.2 Special Mode 1 (I²C Mode)

When generating start, stop, and restart conditions, set the STSPSEL bit in the U2SMR4 register to 0 and wait for more than half cycle of the transfer clock before changing each condition generation bit (STAREQ, RSTAREQ, and STPREQ) from 0 to 1.

22. Hardware LIN

The hardware LIN performs LIN communication in cooperation with timer RA and UARTO.

22.1 Overview


The hardware LIN has the features listed below. Figure 22.1 shows a Hardware LIN Block Diagram. The wake-up function for each mode is detected using $\overline{INT1}$.

Master mode

- Synch Break generation
- Bus collision detection

Slave mode

- Synch Break detection
- Synch Field measurement
- Control function for Synch Break and Synch Field signal inputs to UARTO
- Bus collision detection

22.2 Input/Output Pins

The pin configuration for the hardware LIN is listed in Table 22.1.

Table 22.1 Hardware LIN Pin Configuration

Name	Pin Name	Assigned Pin	Input/Output	Function
Receive data input	RXD0	P1_5 ⁽¹⁾	Input	Receive data input pin for the hardware LIN
Transmit data output	TXD0	P1_4 ⁽²⁾	Output	Transmit data output pin for the hardware LIN

Notes:

1. To use the hardware LIN, refer to Table 7.18.

2. To use the hardware LIN, set the TXD0SEL0 bit in the U0SR register to 1.

22.3 Registers

The hardware LIN contains the following registers:

- LIN Control Register 2 (LINCR2)
- LIN Control Register (LINCR)
- LIN Status Register (LINST)

22.3.1 LIN Control Register 2 (LINCR2)

Bit	Symbol	Bit Name	Function	R/W		
b0	BCE	Bus collision detection during Sync Break transmission enable bit	0: Bus collision detection disabled 1: Bus collision detection enabled	R/W		
b1		Reserved bits	Set to 0.	R/W		
b2						
b3	—					
b4	—	Nothing is assigned. If necessary, set to 0. When read, the content is 0.				
b5	—					
b6						
b7	—					

R/W

22.3.2 LIN Control Register (LINCR)

	Ado	dress 0	106h									
		Bit	b7	b6	b5	b4	b3	b2	b1	b0		
	Sy	mbol	LINE	E MST	SBE	LSTART	RXDSF	BCIE	SBIE	SFIE		
	After F	Reset	0	0	0	0	0	0	0	0		
	Bit	Symb	ol	В	it Name		Function					
1	b0	SFIE	S	ynch Field mea	asurement	d 0: Synch Field measurement-completed interrup						
			in	terrupt enable	bit	disabled						
							1. Synch Field measurement-completed interrupt					

			1: Synch Field measurement-completed interrupt enabled	
b1	SBIE	Synch Break detection interrupt enable bit	0: Synch Break detection interrupt disabled 1: Synch Break detection interrupt enabled	R/W
b2	BCIE	Bus collision detection interrupt enable bit	0: Bus collision detection interrupt disabled 1: Bus collision detection interrupt enabled	R/W
b3	RXDSF	RXD0 input status flag	0: RXD0 input enabled 1: RXD0 input disabled	R
b4	LSTART	Synch Break detection start bit ⁽¹⁾	When this bit is set to 1, timer RA input is enabled and RXD0 input is disabled. When read, the content is 0.	R/W
b5	SBE	RXD0 input unmasking timing select bit (effective only in slave mode)	0: Unmasked after Synch Break detected 1: Unmasked after Synch Field measurement completed	R/W
b6	MST	LIN operation mode setting bit ⁽²⁾	0: Slave mode (Synch Break detection circuit operation) 1: Master mode (timer RA output OR'ed with TXD0)	R/W
b7	LINE	LIN operation start bit	0: LIN operation stops 1: LIN operation starts ⁽³⁾	R/W

Notes:

1. After setting the LSTART bit, confirm that the RXDSF flag is set to 1 before Synch Break input starts.

2. Before switching LIN operation modes, stop the LIN operation (LINE bit = 0) once.

3. Inputs to timer RA and UARTO are disabled immediately after the LINE bit is set to 1 (LIN operation starts). (Refer to Figure 22.3 Header Field Transmission Flowchart Example (1) and Figure 22.7 Header Field Reception Flowchart Example (2).)

22.3.3 LIN Status Register (LINST)

	-		- J -		- /						
Ade	dress 0107	7h									
	Bit k	b7	b6	b5	b4	b3	b2	b1	b0		
Sy	/mbol -		_	B2CLR	B1CLR	B0CLR	BCDCT	SBDCT	SFDCT		
After F	Reset	0	0	0	0	0	0	0	0		
Bit	Symbol		В	it Name				Function			R/W
b0	SFDCT	Syncl	n Field mea	asurement	-completed	When this	s bit is set t	o 1, Synch	Field meas	surement	R
	flag				is comple	is completed.					
b1	SBDCT	Syncl	n Break de	tection fla	g	when this bit is set to 1, Synch Break is detected or					R
						Synch Break generation is completed.					
b2	BCDCT	Bus c	ollision de	tection flag	9	When this bit is set to 1, bus collision is detected.					
b3	B0CLR	SFDC	CT bit clear	· bit		When this bit is set to 1, the SFDCT bit is set to 0.					R/W
						When read, the content is 0.					
b4	B1CLR	SBDC	CT bit clear	r bit		When this bit is set to 1, the SBDCT bit is set to 0.					R/W
						When rea	ad, the cont	ent is 0.			
b5	B2CLR	BCDCT bit clear bit			When this bit is set to 1, the BCDCT bit is set to 0.					R/W	
							When read, the content is 0.				
b6	—	Nothi	ng is assig	ned. If neo	cessary, set	to 0. Whe	n read, the	content is	0.		—
b7	—										

22.4 Function Description

22.4.1 Master Mode

Figure 22.2 shows an Operating Example during Header Field Transmission in master mode. Figures 22.3 and 22.4 show Examples of Header Field Transmission Flowchart.

During header field transmission, the hardware LIN operates as follows:

- (1) When 1 is written to the TSTART bit in the TRACR register for timer RA, a "L" level is output from the TXD0 pin for the period set in registers TRAPRE and TRA for timer RA.
- (2) When timer RA underflows, the TXD0 pin output is inverted and the SBDCT flag in the LINST register is set to 1. If the SBIE bit in the LINCR register is set to 1, a timer RA interrupt is generated.
- (3) The hardware LIN transmits "55h" via UARTO.
- (4) After the hardware LIN completes transmitting "55h", it transmits an ID field via UART0.
- (5) After the hardware LIN completes transmitting the ID field, it performs communication for a response field.

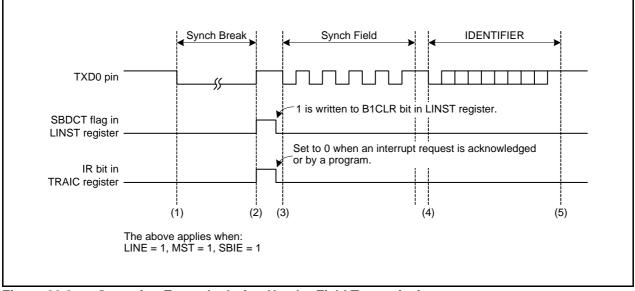


Figure 22.2 Operating Example during Header Field Transmission

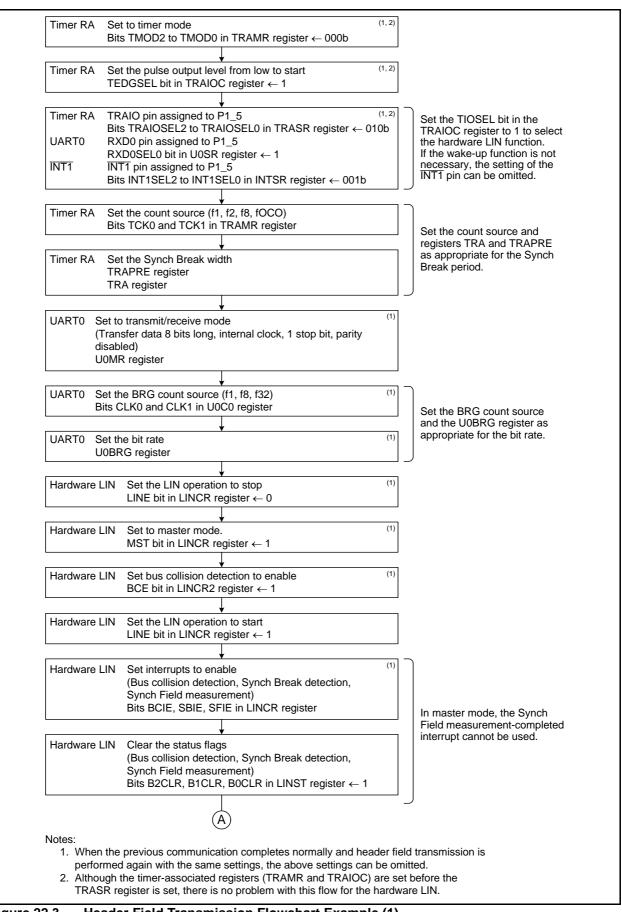


Figure 22.3 Header Field Transmission Flowchart Example (1)

RENESAS

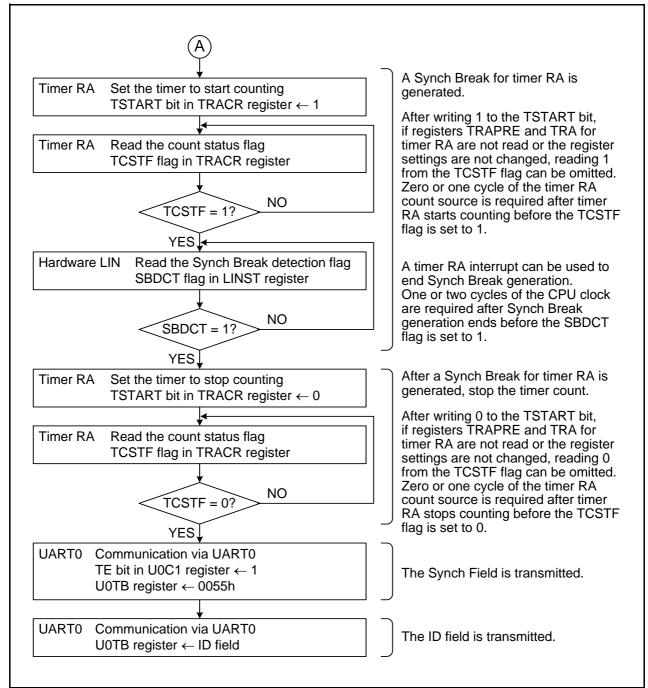


Figure 22.4 Header Field Transmission Flowchart Example (2)

22.4.2 Slave Mode

Figure 22.5 shows an Operating Example during Header Field Reception in slave mode. Figures 22.6 to 22.8 show examples of Header Field Reception Flowchart.

During header field reception, the hardware LIN operates as follows:

- (1) When 1 is written to the LSTART bit in the LINCR register for the hardware LIN, Synch Break detection is enabled.
- (2) If a "L" level is input for a duration equal to or longer than the period set in timer RA, the hardware LIN detected it as a Synch Break. At this time, the SBDCT flag in the LINST register is set to 1. If the SBIE bit in the LINCR register is set to 1, a timer RA interrupt is generated. Then the hardware LIN enters the Synch Field measurement.
- (3) The hardware LINA receives a Synch Field (55h) and measures the period of the start bit and bits 0 to 6 is using timer RA. At this time, whether to input the Synch Field signal to RXD0 of UART0 can be selected by the SBE bit in the LINCR register.
- (4) When the Synch Field measurement is completed, the SFDCT flag in the LINST register is set to 1. If the SFIE bit in the LINCR register is set to 1, a timer RA interrupt is generated.
- (5) After the Synch Field measurement is completed, a transfer rate is calculated from the timer RA count value. The rate is set in UART0 and registers TRAPRE and TRA for timer RA are set again. Then the hardware LIN receives an ID field via UART0.
- (6) After the hardware LIN completes receiving the ID field, it performs communication for a response field.

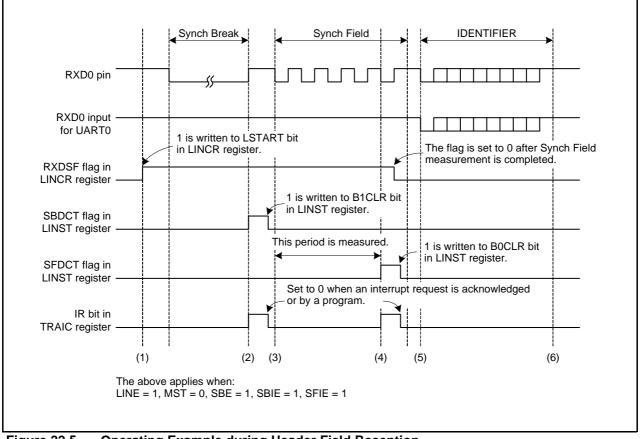


Figure 22.5 Operating Example during Header Field Reception

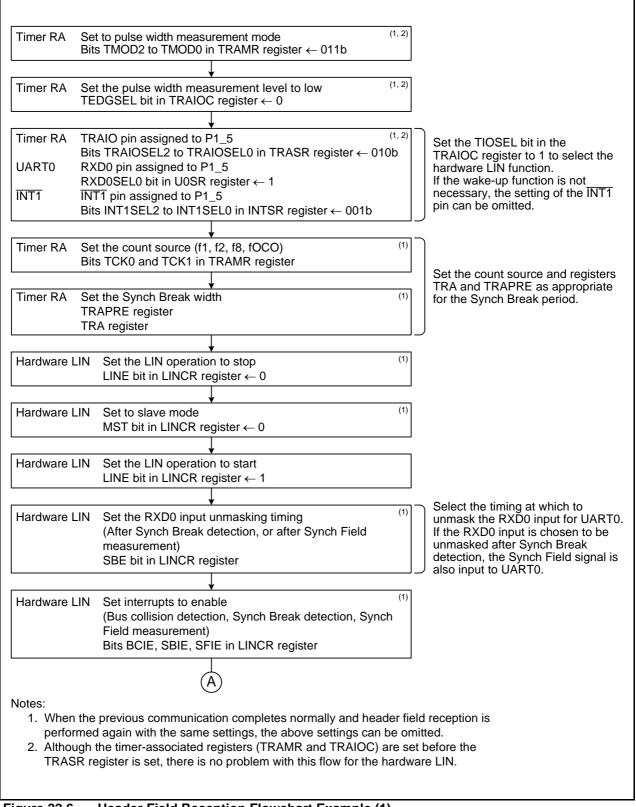


Figure 22.6 Header Field Reception Flowchart Example (1)

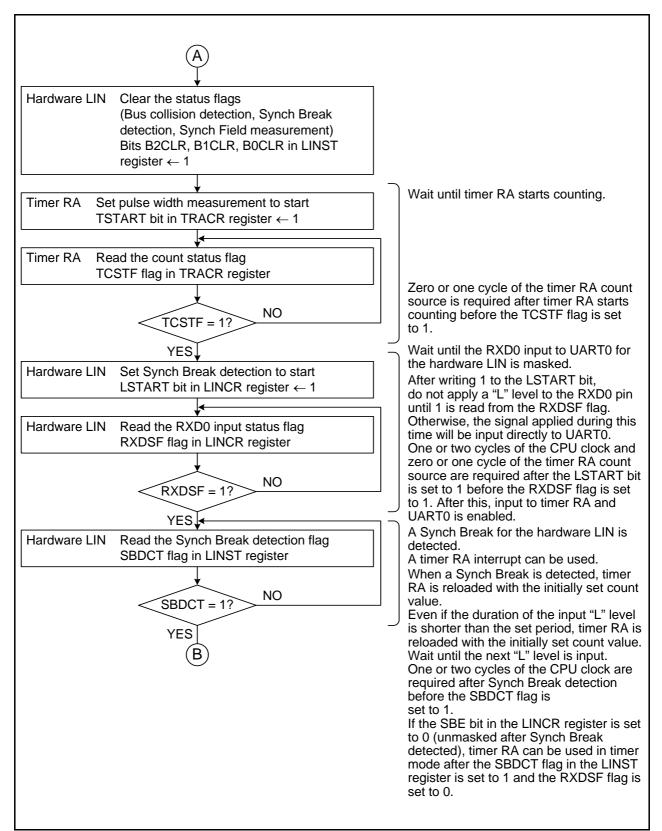
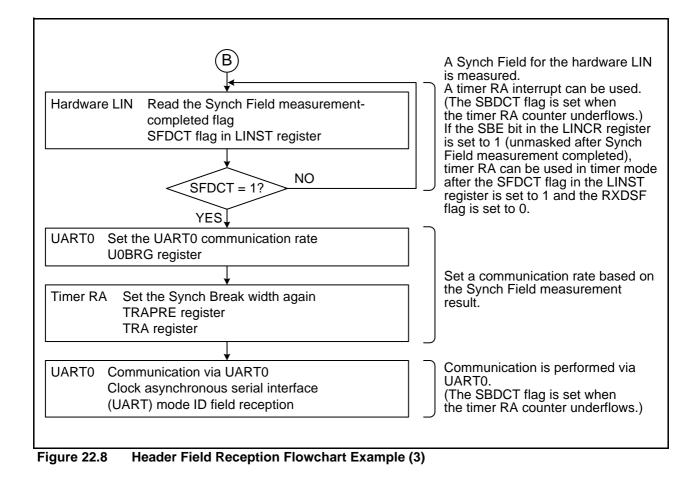



Figure 22.7 Header Field Reception Flowchart Example (2)

22.4.3 Bus Collision Detection Function

The bus collision detection function can be used if UART0 is enabled for transmission (TE bit in U0C1 register = 1). To detect a bus collision during Synch Break transmission, set the BCE bit in the LINCR2 register to 1 (bus collision detection enabled).

Figure 22.9 shows an Operating Example When Bus Collision is Detected.

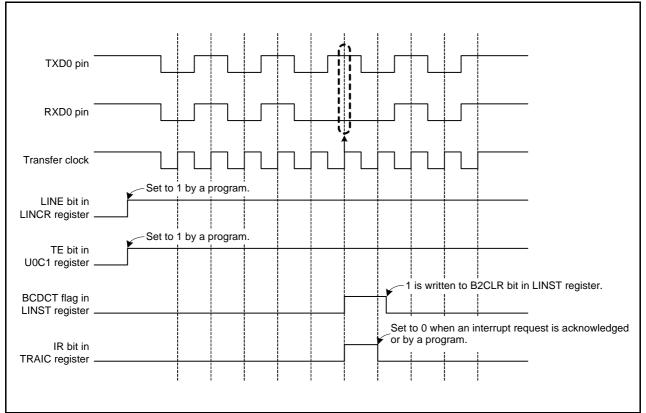


Figure 22.9 Operating Example When Bus Collision is Detected

22.4.4 Hardware LIN End Processing

Figure 22.10 shows an Example of Hardware LIN Communication Completion Flowchart.

- Use the following timing for hardware LIN end processing:
- If the hardware bus collision detection function is used
- Perform hardware LIN end processing after checksum transmission completes.
- If the bus collision detection function is not used
 - Perform hardware LIN end processing after header field transmission and reception complete.

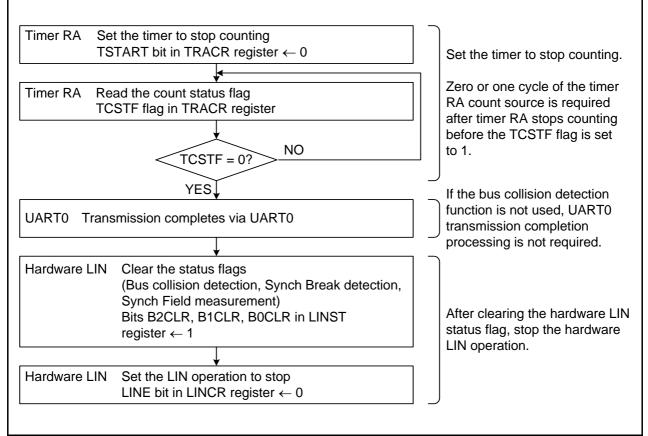


Figure 22.10 Example of Hardware LIN Communication Completion Flowchart

22.5 Interrupt Requests

There are four interrupt requests generated by the hardware LIN: Synch Break detection, Completion of Synch Break generation, Completion of Synch Field measurement, and bus collision detection. These interrupts are shared with timer RA.

Table 22.2 lists the Hardware LIN Interrupt Requests.

Table 22.2 Hardware LIN Interrupt Requests

Interrupt Request	Status Flag	Interrupt Source
Synch Break detection	SBDCT	Generated when timer RA underflows after the "L" level duration for the RXD0 input is measured, or when a "L" level is input for a duration longer than the Synch Break period during communication.
Completion of Synch Break generation		Generated when a "L" level output to TXD0 for the duration set by timer RA is completed.
Completion of Synch Field measurement	SFDCT	Generated when measurement for 6 bits of the Lynch Field by timer RA is completed.
Bus collision detection	BCDCT	Generated when the RXD0 input and TXD0 output values are different at data latch timing while UART0 is enabled for transmission.

22.6 Notes on Hardware LIN

For the time-out processing of the header and response fields, use another timer to measure the duration of time with a Synch Break detection interrupt as the starting point.

23. A/D Converter

The A/D converter consists of one 10-bit successive approximation A/D converter circuit with a capacitive coupling amplifier. The analog input shares pins P0_0 to P0_7, and P1_0 to P1_3.

23.1 Overview

Table 23.1 lists the A/D Converter Performance. Figure 23.1 shows a Block Diagram of A/D Converter.

Item	Performance
A/D conversion method	Successive approximation (with capacitive coupling amplifier)
Analog input voltage ⁽¹⁾	0 V to AVCC
Operating clock ϕ AD ⁽²⁾	fAD, fAD divided by 2, fAD divided by 4, fAD divided by 8 (fAD=f1 or fOCO-F)
Resolution	8 bits or 10 bits selectable
Absolute accuracy	AVCC = Vref = 5 V, ϕ AD = 20 MHz • 8-bit resolution ±2 LSB • 10-bit resolution ±3 LSB AVCC = Vref = 3.3 V, ϕ AD = 16 MHz • 8-bit resolution ±2 LSB • 10-bit resolution ±5 LSB AVCC = Vref = 3.0 V, ϕ AD = 10 MHz • 8-bit resolution ±2 LSB • 10-bit resolution ±2 LSB • 10-bit resolution ±5 LSB AVCC = Vref = 2.2 V, ϕ AD = 5 MHz • 8-bit resolution ±2 LSB • 10-bit resolution ±2 LSB • 10-bit resolution ±2 LSB
Operating mode	One-shot mode, repeat mode 0, repeat mode 1, single sweep mode, and repeat sweep mode
Analog input pin	12 pins (AN0 to AN11)
A/D conversion start condition	 Software trigger Timer RC External trigger (Refer to 23.3.3 A/D Conversion Start Condition.)
Conversion rate per pin (ϕ AD = fAD) ⁽³⁾	Minimum 44

Table 23.1 A/D Converter Performance

Notes:

1. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

2. Refer to **Table 27.3 A/D Converter Characteristics** for the operating clock ϕ A/D.

3. The conversion rate per pin is minimum 44 \(\phiAD\) cycles for 8-bit and 10-bit resolution.

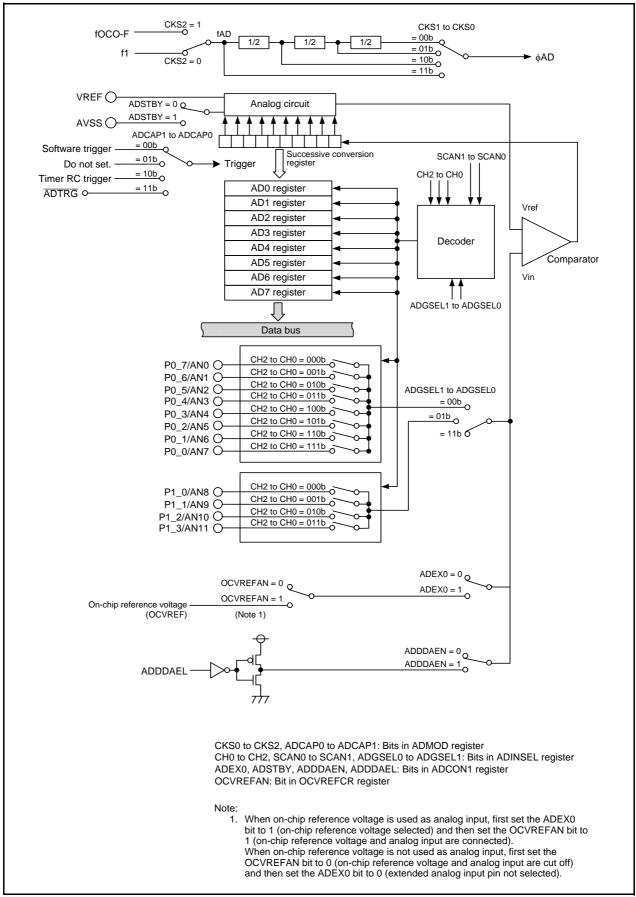


Figure 23.1 Block Diagram of A/D Converter

23.2 Registers

23.2.1 On-Chip Reference Voltage Control Register (OCVREFCR)

Bit	Symbol	Bit Name	Function	R/W
b0		On-chip reference voltage to analog input connect bit ⁽¹⁾	 On-chip reference voltage and analog input are cut off On-chip reference voltage and analog input are connected 	R/W
b1	—	Reserved bits	Set to 0.	R/W
b2	—			
b3	—			
b4	—			
b5	—			
b6	—			
b7	—			

Note:

1. When on-chip reference voltage is used as analog input, first set the ADEX0 bit in the ADCON1 register to 1 (onchip reference voltage selected) and then set the OCVREFAN bit to 1 (on-chip reference voltage and analog input are connected).

When on-chip reference voltage is not used as analog input, first set the OCVREFAN bit to 0 (on-chip reference voltage and analog input are cut off) and then set the ADEX0 bit to 0 (extended analog input pin not selected).

Set the PRC3 bit in the PRCR register to 1 (write enabled) before rewriting the OCVREFCR register. If the contents of the OCVREFCR register are rewritten during A/D conversion, the conversion result is undefined.

23.2.2 A/D Register i (ADi) (i = 0 to 7) Address 00C1h to 00C0h (AD0), 00C3h to 00C2h (AD1), 00C5h to 00C4h (AD2), 00C7h to 00C6h (AD3), 00C9h to 00C8h (AD4), 00CBh to 00CAh (AD5), 00CDh to 00CCh (AD6), 00CFh to 00CEh (AD7) Bit b7 b6 b5 b4 b3 b2 b1 b0 Symbol ____ After Reset Х Х Х Х Х Х Х Х Bit b15 b14 b13 b12 b11 b10 b9 b8 Symbol After Reset 0 0 0 0 0 0 Х Х

	Function							
Bit	10-Bit Mode	8-Bit Mode						
	(BITS Bit in ADCON1 Register = 1)	(BITS Bit in ADCON1 Register = 0)						
b0	8 low-order bits in A/D conversion result	A/D conversion result	R					
b1								
b2								
b3								
b4	1							
b5	1							
b6	1							
b7	1							
b8	2 high-order bits in A/D conversion result	When read, the content is 0.	R					
b9	1							
b10	Nothing is assigned. If necessary, set to 0. When	read, the content is 0.						
b11	1							
b12								
b13								
b14								
b15	Reserved bit	When read, the content is undefined.	R					

If the contents of the ADCON1, ADMOD, ADINSEL, or OCVREFCR register are written during A/D conversion, the conversion result is undefined.

When using the A/D converter in 10-bit mode, repeat mode 0, repeat mode 1, or repeat sweep mode, access the ADi register in 16-bit units. Do not access it in 8-bit units.

23.2.3 A/D Mode Register (ADMOD)

Address 00D4h												
		Bit I	o7	b6	b5	b4	b3	b2	b1	b0		
	Sy	mbol AD	CAP1	ADCAP0	MD2	MD1	MD0	CKS2	CKS1	CKS0		
	After F	Reset	0	0	0	0	0	0	0	0		
г	Bit	Symbol		Bit Na	me			Eu	nction		R/W	
ł	b0	CKS0	Divisi	ion select bi	-	b1 b0		Tu	псион		-	
Ļ			DIVISI	ion select bi	L		AD divided	bv 8			R/W	
	b1	CKS1					AD divided				R/W	
							AD divided					
								by 1 (no div	vision)			
ł	b2	b2 CKS2 Clock source select bit ⁽¹⁾				0: Sele		, (,		R/W	
						1: Sele	1: Selects fOCO-F					
ł	b3	MD0	A/D c	perating m	ode select l			-			R/W	
ł	b4	MD1		por a ling m	0000000	0 0 0:	0 0 0: One-shot mode					
ł	b4	MD2	-			001:	0 0 1: Do not set.					
	05	NIDZ					0 1 0: Repeat mode 0					
							0 1 1: Repeat mode 1					
						100:	1 0 0: Single sweep mode					
						101:	1 0 1: Do not set.					
						110:	Repeat sw	eep mode				
						111:	1 1 1: Do not set.					
T	b6	ADCAP0	A/D c	conversion t	rigger seled	t ^{b7 b6}	/D				R/W	
Ī	b7	ADCAP1	bit				D convers. DCON0 re		y software	trigger (ADST bit in	R/W	
						0 1: D	o not set.					
							/D convers	ion starts b	y conversi	on trigger from timer		

Note:

1. When the CKS2 bit is changed, wait for 3 ϕ AD cycles or more before starting A/D conversion.

If the ADMOD register is rewritten during A/D conversion, the conversion result is undefined.

1 1: A/D conversion starts by external trigger (ADTRG)

23.2.4 A/D Input Select Register (ADINSEL)

Address	Address 00D5h										
Bit	b7	b6	b5	b4	b3	b2	b1	b0			
Symbol	ADGSEL1	ADGSEL0	SCAN1	SCAN0	—	CH2	CH1	CH0			
After Reset	1	1	0	0	0	0	0	0			

Bit	Symbol	Bit Name	Function	R/W
b0	CH0	Analog input pin select bit	Refer to Table 23.2 Analog Input Pin Selection.	R/W
b1	CH1			R/W
b2	CH2			R/W
b3	—	Reserved bit	Set to 0.	R/W
b4	SCAN0	A/D sweep pin count select bit	^{b5 b4} 0 0: 2 pins	R/W
b5	SCAN1		0 1: 4 pins 1 0: 6 pins 1 1: 8 pins	R/W
b6 b7	ADGSEL0 ADGSEL1	A/D input group select bit	 b7 b6 0 0: Port P0 group selected 0 1: Port P1 group selected 1 0: Do not set. 1 1: Port group not selected 	R/W R/W

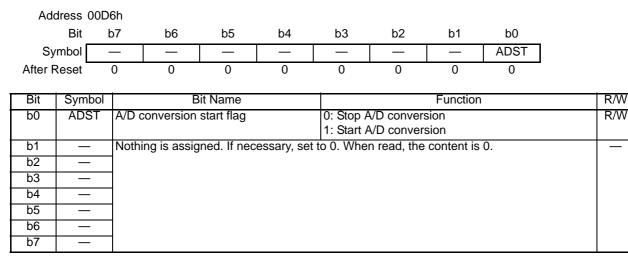

If the ADINSEL register is rewritten during A/D conversion, the conversion result is undefined.

Table 23.2 Analog Input Pin Selection

Bits CH2 to CH0	Bits ADGSEL1, ADGSEL0 = 00b	Bits ADGSEL1, ADGSEL0 = 01b
000b	ANO	AN8
001b	AN1	AN9
010b	AN2	AN10
011b	AN3	AN11
100b	AN4	Do not set.
101b	AN5	
110b	AN6	
111b	AN7	

23.2.5 A/D Control Register 0 (ADCON0)

ADST Bit (A/D conversion start flag)

- [Conditions for setting to 1]
- When A/D conversion starts and while A/D conversion is in progress.
- [Condition for setting to 0]
- When A/D conversion stops.

23.2.6 A/D Control Register 1 (ADCON1)

Address	Address 00D7h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	ADDDAEL	ADDDAEN	ADSTBY	BITS		—		ADEX0	
After Reset	0	0	0	0	0	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	ADEX0	Extended analog input pin select bit ⁽¹⁾	0: Extended analog input pin not selected 1: On-chip reference voltage selected ^(2, 6, 7)	R/W
b1	_	Reserved bits	Set to 0.	R/W
b2	—			
b3	—			
b4	BITS	8/10-bit mode select bit	0: 8-bit mode 1: 10-bit mode	R/W
b5	ADSTBY	A/D standby bit ⁽³⁾	0: A/D operation stops (standby) ⁽⁴⁾ 1: A/D operation enabled	R/W
b6	ADDDAEN	A/D open-circuit detection assist function enable bit ^(5, 7)	0: Disabled 1: Enabled	R/W
b7	ADDDAEL	A/D open-circuit detection assist method select bit ⁽⁵⁾	0: Discharge before conversion 1: Precharge before conversion	R/W

Notes:

1. When on-chip reference voltage is used as analog input, first set the ADEX0 bit to 1 (on-chip reference voltage selected) and then set the OCVREFAN bit in the OCVREFCR register to 1 (on-chip reference voltage and analog input are connected).

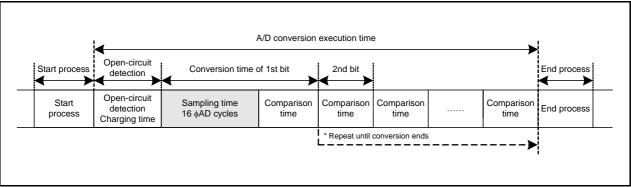
When on-chip reference voltage is not used as analog input, first set the OCVREFAN bit to 0 (on-chip reference voltage and analog input are cut off) and then set the ADEX0 bit to 0 (extended analog input pin not selected).

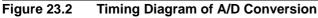
- 2. Do not set to 1 (A/D conversion using comparison reference voltage as input) in single sweep mode or repeat sweep mode.
- 3. When the ADSTBY bit is changed from 0 (A/D operation stops) to 1 (A/D operation enabled), wait for 1 \phiAD cycle or more before starting A/D conversion.
- 4. Stop the A/D function before setting to standby. When the ADSBY bit is set to 1 (standby), any access to the A/D associated registers (addresses 00C0h to 00CFh, and 00D4h to 00D7h) is disabled.
- To enable the A/D open-circuit detection assist function, select the conversion start state with the ADDDAEL bit after setting the ADDDAEN bit to 1 (enabled).
 The conversion result with an open circuit varies with external circuits. Careful evaluation should be performed

according to the system before using this function.6. When on-chip reference voltage is used (ADEX0 = 1), set bits CH2 to CH0 in the ADINSEL register to 000b.

7. When on-chip reference voltage is used (ADEX0 = 1), set the ADDDAEN bit to 0 (A/D open-circuit detection assist function disabled).

If the ADCON1 register is rewritten during A/D conversion, the conversion result is undefined.


23.3 Common Items for Multiple Modes


23.3.1 Input/Output Pins

The analog input shares pins P0_0 to P0_7, and P1_0 to P1_3 in AN0 to AN11. When using the ANi (i = 0 to 11) pin as input, set the corresponding port direction bit to 0 (input mode). After changing the A/D operating mode, select an analog input pin again.

23.3.2 A/D Conversion Cycles

Figure 23.2 shows a Timing Diagram of A/D Conversion. Figure 23.3 shows the A/D Conversion Cycles (ϕ AD = fAD).

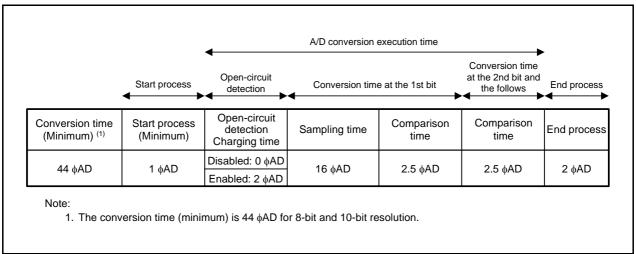


Table 23.3 lists the Number of Cycles for A/D Conversion Items. The A/D conversion time is defined as follows.

The start process time varies depending on which ϕAD is selected.

When 1 (A/D conversion starts) is written to the ADST bit in the ADCON0 register, an A/D conversion starts after the start process time has elapsed. Reading the ADST bit before the A/D conversion returns 0 (A/D conversion stops).

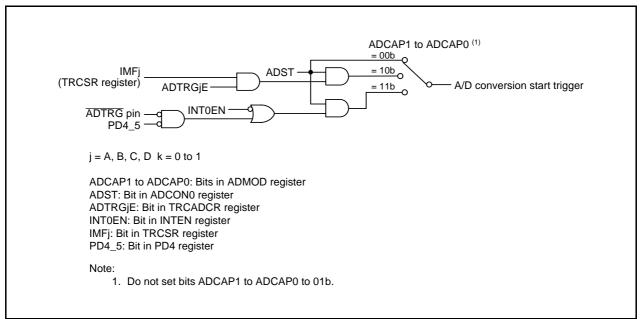
In the modes where an A/D conversion is performed on multiple pins or multiple times, the between-execution process time is inserted between the A/D conversion execution time for one pin and the next A/D conversion time.

In one-shot mode and single sweep mode, the ADST bit is set to 0 during the end process time and the last A/D conversion result is stored in the ADi register.

• In on-shot mode

Start process time + A/D conversion execution time + end process time

• When two pins are selected in single sweep mode Start process time + (A/D conversion execution time + between-execution process time + A/D conversion execution time) + end process time


Table 23.3 Number of Cycles for A/D Conversion Items

	A/D Conversion Item	Number of Cycles
Start process time	$\phi AD = fAD$	1 or 2 fAD cycles
	$\phi AD = fAD$ divided by 2	2 or 3 fAD cycles
	$\phi AD = fAD$ divided by 4	3 or 4 fAD cycles
	$\phi AD = fAD$ divided by 8	5 or 6 fAD cycles
A/D conversion	Open-circuit detection disabled	40 \u00f6AD cycles + 1 to 3 fAD cycles
execution time	Open-circuit detection enabled	42 ¢AD cycles + 1 to 3 fAD cycles
Between-execution p	process time	1 φAD cycle
End process time		2 or 3 fAD cycles

23.3.3 A/D Conversion Start Condition

A software trigger, trigger from timer RC, and external trigger are used as A/D conversion start triggers. Figure 23.4 shows the Block Diagram of A/D Conversion Start Control Unit.

23.3.3.1 Software Trigger

A software trigger is selected when bits ADCAP1 to ADCAP0 in the ADMOD register are set to 00b (software trigger).

The A/D conversion starts when the ADST bit in the ADCON0 register is set to 1 (A/D conversion starts).

23.3.3.2 Trigger from Timer RC

This trigger is selected when bits ADCAP1 to ADCAP0 in the ADMOD register are set to 10b (timer RC). To use this function, make sure the following conditions are met.

- Bits ADCAP1 to ADCAP0 in the ADMOD register are set to 10b (timer RC).
- Timer RC is used in the output compare function (timer mode, PWM mode, PWM2 mode).
- The ADTRGjE bit (j = A, B, C, D) in the TRCADCR register is set to 1 (A/D trigger occurs at compare match with TRCGRj register).
- The ADST bit in the ADCON0 register is set to 1 (A/D conversion starts).

When the IMFj bit in the TRCSR register is changed from 0 to 1, A/D conversion starts.

Refer to **19. Timer RC**, **19.5 Timer Mode (Output Compare Function)**, **19.6 PWM Mode**, **19.7 PWM2 Mode** for the details of timer RC and the output compare function (timer mode, PWM mode, and PWM2 mode).

23.3.3.3 External Trigger

This trigger is selected when bits ADCAP1 to ADCAP0 in the ADMOD register are set to 11b (external trigger (ADTRG)).

To use this function, make sure the following conditions are met.

- Bits ADCAP1 to ADCAP0 in the ADMOD register are set to 11b (external trigger (ADTRG)).
- Set the INT0EN bit in the INTEN register to 1 (INT0 input enabled) and the INT0PL bit to 0 (one edge), and set the POL bit in the INT0IC register to 0 (falling edge selected).
- The PD4_5 bit in the PD4 register is set to 0 (input mode).
- Select the $\overline{\text{INT0}}$ digital filter by bits INT0F1 to INT0F0 in the INTF register.
- The ADST bit in the ADCON0 register is set to 1 (A/D conversion starts).

The IR bit in the INTOIC register is set to 1 (interrupt requested) in accordance with the setting of the POL bit in the INTOIC register and the INTOPL bit in the INTEN register, and a change in the $\overline{\text{ADTRG}}$ pin input (refer to **11.9 Notes on Interrupts**).

For details on interrupts, refer to 11. Interrupts.

When the ADTRG pin input is changed from "H" to "L" under the above conditions, A/D conversion starts.

23.3.4 A/D Conversion Result

The A/D conversion result is stored in the ADi register (i = 0 to 7). The register where the result is stored varies depending on the A/D operating mode used. The contents of the ADi register are undefined after a reset. Values cannot be written to the ADi register.

In repeat mode 0, no interrupt request is generated. After the first AD conversion is completed, determine if the A/D conversion time has elapsed by a program.

In one-shot mode, repeat mode 1, single sweep mode, and repeat sweep mode, an interrupt request is generated at certain times, such as when an A/D conversion completes (the IR bit in the ADIC register is set to 1).

However, in repeat mode 1 and repeat sweep mode, A/D conversion continues after an interrupt request is generated. Read the ADi register before the next A/D conversion is completed, since at completion the ADi register is rewritten with the new value.

In one-shot mode and single sweep mode, when bits ADCAP1 to ADCAP0 in the ADMOD register is set to 00b (software trigger), the ADST bit in the ADCON0 register is used to determine whether the A/D conversion or sweep has completed.

During an A/D conversion operation, if the ADST bit in the ADCON0 register is set to 0 (A/D conversion stops) by a program to forcibly terminate A/D conversion, the conversion result of the A/D converter is undefined and no interrupt is generated. The value of the ADi register before A/D conversion may also be undefined.

If the ADST bit is set to 0 by a program, do not use the value of all the ADi register.

23.3.5 Low Current Consumption Function

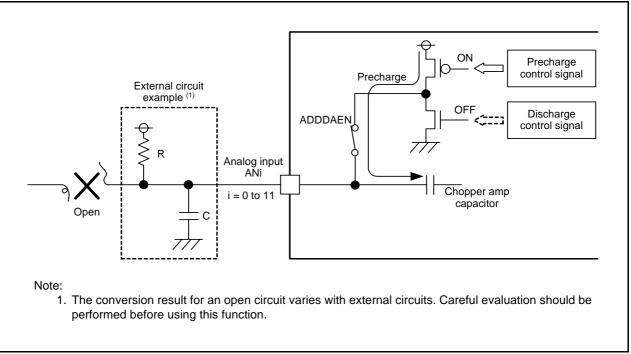
When the A/D converter is not used, power consumption can be reduced by setting the ADSTBY bit in the ADCON1 register to 0 (A/D operation stops (standby)) to shut off any analog circuit current flow.

To use the A/D converter, set the ADSTBY bit to 1 (A/D operation enabled) and wait for 1 ϕ AD cycle or more before setting the ADST bit in the ADCON0 register to 1 (A/D conversion starts). Do not write 1 to bits ADST and ADSTBY at the same time.

Also, do not set the ADSTBY bit to 0 (A/D operation stops (standby)) during A/D conversion.

23.3.6 On-Chip Reference Voltage (OCVREF)

In one-shot mode, repeat mode 0, and repeat mode 1, the on-chip reference voltage (OCVREF) can be used as analog input.


Any variation in VREF can be confirmed using the on-chip reference voltage. Use the ADEX0 bit in the ADCON1 register and the OCVREFAN bit in the OCVREFCR register to select the on-chip reference voltage. The A/D conversion result of the on-chip reference voltage in one-shot mode or in repeat mode 0 is stored in the AD0 register.

23.3.7 A/D Open-Circuit Detection Assist Function

To suppress influences of the analog input voltage leakage from the previously converted channel during A/D conversion operation, a function is incorporated to fix the electric charge on the chopper amp capacitor to the predetermined state (AVCC or GND) before starting conversion.

This function enables more reliable detection of an open circuit in the wiring connected to the analog input pins. Figure 23.5 shows the A/D Open-Circuit Detection Example on AVCC Side (Precharge before Conversion Selected) and Figure 23.6 shows the A/D Open-Circuit Detection Example on AVSS Side (Discharge before Conversion Selected).

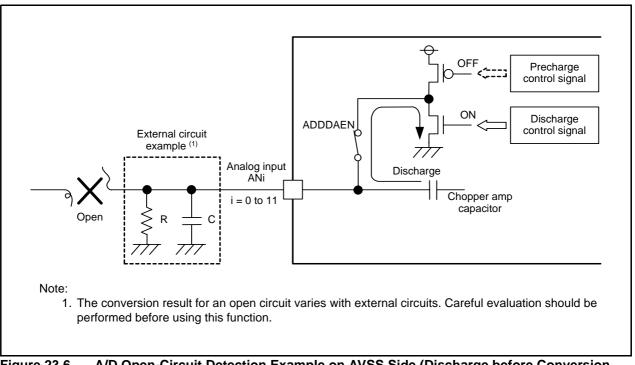


Figure 23.6 A/D Open-Circuit Detection Example on AVSS Side (Discharge before Conversion Selected)

23.4 One-Shot Mode

In one-shot mode, the input voltage to one pin selected from among AN0 to AN11 or OCVREF is A/D converted once.

Table 23.4 lists the One-Shot Mode Specifications.

Table 23.4	One-Shot Mode Specifications
------------	------------------------------

Item	Specification
Function	The input voltage to the pin selected by bits CH2 to CH0 and bits ADGSEL1 to ADGSEL0 in the ADINSEL register or the ADEX0 bit in the ADCON1 register is A/D converted once.
Resolution	8 bits or 10 bits
A/D conversion start condition	 Software trigger Timer RC External trigger (Refer to 23.3.3 A/D Conversion Start Condition.)
A/D conversion stop condition	 A/D conversion completes (If bits ADCAP1 to ADCAP0 in the ADMOD register are set to 00b (software trigger), the ADST bit in the ADCON0 register is set to 0.) Set the ADST bit to 0
Interrupt request generation timing	When A/D conversion completes
Analog input pin	One pin selectable from among AN0 to AN11, or OCVREF.
Storage resister for A/D conversion result	AD0 register: AN0, AN8, OCVREF AD1 register: AN1, AN9 AD2 register: AN2, AN10 AD3 register: AN3, AN11 AD4 register: AN4 AD5 register: AN5 AD6 register: AN6 AD7 register: AN7
Reading of result of A/D converter	Read register AD0 to AD7 corresponding to the selected pin.

23.5 Repeat Mode 0

In repeat mode 0, the input voltage to one pin selected from among AN0 to AN11 or OCVREF is A/D converted repeatedly.

Table 23.5 lists the Repeat Mode 0 Specifications.

Table 23.5	Repeat Mode 0 Specifications
------------	------------------------------

Item	Specification
Function	The input voltage to the pin selected by bits CH2 to CH0 and bits ADGSEL1 to ADGSEL0 in the ADINSEL register or the ADEX0 bit in the ADCON1 register is A/D converted repeatedly.
Resolution	8 bits or 10 bits
A/D conversion start condition	 Software trigger Timer RC External trigger (Refer to 23.3.3 A/D Conversion Start Condition.)
A/D conversion stop condition	Set the ADST bit in the ADCON0 register to 0
Interrupt request generation timing	Not generated
Analog input pin	One pin selectable from among AN0 to AN11, or OCVREF.
Storage resister for A/D conversion result	AD0 register: AN0, AN8, OCVREF AD1 register: AN1, AN9 AD2 register: AN2, AN10 AD3 register: AN3, AN11 AD4 register: AN4 AD5 register: AN5 AD6 register: AN6 AD7 register: AN7
Reading of result of A/D converter	Read register AD0 to AD7 corresponding to the selected pin.

23.6 Repeat Mode 1

In repeat mode 1, the input voltage to one pin selected from among AN0 to AN11 or OCVREF is A/D converted repeatedly.

Table 23.6 lists the Repeat Mode 1 Specifications. Figure 23.7 shows the Operating Example of Repeat Mode 1.

Item	Specification	
Function	The input voltage to the pin selected by bits CH2 to CH0 and bits ADGSEL1 to ADGSEL0 in the ADINSEL register or the ADEX0 bit in the ADCON1 register is A/D converted repeatedly.	
Resolution	8 bits or 10 bits	
A/D conversion start condition	 Software trigger Timer RC External trigger (Refer to 23.3.3 A/D Conversion Start Condition.) 	
A/D conversion stop condition	Set the ADST bit in the ADCON0 register to 0	
Interrupt request generation timing	When the A/D conversion result is stored in the AD7 register.	
Analog input pin	One pin selectable from among AN0 to AN11, or OCVREF.	
Storage resister for A/D conversion result	AD0 register: 1st A/D conversion result, 9th A/D conversion result AD1 register: 2nd A/D conversion result, 10th A/D conversion result AD2 register: 3rd A/D conversion result, 11th A/D conversion result AD3 register: 4th A/D conversion result, 12th A/D conversion result AD4 register: 5th A/D conversion result, 13th A/D conversion result AD5 register: 6th A/D conversion result, 14th A/D conversion result AD6 register: 7th A/D conversion result, 15th A/D conversion result AD7 register: 8th A/D conversion result, 16th A/D conversion result	
Reading of result of A/D converter	Read registers AD0 to AD7	

 Table 23.6
 Repeat Mode 1 Specifications

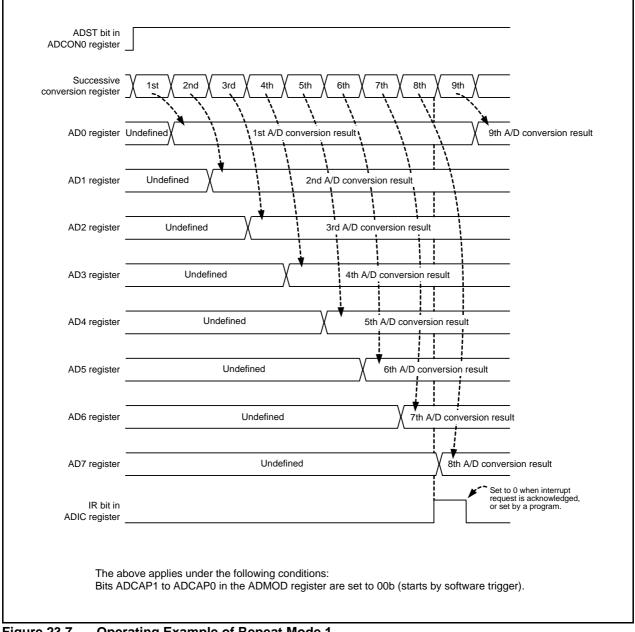


Figure 23.7 **Operating Example of Repeat Mode 1**

23.7 Single Sweep Mode

In single sweep mode, the input voltage to two, four, six, or eight pins selected from among AN0 to AN11 are A/D converted once.

Table 23.7 lists the Single Sweep Mode Specifications. Figure 23.8 shows the Operating Example of Single Sweep Mode.

Table 23.7	Single Sweep Mode Specifications
------------	----------------------------------

Item	Specification
Function	The input voltage to the pins selected by bits ADGSEL1 to ADGSEL0 and bits SCAN1 to SCAN0 in the ADINSEL register is A/D converted once.
Resolution	8 bits or 10 bits
A/D conversion start condition	 Software trigger Timer RC External trigger (Refer to 23.3.3 A/D Conversion Start Condition.)
A/D conversion stop condition	 If two pins are selected, when A/D conversion of the two selected pins completes (the ADST bit in the ADCON0 register is set to 0). If four pins are selected, when A/D conversion of the four selected pins completes (the ADST bit is set to 0). If six pins are selected, when A/D conversion of the six selected pins completes (the ADST bit is set to 0). If eight pins are selected, when A/D conversion of the eight selected pins completes (the ADST bit is set to 0). If eight pins are selected, when A/D conversion of the eight selected pins completes (the ADST bit is set to 0). Set the ADST bit to 0.
Interrupt request generation timing	 If two pins are selected, when A/D conversion of the two selected pins completes. If four pins are selected, when A/D conversion of the four selected pins completes. If six pins are selected, when A/D conversion of the six selected pins completes. If eight pins are selected, when A/D conversion of the eight selected pins completes.
Analog input pin	AN0 to AN1 (2 pins), AN8 to AN9 (2 pins), AN0 to AN3 (4 pins), AN8 to AN11 (4 pins), AN0 to AN5 (6 pins), AN0 to AN7 (8 pins) (Selectable by bits SCAN1 to SCAN0 and bits ADGSEL1 to ADGSEL0.)
Storage resister for A/D conversion result	AD0 register: AN0, AN8 AD1 register: AN1, AN9 AD2 register: AN2, AN10 AD3 register: AN3, AN11 AD4 register: AN4 AD5 register: AN5 AD6 register: AN6 AD7 register: AN7
Reading of result of A/D converter	Read the registers from AD0 to AD7 corresponding to the selected pin.

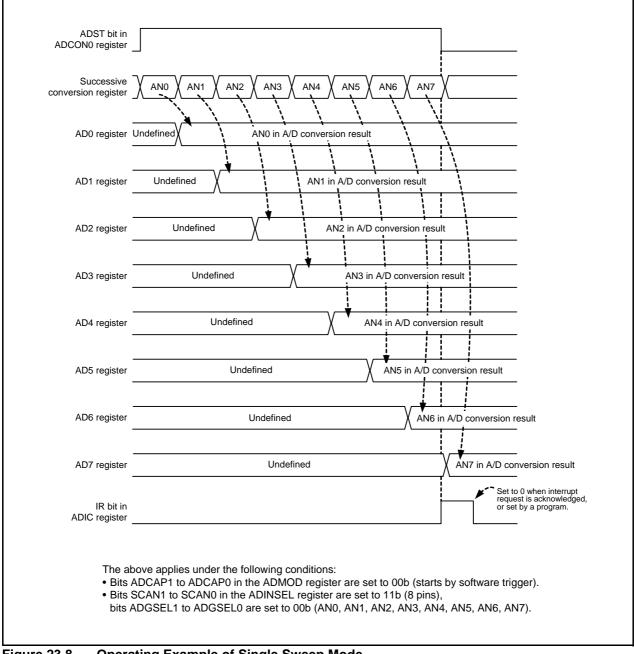


Figure 23.8 Operating Example of Single Sweep Mode

23.8 Repeat Sweep Mode

In repeat sweep mode, the input voltage to two, four, six, or eight pins selected from among AN0 to AN11 are A/D converted repeatedly.

Table 23.8 lists the Repeat Sweep Mode Specifications. Figure 23.9 shows the Operating Example of Repeat Sweep Mode.

Table 23.8 F	Repeat Sweep N	Node Specifications
lte	em	Specification
Function		The input voltage to the pins selected by bits

Rom	opeeniedderi
Function	The input voltage to the pins selected by bits ADGSEL1 to ADGSEL0 and bits SCAN1 to SCAN0 in the ADINSEL register are A/D converted
	repeatedly.
Resolution	8 bits or 10 bits
A/D conversion start condition	Software trigger
	• Timer RC
	• External trigger
	(Refer to 23.3.3 A/D Conversion Start Condition.)
A/D conversion stop condition	Set the ADST bit in the ADCON0 register to 0
Interrupt request generation	• If two pins are selected, when A/D conversion of the two selected pins
timing	completes.
	• If four pins are selected, when A/D conversion of the four selected pins
	completes.
	• If six pins are selected, when A/D conversion of the six selected pins
	completes.
	• If eight pins are selected, when A/D conversion of the eight selected
	pins completes.
Analog input pin	ANO to AN1 (2 pins), AN8 to AN9 (2 pins),
	AN0 to AN3 (4 pins), AN8 to AN11 (4 pins), AN0 to AN5 (6 pins),
	ANO to AN7 (8 pins)
	(Selectable by bits SCAN1 to SCAN0 and bits ADGSEL1 to ADGSEL0.)
Storage resister for A/D	AD0 register: AN0, AN8
conversion result	AD1 register: AN1, AN9
conversion result	AD2 register: AN2, AN10
	AD3 register: AN3, AN11
	AD4 register: AN4
	AD5 register: AN5
	AD6 register: AN6
	AD7 register: AN7
Reading of result of A/D	Read the registers from AD0 to AD7 corresponding to the selected pin.
-	

Successive conversion register	ANO AN1 AN2 AN3		
AD0 register	Undefined AN0 in A/D	conversion result	AN0 in A/D conversion res
AD1 register	Undefined	AN1 in A/D conversion resu	
AD2 register	Undefined	AN2 in A/D conversion	result
AD3 register	Undefined	AN3 in A/D conver	rsion result
AD4 register	Undefined	AN4 in A/D cc	onversion result
AD5 register	Undefined	AN5 in A	/D conversion result
AD6 register	Undefined	χ,	AN6 in A/D conversion result
AD7 register	Undefin	ed	AN7 in A/D conversion result
IR bit in ADIC register			Set to 0 when interrupt request is acknowledged, or set by a program.
• Bits A • Bits \$	oove applies under the following cor ADCAP1 to ADCAP0 in the ADMOE SCAN1 to SCAN0 in the ADINSEL ADGSEL1 to ADGSEL0 are set to 0	egister are set to 00b (s egister are set to 11b (8 p	pins),

23.9 Output Impedance of Sensor under A/D Conversion

To carry out A/D conversion properly, charging the internal capacitor C shown in Figure 23.10 has to be completed within a specified period of time. T (sampling time) as the specified time. Let output impedance of sensor equivalent circuit be R0, internal resistance of microcomputer be R, precision (error) of the A/D converter be X, and the resolution of A/D converter be Y (Y is 1024 in the 10-bit mode, and 256 in the 8-bit mode).

VC is generally VC= VIN
$$\left\{1 - e^{-\frac{1}{C(R0+R)}t}\right\}$$

And when t = T, VC = VIN $-\frac{X}{Y}$ VIN = VIN $\left(1 - \frac{X}{Y}\right)$
 $e^{-\frac{1}{C(R0+R)}T} = \frac{X}{Y}$
 $-\frac{1}{C(R0+R)}T = \ln\frac{X}{Y}$
Hence, R0= $-\frac{T}{C \cdot \ln\frac{X}{Y}} - R$

Figure 23.10 shows the Analog Input Pin and External Sensor Equivalent Circuit. When the difference between VIN and VC becomes 0.1LSB, we find impedance R0 when voltage between pins VC changes from 0 to VIN-(0.1/1024) VIN in time T. (0.1/1024) means that A/D precision drop due to insufficient capacitor charge is held to 0.1LSB at time of A/D conversion in the 10-bit mode. Actual error however is the value of absolute precision added to 0.1LSB.

 $T = 0.8 \ \mu s$ when $\phi AD = 20 \ MHz$. Output impedance R0 for sufficiently charging capacitor C within time T is determined as follows.

 $T=0.8~\mu s,\,R=10~k\Omega,\,C=6.0~pF,\,X=0.1,$ and Y=1024. Hence,

$$R0 = -\frac{0.8 \times 10^{-6}}{6.0 \times 10^{-12} \bullet \ln \frac{0.1}{1024}} - 10 \times 10^3 \approx 4.4 \times 10^3$$

Thus, the allowable output impedance of the sensor equivalent circuit, making the precision (error) 0.1LSB or less, is approximately 4.4 k Ω maximum.

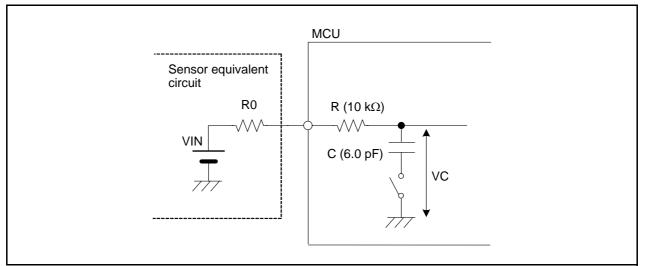
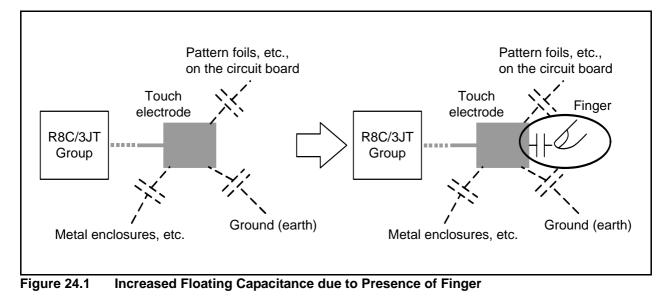


Figure 23.10 Analog Input Pin and External Sensor Equivalent Circuit

23.10 Notes on A/D Converter

- Write to the ADMOD register, the ADINSEL register, the ADCON0 register (other than ADST bit), the ADCON1 register, the OCVREFCR register when A/D conversion is stopped (before a trigger occurs).
- To use the A/D converter in repeat mode 0, repeat mode 1, or repeat sweep mode, select the frequency of the A/D converter operating clock φAD or more for the CPU clock during A/D conversion.
 Do not select fOCO-F as φAD.
- Connect 0.1 µF capacitor between the VREF pin and AVSS pin.
- Do not enter stop mode during A/D conversion.
- Do not enter wait mode during A/D conversion regardless of the state of the CM02 bit in the CM0 register (1: Peripheral function clock stops in wait mode or 0: Peripheral function clock does not stop in wait mode).
- Do not set the FMSTP bit in the FMR0 register to 1 (flash memory stops) or the FMR27 bit to 1 (low-currentconsumption read mode enabled) during A/D conversion. Otherwise, the A/D conversion result will be undefined.
- Do not change the CKS2 bit in the ADMOD register while fOCO-F is stopped.
- During an A/D conversion operation, if the ADST bit in the ADCON0 register is set to 0 (A/D conversion stops) by a program to forcibly terminate A/D conversion, the conversion result of the A/D converter is undefined and no interrupt is generated. The value of the ADi register before A/D conversion may also be undefined. If the ADST bit is set to 0 by a program, do not use the value of all the ADi register.

24. Sensor Control Unit


The sensor control unit (SCU) is a function to control the capacitive touch electrode.

The unit measures the floating capacitance of the touch electrode connected to the measurement pin.

As shown in Figure 24.1, there exist electrostatic capacitances between the electrode and the surrounding conductors. Because the human body is an electrical conductor, when a finger is placed close to the electrode, the value of the floating capacitance increases.

The sensor control unit detects the increase in floating capacitance to determine whether the electrode is being touched or not.

For details of the measurement operation principle of the unit's capacitive touch electrode, refer to **24.4 Principle of Measurement Operation**.

R01UH0154EJ0100 Rev.1.00 Apr 22, 2011

24.1 Overview

Figure 24.2 shows a Block Diagram of Sensor Control Unit.

As shown in Figure 24.2, the sensor control unit consists of the status counter, the secondary counter, and the primary counter.

The unit controls the ports, the counters, and data transfer to detect the floating capacitance of the capacitive touch electrode.

The operating clock for the sensor control unit is f1, f2 or f4, which selected as the count source. The count source is supplied to each counter.

The sensor control unit has the following two operating modes:

- Single mode: Touches on a channel are detected.
- Scan mode: Touches on any multiple channels are detected.

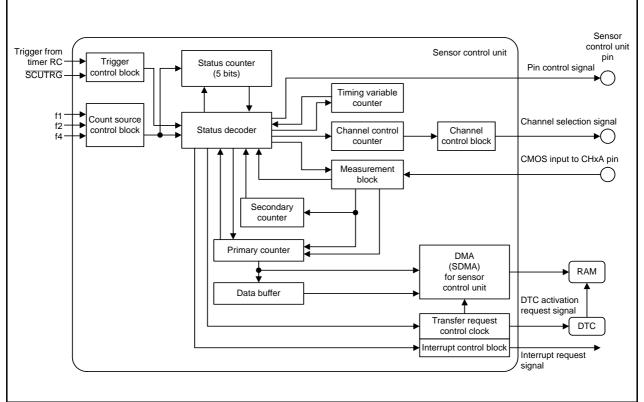


Figure 24.2 Block Diagram of Sensor Control Unit

Pin Name	Assigned Pin	I/O	Description
CHxA	P0_2	I/O	Touch detection
CHxB	P0_1	-	Electrostatic capacitive touch detection control
CHxC	P0_0	-	signal input
CH0	P0_3	Input	Electrostatic capacitive touch detection pins
CH1	P0_4	-	
CH2	P0_5	-	
CH3	P0_6		
CH4	P0_7	-	
CH5	P1_0	-	
CH6	P1_1	-	
CH7	P1_2	-	
CH8	P1_3	-	
CH9	P1_4	-	
CH10	P1_5	-	
CH11	P1_6	-	
CH12	P1_7	-	
CH13	P4_5	-	
CH14	P3_1	-	
CH15	P2_0		
CH16	P2_1	-	
CH17	P2_2	-	
CH18	P2_3	-	
CH19	P2_4	-	
CH20	P2_5		
CH21	P2_6]	
SCUTRG	P3_3		External trigger input

Table 24.1 Pin Configuration of Sensor Control Unit

24.2 Registers

24.2.1 SCU Control Register 0 (SCUCR0)

Address 02C0h									
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	SCUIE	BCSHORT	SCCLK1	SCCLK0		SCINIT	SCUE	SCSTRT	
After Reset	0	0	0	0	0	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	SCSTRT	Measurement start bit	0: Measurement stops 1: Measurement starts	R/W
b1	SCUE	SCU operation enable bit	0: Operation disabled ⁽¹⁾ 1: Operation enabled	R/W
b2	SCINIT	SCU control block initialize bit	Writing 1 to this bit initializes the SCU control block and the registers. ⁽²⁾	R/W
b3		Reserved bit	Set to 0.	R/W
b4	SCCLK0	Count source select bit	b5 b4 0 0: f1	R/W
b5	SCCLK1		0 1: f2 1 0: f4 1 1: Do not set.	R/W
b6	BCSHORT	CHxB-CHxC short select bit	 0: No shorted (The shorting switch is always turned OFF.) 1: Shortened (The shorting switch is turned ON in Status 7 and 14, and turned OFF in Status 4, 11, and 18. The switch is turned ON in Status 6 and 15, and turned OFF in Status 11.) 	R/W
b7	SCUIE	SCU interrupt enable bit	0: SCU interrupt disabled 1: SCU interrupt enabled	R/W

Notes:

- 1. The SCUE bit is not set to 0 (operation disabled) even if the SCSTRT bit is set to 0 (measurement stops), or even if the SCINIT bit is set to 1 (initialized). The SCUE bit is not also set to 0 even if an interrupt request is generated after a measurement finishes. Set this bit to 0 by a program.
- 2. The following are initialized:
 - Registers SCUSTC, SCUCHC, SCUPRC, SCUSCC, SCUDBR, and SCUFR
 - The SCSTRT bit in the SCUCR0 register
 - The SCU control block (data transfer destination address register and SCU timing control counter)

SCSTRT Bit (Measurement Start Bit)

- [Conditions for setting to 0]
- Set this bit to 0 by a program (forced stop).
- When an interrupt request is generated after a measurement finishes.
- When 1 is written to the SCINIT bit.
- [Condition for setting to 1]

Set to 1 by a program.

When the SCSTRT bit is set to 0 (measurement stops) while bits SCCAP1 to SCCAP0 in the SCUMR register are 0 (software trigger), the value of each counter is retained. When the SCSTRT bit is set to 1 (measurement starts), measurement starts from the status where the measurement is stopped.

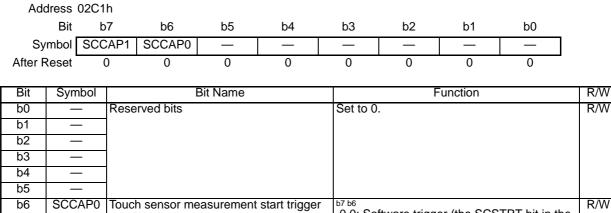
When a trigger from timer RC or external trigger (SCUTRG) is selected, if the trigger occurs after the SCSTRT bit is set to 0 (measurement stops), measurement starts from Status 1.

SCUE Bit (SCU Operation Enable Bit)

When the SCUE bit is set to 1 (operation enabled), the states will change to as follows:

- The analog path between the CHxB-CHxC path is disconnected (the disconnecting switch is turned OFF).
- The analog channel control decoder is switched for the sensor control unit.
- The analog switch for CHxA is forcibly turned ON.

b7


b5 b6

b7

TCS16

TCS2C

24.2.2 SCU Mode Register (SCUMR)

_				
SCCAP0	Touch sensor measurement start trigger	b7 b6	R/W	
SCCAP1	select bit	0 0: Software trigger (the SCSTRT bit in the SCUCR0 register)	R/W	
		0 1: Do not set.		
		1 0: Measurement start trigger from timer RC		I
		1 1: External trigger (SCUTRG)		I

24.2.3 SCU Timing Control Register 0 (SCTCR0)

				5	5	•	,				
Ad	dress	02C2	h								
	Bit	b	7	b6	b5	b4	b3	b2	b1	b0	
S	ymbol	TCS	S2C	TCS16	TCS15	TCS14	TCS13	TCS12	TCS11	TCS10	
After	Reset	()	0	0	0	0	0	1	1	
Bit	Sym	lod		F	Bit Name			F	Function		R/W
b0	TCS	310	Period	d 1 cycle co	ount select l	oit	b6 b5 b4 b3		-1-		R/W
b1	TCS	S11						0 0 0: 1 cy			R/W
b2	TCS	312					0000	0 0 1: 2 cy	cies		R/W
b3	TCS	313					:	4 4 4 400	; 		R/W
b4	TCS	314					1111	1 1 1: 128	cycles		R/W
b5	TCS	315									R/W

Bits TCS10 to TCS16 (Period 1 Cycle Count Select Bits)

These bits are used to set the number of cycles for period 1 (period when CHxA = "Hi-Z", CHxB = "Hi-Z", and CHxC = "H"). One to 128 cycles can be selected. After reset, these bits are set to 00000011b (4 cycles).

register

• Period 1 cycle example	
Count source frequency	4 MHz: 250 ns to 32 µs
Count source frequency	5 MHz: 200 ns to 25.6 µs

Period 2 control bit

R/W

0: The number of cycles for period 2 is selected R/W

by bits TCS20 to TCS23 in the SCTCR1

1: The number of cycles for period 2 is 0 (skip)

Ade	dress 02	C3h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	—	—	TCS31	TCS30	TCS23	TCS22	TCS21	TCS20	
After F	After Reset 0 0 0 0				0	0	0	0	1	
Bit	Symbo			Bit Name			F	unction		R/W
b0	TCS20			ount select l	hit (1)	b3 b2 b1 b0				R/W
b1	TCS21					0000:				R/W
b2	TCS22						2 cycles (af	ter reset)		R/W
b3	TCS23						3 cycles			R/W
~~~		-					4 cycles			
							5 cycles 6 cycles			
							7 cycles			
							8 cycles			
							9 cycles			
							10 cycles			
						1010:				
						1011:				
						1100:	13 cycles			
						1101:	14 cycles			
							15 cycles			
						1111:				
b4	TCS30		od 3 cycle co	ount select l	bit	b5 b4	/cle (after re	set)		R/W
b5	TCS31	1 ]				0 1: 2 c				R/W
						1 0: 3 cy				
						1 1: 4 cy				
b6	_	Noth	ing is assig	ned. If nece	ssary, set to	-		ntent is 0.		
b7	_				<b>2</b> ·					
L	I									

# 24.2.4 SCU Timing Control Register 1 (SCTCR1)

Note:

1. When the TCS2C bit in the SCTCR0 register is set to 0 (the number of cycles for period 2 is selected by bits TCS20 to TCS23 in the SCTCR1 register), bits TCS20 to TCS23 are enabled.



## Bits TCS20 to TCS23 (Period 2 Cycle Count Select Bits)

These bits are used to set the number of cycles for period 2 (period when CHxA = "L", CHxB = "Hi-Z", and CHxC = "Hi-Z").

Table 24.2	Period 2 Cycle example (1)
------------	----------------------------

Count Source Frequency	1 Cycle	2 Cycles (1)	3 Cycles	4 Cycles	5 Cycles	6 Cycles	7 Cycles	8 Cycles
4 MHz	250 ns	500 ns	750 ns	1.0 μs	1.25 μs	1.5 μs	1.75 μs	2.0 μs
5 MHz	200 ns	400 ns	600 ns	800 ns	1.0 μs	1.2 μs	1.4 μs	1.6 μs

Note:

1. Value after reset.

Table 24.3Period 2 Cycle Example (2)

Count Source Frequency	9 Cycles	10 Cycles	11 Cycles	12 Cycles	13 Cycles	14 Cycles	15 Cycles	16 Cycles
4 MHz	2.25 μs	2.5 μs	2.75 μs	3.0 μs	3.25 μs	3.5 μs	3.75 μs	4.0 μs
5 MHz	1.8 μs	2.0 μs	2.2 μs	2.4 μs	2.6 μs	2.8 μs	3.0 μs	3.2 μs

## Bits TCS30 and TCS31(Period 3 Cycle Count Select Bits)

These bits are used to set the number of cycles for period 3 (period when CHxA = "L", CHxB = "L", and CHxC = "Hi-Z").

#### Table 24.4 Period 3 Cycle Example

Count Source Frequency	1 Cycle ⁽¹⁾	2 Cycles	3 Cycles	4 Cycles
4 MHz	250 ns	500 ns	750 ns	1.0 μs
5 MHz	200 ns	400 ns	600 ns	800 ns

Note:

1. Value after reset.



Ade	dress 0	)2C4	h									
	Bit	b	7	b6	b5	b4	b3	b2	b1	b0		
Sy	/mbol	TCS	S53	TCS52	TCS51	TCS50	TCS5C	TCS42	TCS41	TCS40		
After F	Reset	(	)	0	0	1	0	0	0	0		
D:4	0	1			Nic Marian		-				DAA	
Bit	Symb		Daria		Bit Name	L :1	b2 b1 b0		Function		R/W	
b0	TCS TCS		Perio	d 4 cycle co	ount select	DIT		cycle (after	reset)		R/W R/W	
b1 b2	TCS						001:2	cycles			R/W	
02	103	42					010:3				r/vv	
							011:4					
							100:5					
							1 0 1: 6 1 1 0: 7					
							1 1 1:8					
b3	TCS	50	Perio	d 5 control	hit			0: The number of cycles for period 5 is selected				
55	100.	00			on			by bits TCS50 to TCS53				
										riod 5 is 0 (skip)		
b4	TCS	50	Perio	d 5 cycle co	ount select	bit ⁽¹⁾	b7 b6 b5 b4	· ·	•		R/W	
b5	TCS	51					0000:	•	(1 - u u 1)		R/W	
b6	TCS	52						0 0 0 1: 2 cycles (after reset) 0 0 1 0: 3 cycles				
b7	TCS	53						4 cycles				
								5 cycles				
								6 cycles				
							0110:	7 cycles				
								8 cycles				
								9 cycles				
								10 cycles				
								11 cycles				
								12 cycles 13 cycles				
								14 cycles				
								15 cycles				
								16 cycles				

# 24.2.5 SCU Timing Control Register 2 (SCTCR2)

Note:

1. When the TCS5C bit is set to 0 (the number of cycles for period 5 is selected by bits TCS50 to TCS53), bits TCS50 to TCS53 are enabled.



## Bits TCS40 to TCS42 (Period 4 Cycle Count Select Bits)

These bits are used to set the number of cycles for period 4.

#### Table 24.5 Period 4 Cycle Example

Count Source Frequency	1 Cycle (1)	2 Cycles	3 Cycles	4 Cycles	5 Cycles	6 Cycles	7 Cycles	8 Cycles
4 MHz	250 ns	500 ns	750 ns	1.0 μs	1.25 μs	1.5 μs	1.75 μs	2.0 μs
5 MHz	200 ns	400 ns	600 ns	800 ns	1.0 μs	1.2 μs	1.4 μs	1.6 μs

Note:

1. Value after reset.

## Bits TCS50 to TCS53 (Period 5 Cycle Count Select Bits)

These bits are used to set the number of cycles for period 5.

Table 24.6Period 5 Cycle Example (1)

Count Source Frequency	1 Cycle	2 Cycles ⁽¹⁾	3 Cycles	4 Cycles	5 Cycles	6 Cycles	7 Cycles	8 Cycles
4 MHz	250 ns	500 ns	750 ns	1.0 μs	1.25 μs	1.5 μs	1.75 μs	2.0 μs
5 MHz	200 ns	400 ns	600 ns	800 ns	1.0 μs	1.2 μs	1.4 μs	1.6 μs

Note:

1. Value after reset.

#### Table 24.7Period 5 Cycle Example (2)

Count Source Frequency	9 Cycles	10 Cycles	11 Cycles	12 Cycles	13 Cycles	14 Cycles	15 Cycles	16 Cycles
4 MHz	2.25 μs	2.5 μs	2.75 μs	3.0 μs	3.25 μs	3.5 μs	3.75 μs	4.0 μs
5 MHz	1.8 μs	2.0 μs	2.2 μs	2.4 μs	2.6 μs	2.8 μs	3.0 μs	3.2 μs



Ade	dress	02C5	h								
	Bit	b	7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	-	_	—	—	—	TCS63	TCS62	TCS61	TCS60	
After F	Reset	(	C	0	0	0	0	0	0	0	
Bit	Sym	bol	i	F	Bit Name			F	unction		R/W
b0	TCS		Perio		ount select	bit	b3 b2 b1 b0	•	anodon		R/W
b1	TCS		1 0110					1cycle (afte	er reset)		R/W
b2	TCS							2 cycles			R/W
b3	TCS							3 cycles			R/W
55		/00						4 cycles			10,00
								5 cycles			
								6 cycles 7 cycles			
								8 cycles			
								9 cycles			
								10 cycles			
								11 cycles			
								12 cycles			
								13 cycles			
								14 cycles			
								15 cycles			
								16 cycles			
b4	-	-	Nothi	ng is assigr	ned. If nece	ssary, set to	0. When re	ead, the cor	ntent is 0.		— —
b5	- 1	-	1								
b6	- 1	-	1								
b7	-	-									

## 24.2.6 SCU Timing Control Register 3 (SCTCR3)

## Bits TCS60 to TCS63 (Period 6 Cycle Count Select Bits)

These bits are used to set the number of cycles for period 6 (after Main measurement).

#### Table 24.8 Period 6 Cycle Example (1)

Count Source Frequency	1 Cycle ⁽¹⁾	2 Cycles	3 Cycles	4 Cycles	5 Cycles	6 Cycles	7 Cycles	8 Cycles
4 MHz	250 ns	500 ns	750 ns	1.0 μs	1.25 μs	1.5 μs	1.75 μs	2.0 μs
5 MHz	200 ns	400 ns	600 ns	800 ns	1.0 μs	1.2 μs	1.4 μs	1.6 μs

Note:

1. Value after reset.

#### Table 24.9 Period 6 Cycle Example (2)

Count Source Frequency	9 Cycles	10 Cycles	11 Cycles	12 Cycles	13 Cycles	14 Cycles	15 Cycles	16 Cycles
4 MHz	2.25 μs	2.5 μs	2.75 μs	3.0 μs	3.25 μs	3.5 μs	3.75 μs	4.0 μs
5 MHz	1.8 μs	2.0 μs	2.2 μs	2.4 μs	2.6 μs	2.8 μs	3.0 μs	3.2 μs



Add	ress 02C	6h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Syn	nbol SC	UMD	UPDOWN		CHC4	CHC3	CHC2	CHC1	CHC0	7
After Re	eset	0	0	0	0	0	0	0	0	
Bit	Symbol		Bit Name			Fun	ction			R/W
b0	CHC0	Char	nnel select	[]	n single mod	de]	[li	n scan mode	]	R/W
b1	CHC1	bit		b4 b3 b2 b1 b0	0110		b4 b3 b2 b1 b0			R/W
b2	CHC2			00000:			00000:E			R/W
b3	CHC3	_		00001.	-			CH0 to CH1		R/W
b4	CHC4			00010.				CH0 to CH2		R/W
				00100:				CH0 to CH3		
				00101:	-			CH0 to CH5		
				00110:				CH0 to CH6		
				00111:				CH0 to CH7		
				01000:	CH8		01000:0	CH0 to CH8		
				01001:	CH9		01001:0	CH0 to CH9		
				01010:	CH10		01010:0	CH0 to CH10	)	
				01011:	-			CH0 to CH11		
				01100:				CH0 to CH12		
				01101:				CH0 to CH13		
				01110:				CH0 to CH14		
				01111:				CH0 to CH15		
				10000:				CH0 to CH16		
				10001:	-			CH0 to CH17		
				10010:				CH0 to CH18		
				10011:				CH0 to CH19 CH0 to CH20		
				10100.				CH0 to CH20		
					above: Do i	not set		above: Do no		
b5		Noth	ing is assigne						51 301.	
			ascending/	0: Ascendi	-			130.		R/W
00			ending	1: Descend	0					
		seled	•	1. Descent						
b7	SCUMD		surement	0: Single m						R/W
		mod	e select bit	1: Scan mo	ode					

# 24.2.7 SCU Channel Control Register (SCHCR)



# 24.2.8 SCU Channel Control Counter (SCUCHC)

Ado	dress (	02C7h											
	Bit	b7	b	6 b!	5	b4	b3	b2	b1	b0			
Sy	mbol	_	_	— — SCUCHC4 SCUCHC3 SCUCHC2 SCUCHC1 SCUCHC0									
After F	Reset	0	C	0		0	0	0	0	0	_		
	_												
Bit	Syn						unction				R/W		
b0	SCUC	CHC0	Counter us	ounter used for channel control.									
b1	SCUC	CHC1	The values	of bits CHC	0 to CH	C4 in the	SCHCR regi	ister are tran	sferred in St	atus 2.	R		
b2	SCUC	CHC2									R		
b3	SCUC	CHC3									R		
b4	SCUC	CHC4									R		
b5		-	Nothing is	assigned. If I	necessa	ry, set to	0. When rea	d, the conter	nt is 0.		—		
b6		_											
b7		_											



#### 24.2.9 SCU Flag Register (SCUFR)

Address	Address 02C8h											
Bit	b7	b6	b5	b4	b3	b2	b1	b0				
Symbol	SIF	—	_	—	MVF	EWMER	OVFER	DTSR				
After Reset	0	0	0	0	0	0	0	0				

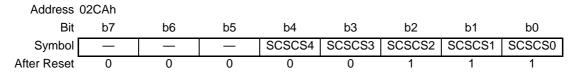
Bit	Symbol	Bit Name	Function	R/W
b0	DTSR	Data transfer status flag	[Conditions for setting to 0]	R
			<ul> <li>When data transfer to RAM is completed.</li> </ul>	
			<ul> <li>Write 1 to the SCUINIT bit in the SCUCR0</li> </ul>	
			register. ⁽¹⁾	
			[Condition for setting to 1]	
			When data A is captured to the buffer.	
b1	OVFER	Overflow error flag	[Conditions for setting to 0]	R/W
			<ul> <li>Write 1 to the SCUINIT bit in the SCUCR0</li> </ul>	
			register. ⁽¹⁾	
			• Write 0 by a program. ⁽¹⁾	
			[Condition for setting to 1]	
			When the primary counter overflows.	
b2	EWMER	Exit from wait mode error flag	[Conditions for setting to 0]	R/W
			<ul> <li>Write 1 to the SCUINIT bit in the SCUCR0</li> </ul>	
			register.	
			• Write 0 by a program. ⁽¹⁾	
			[Condition for setting to 1]	
			When the MCU exits wait mode during the	
			measurement of the touch sensor in wait mode	
b3	MVF	SCU operation flag	0: Sensor control unit is stopped	R
			1: Sensor control unit is in operation	
b4	_	Nothing is assigned. If necessary, se	et to 0. When read, the content is 0.	-
b5	_	7		
b6	_	7		
b7	SIF	SCU interrupt request flag	[Condition for setting to 0]	R/W
			Write 0 after read. ⁽²⁾	1
			[Condition for setting to 1]	1
			When a measurement of the touch sensor is	1
			completed.	1

Notes:

1. When the SCSTRT bit in the SCUCR0 register is set to 0 (measurement stops), the DTSR bit is not set to 0.

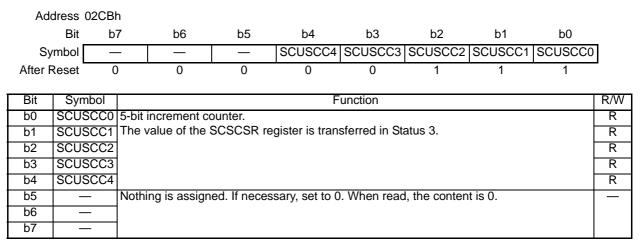
- 2. The writing results are as follows:
  - This bit is set to 0 when the read result is 1 and 0 is written to the same bit.
  - This bit remains unchanged even if the read result is 0 and 0 is written to the same bit. (This bit remains 1 even if it is set to 1 from 0 after reading, and writing 0.)
  - This bit remains unchanged if 1 is written to it.

#### EWMER Bit (Exit from Wait Mode Error Flag)


This error flag indicates when the MCU exits wait mode during the measurement of the touch sensor in wait mode.



## 24.2.10 SCU Status Counter (SCUSTC)


Ado	dress 02	2C9h										
	Bit	b7	b6	b5	b4	b3	b2	b1	b0			
Sy	/mbol		_	_	SSQ4	SSQ3	SSQ2	SSQ1	SSQ0			
After F	Reset	0	0	0	0	0	0	0	0	-		
											544	
Bit	Symbo					Functio	on				R/W	
b0	SSQC	) Statu	s counter f	or the sen	sor control	unit.					R/W	
b1	SSQ1	The v	alue chang	ges to 000	000b in the f	ollowing ca	ases:				R/W	
b2	SSQ2	-		upt reque	st is acknow	vledged af	ter a measu	urement of	the touch s	sensor	R/W	
b3	SSQ3	)	hes.								R/W	
b4	SSQ4	• Writ	e 1 to the S	SCUINIT &	pit in the SC	UCR0 reg	ister.				R/W	
			/hen the SCSTRT bit in the SCUCR0 register is set to 0 (measurement stops), the value emains unchanged (the value does not change to 00000b).									
b5	b5 — Nothing is assigned. If necessary, set to 0. When read, the content is 0.										—	
b6	—											
b7	- 1											

## 24.2.11 SCU Secondary Counter Set Register (SCSCSR)



Bit	Symbol	Function	R/W
b0	SCSCS0	Register for storing the setting value of the secondary counter.	R/W
b1	SCSCS1		R/W
b2	SCSCS2		R/W
b3	SCSCS3		R/W
b4	SCSCS4		R/W
b5		Nothing is assigned. If necessary, set to 0. When read, the content is 0.	_
b6	—		
b7	—		

## 24.2.12 SCU Secondary Counter (SCUSCC)



24.2.1	5 5		ะจเท			gister (S	CODAN			
Ado	dress	02CFh	to 02	CEh						
	Bit	b7		b6	b5	b4	b3	b2	b1	b0
Sy	mbol	SCUD	AR7	SCUDAR6	SCUDAR5	SCUDAR4	SCUDAR3	SCUDAR2	SCUDAR1	SCUDAR0
After F	Reset	0		0	0	0	0	0	0	0
	Bit	b15	5	b14	b13	b12	b11	b10	b9	b8
Sy	mbol					_	SCUDAR11	SCUDAR10	SCUDAR9	SCUDAR8
After F	Reset	0		0	0	0	1	1	0	0
Bit	<u></u>	mhol				Fue	otion			R/W
b0	- ,									
b0 b1	SCUDAR0       Set the start address of the transfer destination.       R/         SCUDAR1       R/									
b1 b2		DAR2								R/W
b2		DAR3								R/W
b4		DAR4								R/W
b5		DAR5								R/W
b6		DAR6								R/W
b7		DAR7								R/W
b8		DAR8								R/W
b9	SCU	DAR9								R/W
b10	SCU	DAR10								R/W
b11	SCU	DAR11								R/W
b12	-	_	Noth	ing is assign	ed. If necess	ary, set to 0.	When read, t	he content is	0.	
b13	-	_								
b14	-									
b15	-	_								

## 24.2.13 SCU Destination Address Register (SCUDAR)



27.2.1	- 0		utu		gister (O						
Add	dress	02D1h	to 02	D0h							
	Bit	b7		b6	b5	b4	b3	b2	b1	b0	
Sy	mbol	SCUD	BR7	SCUDBR6	SCUDBR5	SCUDBR4	SCUDBR3	SCUDBR2	SCUDBR1	SCUDBR0	
After F	Reset	0		0	0	0	0	0	0	0	
	Bit	b15	5	b14	b13	b12	b11	b10	b9	b8	
Sy	mbol	—				—	_		—	SCUDBR8	
After F	Reset	0		0	0	0	0	0	0	0	
Bit	S.//	mbol				Fun	otion			R/W	
b0	Symbol Function										
b0 b1		SCUDBR0       Buffer register for storing data 1.       R         SCUDBR1       After data 1 is fixed, the value of the primary counter is stored.       R									
b1 b2		DBR2	,							R	
b2		DBR3								R	
b4		DBR4								R	
b5		DBR5								R	
b6		DBR6								R	
b7	SCU	DBR7								R	
b8	SCU	DBR8								R	
b9	-		Noth	ning is assign	ed. If necess	ary, set to 0.	When read, t	he content is	0.	— —	
b10	-										
b11	-										
b12	-	_									
b13											
b14	-										
b15	-										

## 24.2.14 SCU Data Buffer Register (SCUDBR)



Add	dress	02D3h	to 02I	D2h									
	Bit	b7		b6	b5	b4	b3	b2	b1	b	0		
Sy	mbol	SCUP	RC7	SCUPRC6	SCUPRC5	SCUPRC4	SCUPRC3	SCUPRC2	SCUPRC1	SCUF	PRC0		
After F	Reset	0		0	0	0	0	0	0	C	)		
	Bit	b15	5	b14	b13	b12	b11	b10	b9	b	8		
Sy	mbol	_		_	_	—	_	_	_	SCUF	PRC8		
After F	Reset	0		0	0	0	0	0	0	C	)		
D:4	0					<b>F</b>					DAA		
Bit	-	mbol	0.1.34			Fun	ction				R/W		
b0				counter.	1556						R		
b1		PRC1		R upper limit is 1FFh.									
b2		PRC2		the counter overflows, the OVFER bit in the SCUFR register is set to 1, and the status roceeds to No.21.									
b3		PRC3	piec		1.						R		
b4		PRC4									R		
b5		PRC5									R		
b6		PRC6									R		
b7		PRC7									R		
b8	SCU	PRC8									R		
b9	-	_	Noth	iing is assign	ed. If necess	ary, set to 0.	When read, t	he content is	0.		—		
b10	-												
b11	-												
b12	-												
b13	-												
b14	-												
b15	-	_											

## 24.2.15 SCU Primary Counter (SCUPRC)



Ade	dress	02DC	Ch											
	Bit	b	07	b6	b5	b4	b3	b2	b1	b0				
Sy	/mbol	СН	07E	CH06E	CH05E	CH04E	CH03E	CH02E	CH01E	CH00E				
After F	Reset	(	0	0	0	0	0	0	0	0				
Dit	0	<u> </u>			Dit Mana a									
Bit	Sym	IDOI		E	Bit Name				Function		R/W R/W			
b0	CHO	00E	CH0	enable bit				0: Disabled (used as an I/O port)						
b1	CHO	)1E	CH1	enable bit			1: Enable	ed (used as	a touch sei	nsor pin)	R/W			
b2	CHO	)2E	CH2	enable bit							R/W			
b3	CHO	)3E	CH3	enable bit							R/W			
b4	CHO	)4E	CH4	enable bit							R/W			
b5	CHO	)5E	CH5	enable bit							R/W			
b6	CHO	)6E	CH6	enable bit							R/W			
b7	CHO	)7E	CH7	enable bit							R/W			

#### 24.2.16 Touch Sensor Input Enable Register 0 (TSIER0)

The TSIER0 register is enabled when the SCUE bit in the SCUCR0 register is set to 1 (operation enabled). In scan mode, for the CH range set by the CHCi bit (i = 0 to 4) in the SCHCR register, even when a corresponding enable bit is disabled, the bit is measured and its data is stored. However, the data is invalid.

## 24.2.17 Touch Sensor Input Enable Register 1 (TSIER1)

CH15 enable bit

Ado	dress	02DE	Dh								
	Bit	b	07	b6	b5	b4	b3	b2	b1	b0	
Sy	mbol	CH	15E	CH14E	CH13E	CH12E	CH11E	CH10E	CH09E	CH08E	
After F	Reset	(	0	0	0	0	0	0	0	0	
			1								
Bit	Sym	lod		E	Bit Name			ł	Function		R/W
b0	CHC	)8E	CH8	enable bit					s an I/O por		R/W
b1	CHO	)9E	CH9	enable bit			1: Enable	ed (used as	a touch sei	nsor pin)	R/W
b2	CH1	10E	CH10	) enable bit							R/W
b3	CH1	11E	CH11	enable bit							R/W
b4	CH1	12E	CH12	2 enable bit							R/W
b5	CH1	13E	CH13	3 enable bit							R/W
b6	CH1	14E	CH14	1 enable bit							R/W

The TSIER1 is enabled when the SCUE bit in the SCUCR0 register is set to 1 (operation enabled).

b7

CH15E



R/W

Ado	dress 0	2DE	h									
	Bit	b	7	b6	b5	b4	b3	b2	b1	b0		
Sy	mbol	_	_	_	CH21E	CH20E	CH19E	CH18E	CH17E	CH16E		
After F	Reset	(	)	0	0	0	0	0	0	0		
Bit	Symt	ool		E	Bit Name			F	unction		R/W	V
b0	CH16	6E	CH16	enable bit			0: Disabl	led (used as	s an I/O por	t)	R/W	V
b1	CH17	7E	CH17	' enable bit			1: Enable	ed (used as	a touch se	nsor pin)	R/W	V
b2	CH18	8E	CH18	3 enable bit							R/W	٧
b3	CH19	9E	CH19	enable bit							R/W	٧
b4	CH20	0E	CH20	) enable bit							R/W	٧
b5	CH2 ⁻	1E		enable bit							R/W	٧
b6			Nothi	ng is assigr	ned. If nece	ssary, set to	0. When re	ead, the cor	ntent is 0.		—	
b7												

## 24.2.18 Touch Sensor Input Enable Register 2 (TSIER2)

The TSIER2 register is enabled when the SCUE bit in the SCUCR0 register is set to 1 (operation enabled). In scan mode, for the CH range set by the CHCi bit (i = 0 to 4) in the SCHCR register, even when a corresponding enable bit is disabled, the bit is measured and its data is stored. However, the data is invalid.



## 24.3 Functional Description

#### 24.3.1 Common Items for Multiple Modes

#### 24.3.1.1 Status Counter

The status counter operation is divided into the measurement STEP1 and STEP2. When "L" at CHxA is detected in measurement STEP1, the counter proceeds to the measurement STEP2. There are variable periods to improve the accuracy of measurement. The status counter operates for measurement of each channel while repeating Status 0 to 23.

Table 24.10 lists the Status.



#### Table 24.10 Status

		Sta	tus Cour	nter		<b>0</b> 1 1	F	Pin State	Э	Re-	Operation	
f	SSQ4	SSQ3	SSQ2	SSQ1	SSQ0	Status	CHxC	CHxB	CHxA	peat	Operation	
Ī	0	0	0	0	0	0	Hi-Z	Hi-Z	Hi-Z		Stopped, initial setting	
	0	0	0	0	1	1	Hi-Z	Hi-Z	Hi-Z		Transfer of setting values	
	0	0	0	1	0	2	"H"	Hi-Z	Hi-Z		Variable period 1 (1 to 128 cycles) selected by bits TCS10 to TCS16, charging period	
	0	0	0	1	1	3	Hi-Z	Hi-Z	Hi-Z		Initialization	
	0	0	1	0	0	4	Hi-Z	Hi-Z	"L"		Variable period 2 (1 to 16 cycles) selected by bits TCS20 toTCS23 Can be skipped by the TCS2C bit	
	0	0	1	0	1	5	Hi-Z	"L"	"L"		Variable period 3 (1 to 4 cycles) selected by bits TCS30 and TCS31	
	0	0	1	1	0	6	Hi-Z	Hi-Z	Hi-Z		Variable period 4 (1 to 8 cycles) selected by bits TCS40 to TCS42 CHxB-CHxC short can be turned ON by the BCSHORT bit	
Measurement	0	0	1	1	1	7	Hi-Z	Hi-Z	Hi-Z		Dummy cycle	
STEP 1	0	1	0	0	0	8	Hi-Z	Hi-Z	Hi-Z		Variable period 5 (1 to 16 cycles) selected by bits TCS50 to TCS53 Can be skipped by the TCS5C bit	
	0	1	0	0	1	9	Hi-Z	Hi-Z	Hi-Z		Main measurement period	
	0	1	0	1	0	10	Hi-Z	Hi-Z	Hi-Z		Judging period for Main measurement	
	0	1	0	1	1	11	Hi-Z	Hi-Z	Hi-Z		Variable period 6 (1 to16 cycles) selected by bits TCS60 to TCS63 CHxB-CHxC short can be turned OFF by the BCSHORT bit	
	0	1	1	0	0	12	Hi-Z	Hi-Z	Hi-Z		Dummy cycle	
	0		1	0	0	12	111-2	111-2	111-2		Variable period 2 (1 to 16 cycles) selected by	
<b>↑</b>	0	1	1	0	1	13	Hi-Z	Hi-Z	"L"	•	bits TCS20 to TCS23 Can be skipped by the TCS2C bit	
	0	1	1	1	0	14	Hi-Z	"L"	"L"		Variable period 3 (1 to 4 cycles) selected by bits TCS30 and TCS31	
	0	1	1	1	1	15	Hi-Z	Hi-Z	Hi-Z		Variable period 4 (1 to 8 cycles) selected by bits TCS40 to TCS42 CHxB-CHxC short can be turned ON by the BCSHORT bit	
	1	0	0	0	0	16	Hi-Z	Hi-Z	Hi-Z		Dummy cycle	
Measurement STEP 2	1	0	0	0	1	17	Hi-Z	Hi-Z	Hi-Z		Variable period 5 (1 to 16 cycles) selected by bits TCS50 to TCS53 Can be skipped by the TCS5C bit	
	1	0	0	1	0	18	Hi-Z	Hi-Z	Hi-Z		Main measurement period	
[	1	0	0	1	1	19	Hi-Z	Hi-Z	Hi-Z		Judging period for Main measurement	
	1	0	1	0	0	20	Hi-Z	Hi-Z	Hi-Z		Judging of the secondary counter value (n = 0?) Variable period 6 (1 to16 cycles) selected by bits TCS60 to TCS63 CHxB-CHxC short can be turned OFF by the BCSHORT bit	
▼	1	0	1	0	1	21	Hi-Z	Hi-Z	Hi-Z		DTC activation request or SDMA transfer request	
Ţ	1	0	1	1	0	22	Hi-Z	Hi-Z	Hi-Z			
	1	0	1	1	1	23	Hi-Z	Hi-Z	Hi-Z		Branch to check whether all the channels selected by bits CHC0 to CHC4 are measured	
t	1	1	0	0	0	24	Hi-Z	Hi-Z	Hi-Z	1	Wait until data transfer to RAM is completed	
÷	1	1	0	0	1	25	Hi-Z	Hi-Z	Hi-Z	1	Sensor control unit interrupt generated	
			Ŭ,	v		-						

BCSHORT: Bit in SCUCR0 register TCS10 to TCS16, TCS2C: Bits in SCTCR0 register TCS20 to TCS23, TCS30, TCS31: Bits in SCTCR1 register TCS40 to TCS42, TCS5C, TCS50 to TCS53: Bits in SCTCR2 register TCS60 to TCS63: Bits in SCTCR3 register CHC0 to CHC4: Bits in SCHCR register

## 24.3.1.2 Adjustment of Status Periods

The timing of status periods can be adjusted as shown in Figure 24.3.

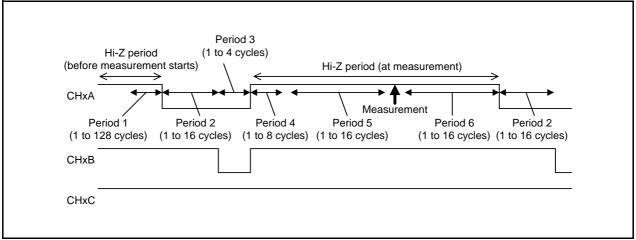



Figure 24.3 Adjustment of Status Periods

## 24.3.1.3 Counter Operation

The primary counter is a 16-bit up counter and the secondary counter is a 5-bit up/down counter.

The primary counter starts decrementing from the count value of "H" measured on each channel, and the secondary counter starts decrementing from the value set by bits SCSCS0 to SCSCS4 in the SCSCSR register each time "L" is detected.

Measurement data is comprised of the primary counter value when "L" is detected for the first time and when the secondary counter value reaches 0. This secondary counter operates in measurement STEP2, and increments the value when "L" is detected and decrements the value when "H" is detected. However, the increment operation causes no count exceeding the value set by bits SCSCS0 to SCSCS4.

Table 24.11 lists the Image of Counter Operation and Measurement Data.

## 24.3.1.4 Measurement Data

Table 24.11 lists the Image of Counter Operation and Measurement Data.

The primary counter values when "L" is detected for the first time and when the secondary counter value reaches 0 are stored at given RAM addresses. When one round of measurement is completed, the measurement data is transferred as 4-byte data combined with data 1 and data 2.

When the CPU operates, data is transferred using the DTC. In wait mode, data is transferred using the SDMA integrated in the sensor control unit. The destination RAM addresses are stored in the DTDARj (j = 0 to 23) register and the SCUDAR register. For details of the DTC settings, refer to **15. DTC**.



	Judging Value	Primary Counter Value	Secondary Counter Value	
A	Н	95	7	
T	Н	96	7	
Measurement	Н	97	7	
STEP 1	Н	98	7	
	Н	99	7	
V	L	100	7	Data 1
	L	100	6	
T	Н	101	7	
	Н	102	7	
	Н	103	7	
	Н	104	7	
	Н	105	7	
	Н	106	7	
	Н	107	7	
Measurement STEP 2	L	107	6	
	L	107	5	
	L	107	4	
	L	107	3	
	L	107	2	
	L	107	1	
	Н	108	2	
	L	108	1	
♥	L	108	0	Data 2

#### Table 24.11 Image of Counter Operation and Measurement Data

#### 24.3.1.5 Measurement Channels

For CHxA, CHxB, and CHxC, and target channels from CH0 to CH17, set the corresponding direction bits in the PDi (i = 0 to 4) register to 0 (input mode). However, note that the content of the corresponding port bit in the Pi register is undefined.

Touches are detected at the CHxA (P0_2) pin. Set the threshold value for touch detection using bits VLT00 and VLT01 in the VLT0 register. For details of the I/O port settings, refer to **7. I/O Ports**.



### 24.3.1.6 Touch Detection Start Conditions

• Software Trigger

When bits SCCAP1 to SCCAP0 in the SCUMR register are set to 00b, a software trigger is selected. Detection starts when the SCSTRT bit in the SCUCR0 register is set to 1 (measurement starts).

• Trigger from Timer RC

When bits SCCAP1 to SCCAP0 in the SCUMR register are set to 10b, a measurement start trigger from timer RC is selected.

To use the measurement start trigger from timer RC, make the following settings:

- Set bits SCCAP1 to SCCAP0 in the SCUMR register to 10b (measurement start trigger from timer RC).
- Use timer RC in the output compare function (timer mode, PWM mode, or PWM2 mode).
- Set the ADTRGjE bit (j = A, B, C, or D) in the TRCADCR register to 1 (SCU trigger occurs at compare match between TRC and TRCGRj register).
- Set the SCSTRT bit in the SCUCR0 register to 1 (measurement starts).

After making the above settings, touch detection starts when the IMFj bit in the TRCSR register changes from 0 to 1.

For details of the timer RC output compare function (timer mode, PWM mode, or PWM2 mode), refer to **19. Timer RC**, **19.5 Timer Mode (Output Compare Function)**, **19.6 PWM Mode**, and **19.7 PWM2 Mode**.

• External Trigger

When bits SCCAP1 to SCCAP0 in the SCUMR register are set to 11b, an external trigger (SCUTRG) is selected.

To use the external trigger (SCUTRG), make the following settings:

- Set bits SCCAP1 to SCCAP0 in the SCUMR register to 11b (external trigger (SCUTRG)).
- Set the INT3EN bit in the INTEN register to 1 (enabled).
- Set the PD3_3 bit in the PD3 register to 0 (input mode).
- Set the SCSTRT bit in the SCUCR0 register to 1 (measurement starts).

After making the above settings, touch detection starts when the input to the SCUTRG pin is changed from "H" to "L".



## 24.3.2 Specifications and Operation Example of Sensor Control Unit

Table 24.12 lists the Sensor Control Unit Specifications.

	em	Specification				
Operating clock (count	source)	f1, f2, or f4 (Set the operating clock for the sensor control unit to 4 MHz or 5 MHz.)				
Pins	Touch detection	18 channels (CH0 to CH17)				
	System pins	3 channels (CHxA, CHxB, and CHxC)				
Operating modes	Single mode	<ul> <li>Touches are detected on a channel.</li> <li>Set the SCUMD bit in the SCHCR register to 0.</li> <li>Select any channel by bits CHC0 to CHC4 in the SCHCR register.</li> <li>Set any channel to be measured to 1 (enabled) by the corresponding enable bit in the TSIERi (i = 0 to 2) register.</li> </ul>				
	Scan mode	<ul> <li>Touches are detected on any multiple channels.</li> <li>Ascending or descending can be selected as a channel scan order.</li> <li>Set the SCUMD bit in the SCHCR register to 1.</li> <li>Select 0 (ascending order) or 1 (descending order) by the UPDOWN bit in the SCHCR register.</li> <li>Determine the maximum number of channels arbitrarily selected bits CHC0 to CHC4 in the SCHCR register.</li> <li>Set any channels to be measured to 1 (enabled) by the corresponding enable bit in the TSIERi (i = 0 to 2) register.</li> </ul>				
Number of detections		One time				
Detection threshold val	ue	<ul> <li>Touches are detected at the CHxA (P0_2) pin.</li> <li>Set the detection threshold value using bits VLT00 and VLT01 in the VLT0 register.</li> </ul>				
Detection data transfer method	During CPU operation	Transfer via the DTC Refer to <b>15. DTC</b> for the settings.				
	In wait mode	Transfer via the SDMA in the sensor control unit				
Address to store detect	ion data	<ul> <li>RAM area</li> <li>Set the start address in the SCUDAR register.</li> <li>Set the same start address in the DTDARj (j = 0 to 23) register of the DTC.</li> </ul>				
Detection start conditio	ns	<ul> <li>Software trigger</li> <li>Measurement start trigger from timer RC</li> <li>External trigger (SCUTRG)</li> </ul>				
Detection stop conditions		<ul> <li>External trigger (SCUTRG)</li> <li>When an interrupt request is generated after touch detection and data transfer are completed.</li> <li>Set the SCSTRT bit in the SCUCR0 register to 0 by program.</li> <li>(If detection is stopped by a program, the value of each counter is retained and not changed to the valua after reset.)</li> </ul>				

#### Table 24.12 Sensor Control Unit Specifications



### 24.3.2.1 Operation Example

A detection operation example of the sensor control unit is shown in Figure 24.4. Detecting "L" at CHxA for the first time leads to transition from the measurement STEP1 to STEP2. The secondary counter operates after the transition to the measurement STEP2.

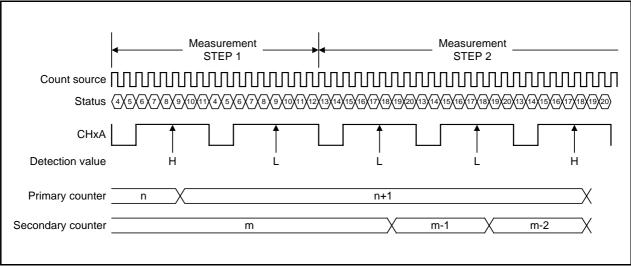



Figure 24.4 Detection Operation Example of Sensor Control Unit



#### 24.4 Principle of Measurement Operation

Figure 24.5 shows the Measurement Circuit Section. The measurement operation principle of the sensor touch control unit is explained below.

As shown in Figure 24.5, the operation is described with resistors and capacitors inserted.

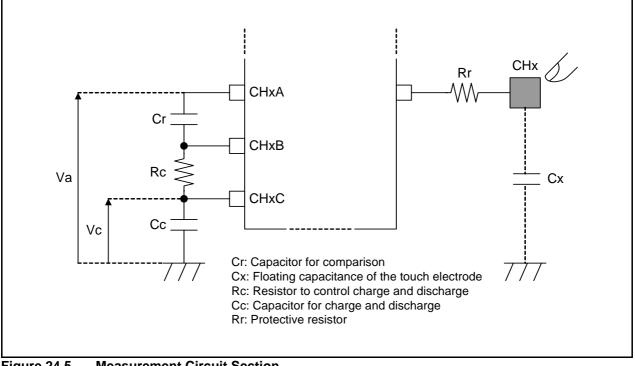



Figure 24.5 Measurement Circuit Section



The capacitance of the touch electrode is measured by measuring the voltage at CHxA while gradually discharging the electric charge stored in Cc. Measurement can be executed with the following steps:

- (1) Charge Cc by connecting the CHxC pin to the voltage supply (VCC).
- (2) After charging Cc fully, discharge Cc by connecting pins CHxA and CHxB to the ground level (VSS).
- (3) After discharging Cc for a short period of time, keep pins CHxA and CHxB at high-impedance (Hi-Z), and measure the voltage at the CHxA pin. At this point, as shown in Figure 24.5, when the voltage measured at the CHxA pin is Va, and the voltage measured at the CHxC pin is Vc, Va at the time of voltage measurement is expressed by the following formula (A).

The Time-dependent Variation of Va and Vc is shown in Figure 24.6.

$$Va = \frac{Cr}{Cr + Cx} Vc \dots formula (A)$$

- (4) Repeat steps (2) and (3).
- (5) Set an input level for the CHxA pin using the VLT0 register (input threshold value control register 0). Count the number of discharges before Va falls below the input threshold value. Continue counting until the secondary counter reaches 0.
- (6) The count value is comprised of the primary counter value of data 1 and data 2.

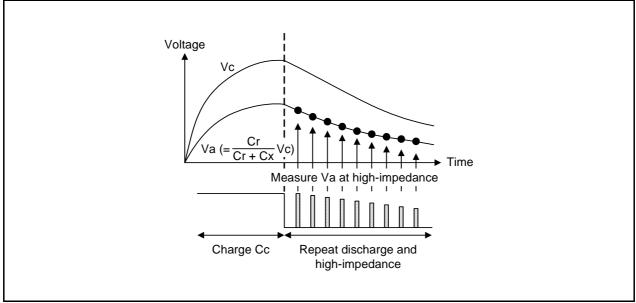



Figure 24.6 Time-dependent Variation of Va and Vc

As the finger comes closer to the touch electrode, a change of  $\angle Cx$  is generated and Va is expressed by the following formula (B).

$$Va = \frac{Cr}{Cr + Cx + \triangle Cx} Vc \dots formula (B)$$



As a result, as shown in Figure 24.7, the voltage level at the CHxA pin changes and the count value gets smaller. The sensor control unit detects this difference to implement touch detection.

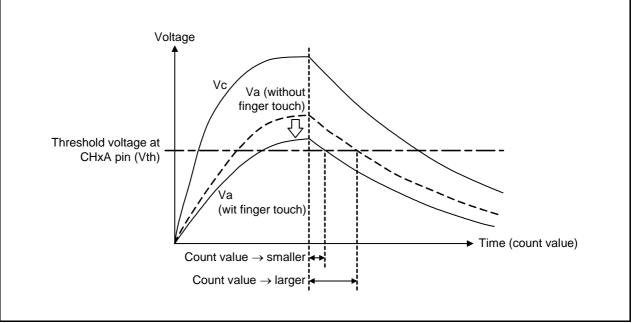



Figure 24.7 Variation of Measured Value with and without Finger Touch



## 24.5 Notes on Sensor Control Unit

#### 24.5.1 A/D Converter

Do not use the A/D converter (or do not set the ADST bit in the ADCON0 register to 1) while the sensor control unit is operating.

#### 24.5.2 Address to Store Detection Data

Set the start address in the SCUDAR register. Also set the same start address in the DTDARj (j = 0 to 23) register of the DTC. For the DTC settings, refer to **15. DTC**.

#### 24.5.3 Wait Mode

• When the sensor control unit is used in wait mode, set wait mode immediately after setting the SCSTRT bit in the SCUCR0 register to 1 (measurement starts).

If the MCU exits wait mode during touch detection, the EWMER bit in the SCUFR register is set to 1. The detection data at that time is undefined.

- To enter wait mode while the sensor control unit is operating (the SCUE bit in the SCUCR0 register is set to 1), do not use the CM30 bit (wait control bit) in the CM3 register. Use the WAIT instruction.
- When the sensor control unit is used in wait mode, set the WTFMACT bit in the FMR1 register to 1 (flash memory operates in wait mode).

#### 24.5.4 Measurement Trigger

- If a measurement start trigger is generated during forced stop, all counter values change to 0.
- The measurement start trigger is recognized when bits SCCAP1 to SCCAP0 in the SCUMR register are set from 10b (measurement start trigger from timer RC) to 11b (external trigger ( $\overline{SCUTRG}$ ) while the  $\overline{SCUTRG}$  pin is held "L" during measurement operation.

## 24.5.5 Charging Time

To prevent measurement data from being overwritten to the next measurement data, the sensor control unit should be kept charged until DTC transfer or internal SDMA transfer is completed.



## 25. Flash Memory

The flash memory can perform in the following three rewrite modes: CPU rewrite mode, standard serial I/O mode, and parallel I/O mode.

#### 25.1 Overview

Table 25.1 lists the Flash Memory Performance. (Refer to **Tables 1.1 and 1.2 R8C/3JT Group Specifications** for items not listed in Table 25.1.) Table 25.2 lists the Flash Memory Rewrite Mode.

 Table 25.1
 Flash Memory Performance

li	tem	Specification				
Flash memory operatir	ng mode	3 modes (CPU rewrite, standard serial I/O, and parallel I/O)				
Division of erase block	S	Refer to Figure 25.1.				
Programming method		Byte units				
Erasure method		Block erase				
Programming and eras	sure control method (1)	Program and erase control by software commands				
Rewrite control method	Blocks 0 to 3 (Program ROM) ⁽³⁾	Rewrite protect control in block units by the lock bit				
	Blocks A, B, C, and D (Data flash)	Individual rewrite protect control on blocks A, B, C, and D by bits FMR14, FMR15, FMR16, and FMR17 in the FMR1 register				
Number of commands		7 commands				
Programming and erasure endurance ⁽²⁾	Blocks 0 to 3 (Program ROM) ⁽³⁾	1,000 times				
	Blocks A, B, C, and D (Data flash)	10,000 times				
ID code check function		Standard serial I/O mode supported				
ROM code protection		Parallel I/O mode supported				

Notes:

1. To perform programming and erasure, use VCC = 2.7 V to 5.5 V as the supply voltage. Do not perform programming and erasure at less than 2.7 V.

- 2. Definition of programming and erasure endurance
- The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 1,000 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1-Kbyte block, and then the block is erased, the programming/ erasure endurance still stands at one. When performing 100 or more rewrites, the actual erase count can be reduced by executing program operations in such a way that all blank areas are used before performing an erase operation. Avoid rewriting only particular blocks and try to average out the programming and erasure endurance of the blocks. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

3. The number of blocks and block division vary with the MCU. Refer to Figure 25.1 R8C/3JT Group Flash Memory Block Diagram for details.

Flash Memory Rewrite Mode	CPU Rewrite Mode	Standard Serial I/O Mode	Parallel I/O Mode
Function	User ROM area is rewritten by executing software commands from the CPU.	User ROM area is rewritten using a dedicated serial programmer.	User ROM area is rewritten using a dedicated parallel programmer.
Rewritable area	User ROM	User ROM	User ROM
Rewrite programs	User program	Standard boot program	—

Table 25.2 Flash Memory Rewrite Mode



#### 25.2 Memory Map

The flash memory contains a user ROM area and a boot ROM area (reserved area).

Figure 25.1 shows the R8C/3JT Group Flash Memory Block Diagram.

The user ROM area contains program ROM and data flash.

Program ROM: Flash memory mainly used for storing programs

Data flash: Flash memory mainly used for storing data to be rewritten

The user ROM area is divided into several blocks. The user ROM area can be rewritten in CPU rewrite mode, standard serial I/O mode, or parallel I/O mode.

The rewrite control program (standard boot program) for standard serial I/O mode is stored in the boot ROM area before shipment. The boot ROM area is allocated separately from the user ROM area.

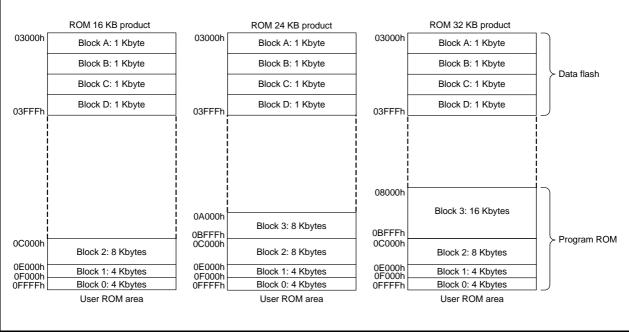



Figure 25.1 R8C/3JT Group Flash Memory Block Diagram



#### 25.3 Functions to Prevent Flash Memory from being Rewritten

Standard serial I/O mode has an ID code check function, and parallel I/O mode has a ROM code protect function to prevent the flash memory from being read or rewritten easily.

#### 25.3.1 ID Code Check Function

The ID code check function is used in standard serial I/O mode. Unless 3 bytes (addresses 0FFFCh to 0FFFEh) of the reset vector are set to FFFFFFh, the ID codes sent from the serial programmer or the on-chip debugging emulator and the 7-byte ID codes written in the flash memory are checked to see if they match. If the ID codes do not match, the commands sent from the serial programmer or the on-chip debugging emulator are not accepted. For details of the ID code check function, refer to **12. ID Code Areas**.



## 25.3.2 ROM Code Protect Function

The ROM protect function prevents the contents of the flash memory from being read, rewritten, or erased using the OFS register in parallel I/O mode.

Refer to 13. Option Function Select Area for details of the option function select area.

The ROM code protect function is enabled by writing 1 to the ROMCR bit and writing 0 to the ROMCP1 bit. This prevents the contents of the on-chip flash memory from being read or rewritten.

Once ROM code protection is enabled, the content of the internal flash memory cannot be rewritten in parallel I/O mode. To disable ROM code protection, erase the block including the OFS register using CPU rewrite mode or standard serial I/O mode.

### 25.3.3 Option Function Select Register (OFS)

Address	0FFFFh							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	CSPROINI	LVDAS	VDSEL1	VDSEL0	ROMCP1	ROMCR	—	WDTON
After Deeet					V (1)			

After Reset

User Setting Value (1)

Bit	Symbol	Bit Name	Function	R/W
b0	WDTON	Watchdog timer start select bit	<ul><li>0: Watchdog timer automatically starts after reset.</li><li>1: Watchdog timer is stopped after reset.</li></ul>	R/W
b1	—	Reserved bit	Set to 1.	R/W
b2	ROMCR	ROM code protect disable bit	0: ROM code protect disabled 1: ROMCP1 bit enabled	R/W
b3	ROMCP1	ROM code protect bit	0: ROM code protect enabled 1: ROM code protect disabled	R/W
b4	VDSEL0	Voltage detection 0 level select bit ⁽²⁾	0 0: 3.80 V selected (Vdet0 3)	R/W
b5	VDSEL1		0 1: 2.85 V selected (Vdet0_3) 1 0: 2.85 V selected (Vdet0_2) 1 0: 2.35 V selected (Vdet0_1) 1 1: 1.90 V selected (Vdet0_0)	R/W
b6	LVDAS	Voltage detection 0 circuit start bit ⁽³⁾	<ul><li>0: Voltage monitor 0 reset enabled after reset</li><li>1: Voltage monitor 0 reset disabled after reset</li></ul>	R/W
b7	CSPROINI	Count source protection mode after reset select bit	0: Count source protect mode enabled after reset 1: Count source protect mode disabled after reset	R/W

Notes:

1. The OFS register is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the OFS register. If the block including the OFS register is erased, the OFS register is set to FFh.

When blank products are shipped, the OFS register is set to FFh. It is set to the written value after written by the user.

When factory-programming products are shipped, the value of the OFS register is the value programmed by the user.

- 2. The same level of the voltage detection 0 level selected by bits VDSEL0 and VDESL1 is set in both functions of voltage monitor 0 reset and power-on reset.
- 3. To use power-on reset and voltage monitor 0 reset, set the LVDAS bit to 0 (voltage monitor 0 reset enabled after reset).

For a setting example of the OFS register, refer to 13.3.1 Setting Example of Option Function Select Area.

#### LVDAS Bit (Voltage Detection 0 Circuit Start Bit)

The Vdet0 voltage to be monitored by the voltage detection 0 circuit is selected by bits VDSEL0 and VDSEL1.



#### 25.4 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten by executing software commands from the CPU. Therefore, the user ROM area can be rewritten directly while the MCU is mounted on a board without using a ROM programmer. Execute the software command only to blocks in the user ROM area.

The flash module has an erase-suspend function which halts the erase operation temporarily during an erase operation in CPU rewrite mode. During erase-suspend, the flash memory can be read or programmed.

Erase-write 0 mode (EW0 mode) and erase-write 1 mode (EW1 mode) are available in CPU rewrite mode. Table 25.3 lists the Differences between EW0 Mode and EW1 Mode.

Operating mode		
	Single-chip mode	Single-chip mode
Rewrite control program allocatable area	User ROM	User ROM
	RAM (The rewrite control program must be transferred before being executed.) However, the program can be executed in the program ROM area when rewriting the data flash area.	User ROM or RAM
Rewritable area	User ROM	User ROM However, blocks which contain the rewrite control program are excluded.
Software command restrictions		Program and block erase commands cannot be executed to any block which contains the rewrite control program.
Mode after programming or block erasure or after entering erase-suspend	Read array mode	Read array mode
CPU state during programming and block erasure	The CPU operates.	<ul> <li>The CPU operates while the data flash area is being programmed or block erased.</li> <li>The CPU is put in a hold state while the program ROM area is being programmed or block erased. (I/O ports retain the state before the command execution).</li> </ul>
Flash memory status detection	Read bits FST7, FMT5, and FMT4 in the FST register by a program.	Read bits FST7, FST5, and FST4 in the FST register by a program.
Conditions for entering erase-suspend	<ul> <li>Set bits FMR20 and FMR21 in the FMR2 register to 1 by a program.</li> <li>Set bits FMR20 and FMR22 in the FMR2 register to 1 and the enabled maskable interrupt is generated.</li> </ul>	<ul> <li>Set bits FMR20 and FMR21 in the FMR2 register to 1 by a program (while rewriting the data flash area).</li> <li>Set bits FMR20 and FMR22 in the FMR2 register to 1 and the enabled maskable interrupt is generated.</li> </ul>
CPU clock	Max. 20 MHz	Max. 20 MHz

Table 25.3 Differences between EW0 Mode and EW1 Mode



## 25.4.1 Flash Memory Status Register (FST)

Address 01B2h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	FST7	FST6	FST5	FST4		LBDATA	BSYAEI	RDYSTI
After Reset	1	0	0	0	0	Х	0	0

Bit	Symbol	Bit Name	Function	R/W	
b0	RDYSTI	Flash ready status interrupt request flag ^(1, 4)	0: No flash ready status interrupt request 1: Flash ready status interrupt request	R/W	
b1	BSYAEI	Flash access error interrupt request flag ^(2, 4)	0: No flash access error interrupt request 1: Flash access error interrupt request	R/W	
b2	LBDATA	LBDATA monitor flag	0: Locked 1: Not locked	R	
b3	—	Nothing is assigned. If necessary, set to 0. When read, the content is 0.			
b4	FST4	Program error flag ⁽³⁾	0: No program error 1: Program error	R	
b5	FST5	Erase error/blank check error flag ⁽³⁾	0: No erase error/blank check error 1: Erase error/blank check error	R	
b6	FST6	Erase-suspend status flag	0: Other than erase-suspend 1: During erase-suspend	R	
b7	FST7	Ready/busy status flag	0: Busy 1: Ready	R	

Notes:

1. The RDYSTI bit cannot be set to 1 (flash ready status interrupt request) by a program.

When writing 0 (no flash ready status interrupt request) to the RDYSTI bit, read this bit (dummy read) before writing to it.

Make sure the DTC is not activated by the flash ready status source between reading and writing. To confirm this bit, set the RDYSTIE bit in the FMR0 register to 1 (flash ready status interrupt enabled).

The BSYAEI bit cannot be set to 1 (flash access error interrupt request) by a program.
 When writing 0 (no flash access error interrupt request) to the BSYAEI bit, read this bit (dummy read) before writing to it.

To confirm this bit, set the BSYAEIE bit in the FMR0 register to 1 (flash access error interrupt enabled) or set the CMDERIE bit in the FMR0 register to 1 (erase/write error interrupt enabled).

- 3. This bit is also set to 1 (error) when a command error occurs.
- 4. When this bit is set to 1, do not set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled).

## **RDYSTI Bit (Flash Ready Status Flag Interrupt Request Flag)**

When the RDYSTIE bit in the FMR0 register is set to 1 (flash ready status interrupt enabled) and autoprogramming or auto-erasure completes, or erase-suspend mode is entered, the RDYSTI bit is set to 1 (flash ready status interrupt request).

During interrupt handling, set the RDYSTI bit to 0 (no flash ready status interrupt request).

[Condition for setting to 0]

Set to 0 by an interrupt handling program.

[Condition for setting to 1]

When the flash memory status changes from busy to ready while the RDYSTIE bit in the FRMR0 register is set to 1, the RDYSTI bit is set to 1.

The status is changed from busy to ready in the following states:

- Completion of erasing/programming the flash memory
- Suspend acknowledgement
- Completion of forcible termination
- Completion of the lock bit program
- Completion of the read lock bit status
- Completion of the block blank check
- When the flash memory can be read after it has been stopped.



### **BSYAEI Bit (Flash Access Error Interrupt Request Flag)**

The BSYAEI bit is set to 1 (flash access error interrupt request) when the BSYAEIE bit in the FMR0 register is set to 1 (flash access error interrupt enabled) and the block during auto-programming/auto-erasure is accessed. This bit is also set to 1 if an erase or program error occurs when the CMDERIE bit in the FMR0 register is set to 1 (erase/write error interrupt enabled).

During interrupt handling, set the BSYAEI bit to 0 (no flash access error interrupt request).

[Conditions for setting to 0]

- (1) Set to 0 by an interrupt handling program.
- (2) Execute the clear status register command.
- [Conditions for setting to 1]
- Read or write the area that is being erased/written when the BSYAEIE bit in the FRMR0 register is set to 1 and while the flash memory is busy.
   Or, read the data flash area while erasing/writing to the program ROM area. (Note that the read value is

undefined in both cases. Writing has no effect.)

(2) If a command sequence error, erase error, blank check error, or program error occurs when the CMDERIE bit in the FMR0 register is set to 1 (erase/write error interrupt enabled).

## LBDATA Bit (LBDATA Monitor Flag)

This is a read-only bit indicating the lock bit status. To confirm the lock bit status, execute the read lock bit status command and read the LBDATA bit after the FST7 bit is set to 1 (ready).

The condition for updating this bit is when the program, erase, read lock bit status commands are generated. When the read lock bit status command is input, the FST7 bit is set to 0 (busy). At the time when the FST7 bit is set to 1 (ready), the lock bit status is stored in the LBDATA bit. The data in the LBDATA bit is retained until the next command is input.

### FST4 Bit (Program Error Flag)

This is a read-only bit indicating the auto-programming status. The bit is set to 1 if a program error occurs; otherwise, it is set to 0. Refer to **25.4.12 Full Status Check** for details.

### FST5 Bit (Erase Error/Blank Check Error Flag)

This is a read-only bit indicating the status of auto-erasure or the block blank check command. The bit is set to 1 if an erase error or blank check error occurs; otherwise, it is set to 0. Refer to **25.4.12 Full Status Check** for details.

### FST6 Bit (Erase Suspend Status Flag)

This is a read-only bit indicating the suspend status. The bit is set to 1 when an erase-suspend request is acknowledged and a suspend status is entered; otherwise, it is set to 0.

## FST7 Bit (Ready/Busy Status Flag)

When the FST7 bit is set to 0 (busy), the flash memory is in one of the following states:

- During programming
- During erasure
- During the lock bit program
- During the read lock bit status
- During the block blank check
- During forced stop operation
- The flash memory is being stopped
- The flash memory is being activated

Otherwise, the FST7 bit is set to 1 (ready).



### 25.4.2 Flash Memory Control Register 0 (FMR0)

Address	01B4h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	RDYSTIE	BSYAEIE	CMDERIE	CMDRST	FMSTP	FMR02	FMR01	—
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	—	Reserved bit	Set to 0.	R/W
b1	FMR01	CPU rewrite mode select bit ^(1, 4)	0: CPU rewrite mode disabled 1: CPU rewrite mode enabled	R/W
b2	FMR02	EW1 mode select bit ⁽¹⁾	0: EW0 mode 1: EW1 mode	R/W
b3	FMSTP	Flash memory stop bit ⁽²⁾	0: Flash memory operates 1: Flash memory stops (Low-power consumption state, flash memory initialization)	R/W
b4	CMDRST	Erase/write sequence reset bit ⁽³⁾	When the CMDRST bit is set to 1, the erase/write sequence is reset and erasure/writing can be forcibly stopped. When read, the content is 0.	R/W
b5	CMDERIE	Erase/write error interrupt enable bit	0: Erase/write error interrupt disabled 1: Erase/write error interrupt enabled	R/W
b6	BSYAEIE	Flash access error interrupt enable bit	0: Flash access error interrupt disabled 1: Flash access error interrupt enabled	R/W
b7	RDYSTIE	Flash ready status interrupt enable bit	0: Flash ready status interrupt disabled 1: Flash ready status interrupt enabled	R/W

Notes:

- 1. To set this bit to 1, first write 0 and then 1 immediately. Disable interrupts and DTC activation between writing 0 and writing 1.
- 2. Write to the FMSTP bit by a program transferred to the RAM. The FMSTP bit is enabled when the FMR01 bit is set to 1 (CPU rewrite mode enabled). To set the FMSTP bit to 1 (flash memory stops), set it when the FST7 bit in the FST register is set to 1 (ready).
- 3. The CMDRST bit is enabled when the FMR01 bit is set to 1 (CPU rewrite mode enabled) and the FST7 bit in the FST register is set to 0 (busy).
- 4. To set the FMR01 bit to 0 (CPU rewrite mode disabled), set it when the RDYSTI bit in the FST register is set to 0 (no flash ready status interrupt request) and the BSYAEI bit is set to 0 (no flash access error interrupt request).

### FMR01 Bit (CPU Rewrite Mode Select Bit)

When the FMR01 bit is set to 1 (CPU rewrite mode enabled), the MCU is made ready to accept software commands.

### FMR02 Bit (EW1 Mode Select Bit)

When the FMR02 bit is set to 1 (EW1 mode), EW1 mode is selected.



### FMSTP Bit (Flash Memory Stop Bit)

This bit is used to initialize the flash memory control circuits, and also to reduce the amount of current consumed by the flash memory. Access to the flash memory is disabled by setting the FMSTP bit to 1. Write to the FMSTP bit by a program transferred to the RAM.

To reduce the power consumption further in high-speed on-chip oscillator mode and low-speed on-chip oscillator mode (XIN clock stopped), set the FMSTP bit to 1. Refer to **26.2.9 Stopping Flash Memory** for details.

When entering stop mode or wait mode while CPU rewrite mode is disabled, the FMR0 register does not need to be set because the power for the flash memory is automatically turned off and is turned back on when exiting stop or wait mode.

When the FMSTP bit is set to 1 (including during the busy status (the period while the FST7 bit is 0) immediately after the FMSTP bit is changed from 1 to 0), do not set to low-current-consumption read mode at the same time.

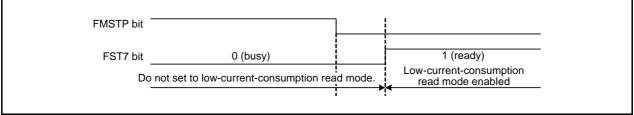



Figure 25.2 Transition to Low-Current-Consumption Read Mode

#### CMDRST Bit (Erase/Write Sequence Reset Bit)

This bit is used to initialize the flash memory sequence and forcibly stop a program or block erase command. The program ROM area can be read when resetting the sequence of programming/erasing the data flash area.

If the program or block erase command is forcibly stopped using the CMDRST bit in the FMR0 register, execute the clear status register command after the FST7 bit in the FST register is changed to 1 (ready). To program to the same address again, execute the block erase command again and ensure it has been completed normally before programming. If the addresses and blocks which the program or block erase command is forcibly stopped are allocated in the program area, set the FMR13 bit in the FMR1 register to 1 (lock bit disabled) before executing the block erase command again.

When the CMDRST bit is set to 1 (erasure/writing stopped) during erase-suspend, the suspend status is also initialized. Thus execute block erasure again to the block which the block erasure is being suspended.

When td(CMDRST-READY) has elapsed after the CMDRST bit is set to 1 (erasure/writing stopped), the executing command is forcibly terminated and reading from the flash memory is enabled.

## CMDERIE Bit (Erase/Write Error Interrupt Enable Bit)

This bit enables a flash command error interrupt to be generated if the following errors occur:

- Program error
- Block erase error
- Command sequence error
- Block blank check error

If the CMDERIE bit is set to 1 (erase/write error interrupt enabled) and erasure/writing is performed, an interrupt is generated if the above errors occur.

If a flash command error interrupt is generated, execute the clear status register command during interrupt handling.

To change the CMDERIE bit from 0 (erase/write error interrupt disabled) to 1 (erase/write error interrupt enabled), make the setting as follows:

- (1) Execute the clear status register command.
- (2) Set the CMDERIE bit to 1.



### BSYAEIE Bit (Flash Access Error Interrupt Enable Bit)

This bit enables a flash access error interrupt to be generated if the flash memory during rewriting is accessed.

To change the BSYAEIE bit from 0 (flash access error interrupt disabled) to 1 (flash access error interrupt enabled), make the setting as follows:

- (1) Read the BSYAEI bit in the FST register (dummy read).
- (2) Write 0 (no flash access error interrupt) to the BSYAEI bit.
- (3) Set the BSYAEIE bit to 1 (flash access error interrupt enabled).

### **RDYSTIE Bit (Flash Ready Status Interrupt Enable Bit)**

This bit enables a flash ready status error interrupt to be generated when the status of the flash memory sequence changes from the busy to ready status.

To change the RDYSTIE bit from 0 (flash ready status interrupt disabled) to 1 (flash ready status interrupt enabled), make the setting as follows:

- (1) Read the RDYSTI bit in the FST register (dummy read).
- (2) Write 0 (no flash ready status interrupt) to the RDYSTI bit.
- (3) Set the RDYSTIE bit to 1 (flash ready status interrupt enabled).



## 25.4.3 Flash Memory Control Register 1 (FMR1)

Address (	01B5h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	FMR17	FMR16	FMR15	FMR14	FMR13	_	WTFMACT	
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	—	Nothing is assigned. If necessa	ry, set to 0. When read, the content is 0.	
b1	WTFMACT	Flash memory stop bit in wait	0: Flash memory stops in wait mode	R/W
		mode	1: Flash memory operates in wait mode	
b2	—	Nothing is assigned. If necessa	ry, set to 0. When read, the content is 0.	
b3	FMR13	Lock bit disable select bit ⁽¹⁾	0: Lock bit enabled	R/W
			1: Lock bit disabled	
b4	FMR14	Data flash block A rewrite	0: Rewrite enabled (software command acceptable)	R/W
		disable bit ^(2, 3)	1: Rewrite disabled (software command not acceptable,	
			no error occurred)	
b5	FMR15	Data flash block B rewrite	0: Rewrite enabled (software command acceptable)	R/W
		disable bit ^(2, 3)	1: Rewrite disabled (software command not acceptable,	
			no error occurred)	
b6	FMR16	Data flash block C rewrite	0: Rewrite enabled (software command acceptable)	R/W
		disable bit ^(2, 3)	1: Rewrite disabled (software command not acceptable,	
			no error occurred)	
b7	FMR17	Data flash block D rewrite	0: Rewrite enabled (software command acceptable)	R/W
		disable bit ^(2, 3)	1: Rewrite disabled (software command not acceptable,	
			no error occurred)	

Notes:

- 1. To set the FMR13 bit to 1, first write 0 and then 1 immediately. Disable interrupts and DTC activation between writing 0 and writing 1.
- 2. To set this bit to 0, first write 1 and then 0 immediately. Disable interrupts and DTC activation between writing 1 and writing 0.
- 3. This bit is set to 0 when the FMR01 bit in the FMR0 register is set to 0 (CPU rewrite mode disabled).

### FMR13 Bit (Lock Bit Disable Select Bit)

When the FMR13 bit is set to 1 (lock bit disabled), the lock bit is disabled. When the FMR13 bit is set to 0, the lock bit is enabled. Refer to **25.4.10 Data Protect Function** for the details of the lock bit.

The FMR13 bit enables the lock bit function only and the lock bit data does not change. However, when a block erase command is executed while the FMR13 bit is set to 1, the lock bit data set to 0 (locked) changes to 1 (not locked) after erasure completes.

[Conditions for setting to 0]

The FMR13 bit is set to 0 when one of the following conditions is met.

- Completion of the program command
- Completion of the erase command
- Generation of a command sequence error
- Transition to erase-suspend
- If the FMR01 bit in the FMR0 register is set to 0 (CPU rewrite mode disabled).
- If the FMSTP bit in the FMR0 register is set to 1 (flash memory stops).
- If the CMDRST bit in the FMR0 register is set to 1 (erasure/writing stopped).

[Condition for setting to 1]

Set to 1 by a program.



#### FMR14 Bit (Data Flash Block A Rewrite Disable Bit)

When the FMR 14 bit is set to 0, data flash block A accepts program and block erase commands.

### FMR15 Bit (Data Flash Block B Rewrite Disable Bit)

When the FMR 15 bit is set to 0, data flash block B accepts program and block erase commands.

#### FMR16 Bit (Data Flash Block C Rewrite Disable Bit)

When the FMR 16 bit is set to 0, data flash block C accepts program and block erase commands.

### FMR17 Bit (Data Flash Block D Rewrite Disable Bit)

When the FMR 17 bit is set to 0, data flash block D accepts program and block erase commands.



## 25.4.4 Flash Memory Control Register 2 (FMR2)



Bit	Symbol	Bit Name	Function	R/W
b0	FMR20	Erase-suspend enable bit ⁽¹⁾	0: Erase-suspend disabled	R/W
			1: Erase-suspend enabled	
b1	FMR21	Erase-suspend request bit (2)	0: Erase restart	R/W
			1: Erase-suspend request	
b2	FMR22	Interrupt request suspend	0: Erase-suspend request disabled by interrupt request	R/W
		request enable bit (1)	1: Erase-suspend request enabled by interrupt request	
b3	—	Nothing is assigned. If necessary	, set to 0. When read, the content is 0.	
b4	—	Reserved bits	Set to 0.	R/W
b5	—			
b6	—			
b7	FMR27	Low-current-consumption	0: Low-current-consumption read mode disabled	R/W
		read mode enable bit ^(1, 3)	1: Low-current-consumption read mode enabled	

Notes:

- 1. To set this bit to 1, first write 0 and then 1 immediately. Disable interrupts and DTC activation between writing 0 and writing 1.
- 2. To set the FMR21 bit to 0 (erase restart), set it when the FMR01 bit in the FMR0 register is set to 1 (CPU rewrite mode enabled).
- After setting the CPU clock to the low-speed on-chip oscillator clock divided by 4, 8, or 16, set the FMR27 bit to 1. When divided by 1 (no division) or divided by 2 is set, do not use low-current-consumption read mode. Enter wait mode or stop mode after setting the FMR27 bit to 0 (low-current-consumption read mode disabled). Do not enter wait mode or stop mode while the FMR27 bit is 1 (low-current-consumption read mode enabled).

## FMR20 Bit (Erase-Suspend Enable Bit)

When the FMR20 bit is set to 1 (enabled), the erase-suspend function is enabled.

# FMR21 Bit (Erase-Suspend Request Bit)

When the FMR21 bit is set to 1, erase-suspend mode is entered. If the FMR22 bit is set to 1 (erase-suspend request enabled by interrupt request), the FMR21 bit is automatically set to 1 (erase-suspend request) when an interrupt request for the enabled interrupt is generated, and erase-suspend mode is entered. To restart autoerasure, set the FMR21 bit to 0 (erase restart).

[Condition for setting to 0]

Set to 0 by a program.

[Conditions for setting to 1]

- When the FMR22 bit is set to 1 (erase-suspend request enabled by interrupt request) at the time an interrupt is generated.
- Set to 1 by a program.

## FMR22 Bit (Interrupt Request Suspend-Request Enable Bit)

When the FMR 22 bit is set to 1 (erase-suspend request enabled by interrupt request), the FMR21 bit is automatically set to 1 (erase-suspend request) at the time an interrupt request is generated during auto-erasure. Set the FMR22 bit to 1 when using erase-suspend while rewriting the user ROM area in EW1 mode.



### FMR27 Bit (Low-Current-Consumption Read Mode Enable Bit)

When the FMR 27 bit is set to 1 (low-current-consumption read mode enabled) in low-speed on-chip oscillator mode (XIN clock stopped), power consumption when reading the flash memory can be reduced. Refer to **26.2.10 Low-Current-Consumption Read Mode** for details.

When the CPU clock is set to the low-speed on-chip oscillator clock divided by 4, 8, or 16, low-currentconsumption read mode can be used. When divided by 1 (no division) or divided by 2 is set, do not use lowcurrent-consumption read mode. After setting the divide ratio of the CPU clock, set the FMR27 bit to 1.

Enter wait mode or stop mode after setting the FMR27 bit to 0 (low-current-consumption read mode disabled). Do not enter wait mode or stop mode while the FMR27 bit is 1 (low-current-consumption read mode enabled).

When the FMR27 bit is set to 1 (low-current-consumption read mode enabled), do not execute the program, block erase, or lock bit program command. To change the FMSTP bit from 1 (flash memory stops) to 0 (flash memory operates), make the setting when the FMR27 bit is set to 0 (low-current-consumption read mode disabled).



### 25.4.5 EW0 Mode

When the FMR01 bit in the FMR0 register is set to 1 (CPU rewrite mode enabled), the MCU enters CPU rewrite mode and software commands can be accepted. At this time, the FMR02 bit in the FMR0 register is set to 0 so that EW0 mode is selected.

Software commands are used to control program and erase operations. The FST register can be used to confirm whether programming or erasure has completed.

To enter erase-suspend during auto-erasure, set the FMR20 bit to 1 (erase-suspend enabled) and the FMR21 bit to 1 (erase-suspend request). Next, verify the FST7 bit in the FST register is set to 1 (ready), then verify the FST6 bit is set to 1 (during erase-suspend) before accessing the flash memory. When the FST6 bit is set to 0, erasure completes.

When the FMR21 bit in the FMR2 register is set to 0 (erase restart), auto-erasure restarts. To confirm whether auto-erasure has restarted, verify the FST7 bit in the FST register is set to 0, then verify the FST6 bit is set to 0 (other than erase-suspend).

### 25.4.6 EW1 Mode

After the FMR01 bit in the FMR0 register is set to 1 (CPU rewrite mode enabled), EW1 mode is selected by setting the FMR02 bit is set to 1.

The FST register can be used to confirm whether programming and erasure has completed.

To enable the erase-suspend function during auto-erasure, execute the block erase command after setting the FMR20 bit in the FMR2 register to 1 (suspend enabled). To enter erase-suspend while auto-erasing the user ROM area, set the FMR22 bit in the FMR2 register to 1 (erase-suspend request enabled by interrupt request). Also, the interrupt to enter erase-suspend must be enabled beforehand.

When an interrupt request is generated, the FMR21 bit in the FMR2 register is automatically set to 1 (erasesuspend request) and auto-erasure suspends after td(SR-SUS). After interrupt handling completes, set the FMR21 bit to 0 (erase restart) to restart auto-erasure.



### 25.4.7 Suspend Operation

The suspend function halts the auto-erase operation temporarily during auto-erasure.

When auto-erasure is suspended, the next operation can be executed. (Refer to **Table 25.4 Executable Operation during Suspend**.)

- When suspending the auto-erasure of any block in data flash, auto-programming and reading another block can be executed.
- When suspending the auto-erasure of data flash, auto-programming and reading program ROM can be executed.
- When suspending the auto-erasure of any block in program ROM, auto-programming and reading another block can be executed.
- When suspending the auto-erasure of program ROM, auto-programming and reading data flash can be executed.
- To check the suspend, verify the FST7 bit is set to 1 (ready), then verify the FST6 bit is set to 1 (during erasesuspend) to confirm whether erasure has been suspended. When the FST6 bit is set to 0 (other than erase suspend), erasure completes.

Figure 25.3 shows the Suspend Operation Timing.

#### Table 25.4 Executable Operation during Suspend

		Operation during Suspend												
				Data flash			Data flash			Program ROM			DM	
	(B	lock duri	ng	(Blo	(Block during no			(Block during			(Block during no			
			ure exec			ure exect			ure exec			ure exec		
			ore enter	0		ore enter	0		ore enter	•		before entering		
			suspend)	)	9	suspend)			suspend)	)	5	suspend)		
		Erase	Program	Read	Erase	Program	Read	Erase	Program	Read	Erase	Program	Read	
Areas during erasure	Data flash	D	D	D	D	E	Е	N/A	N/A	N/A	D	E	E (5)	
execution before entering suspend	Program ROM	N/A	N/A	N/A	D	E	E	D	D	D	D	E	E	

Notes:

1. E indicates operation is enabled by using the suspend function, D indicates operation is disabled, and N/A indicates no combination is available.

2. Operation cannot be suspended during programming.

3. The block erase command can be executed for erasure. The program, lock bit program, and read lock bit status commands can be executed for programming.

The clear status register command can be executed when the FST7 bit in the FST register is set to 1 (ready). The operation of block blank check is disabled during suspend.

4. The MCU enters read array mode immediately after entering erase-suspend.

5. The program ROM area can be read with the BGO function while programming or block erasing data flash.

Data flash				E	rase	Suspend (readable)	Data read	Suspend (readable)	Program	Susper (readab	nd le)	Erase		
								, 1					I I	
Program ROM	User program	Command issue	User program	Set FMR21 bit to 1	User program	Flash ready interrupt handling		Command issue	User program	Flash ready interrupt handling	Set FMR21 bit to 0	User program	Flash ready interrupt handling	User program
FMR21 bit in FMR2 register					td(SR-SUS)									
FST7 bit in FST register FST6 bit in FST register					1 is set automatically.			1 is set auto	matically.	1 is	s set auto	omatically.		
RDYSTI bit in FST register											1 			
	Set to 0 by a program. Set to 0 by a program. Set to 0 by a program.													

Figure 25.3 Suspend Operation Timing



### 25.4.8 How to Set and Exit Each Mode

Figure 25.4 shows How to Set and Exit EW0 Mode and Figure 25.5 shows How to Set and Exit EW0 Mode (When Rewriting Data Flash) and EW1 Mode.

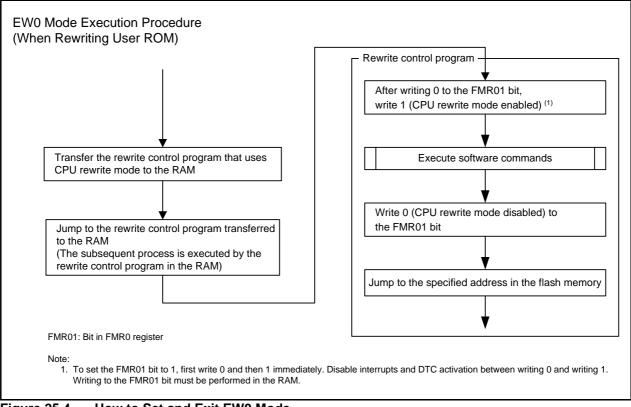



Figure 25.4 How to Set and Exit EW0 Mode

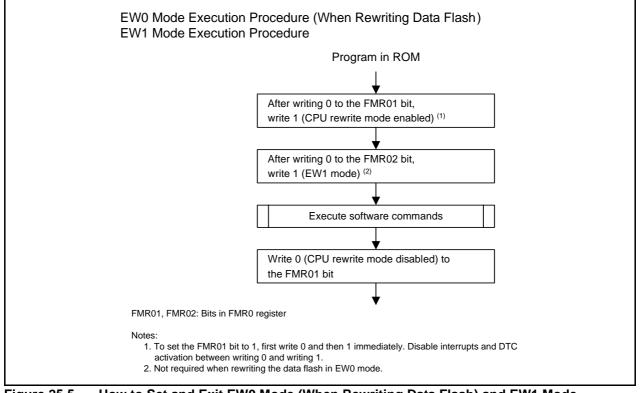



Figure 25.5 How to Set and Exit EW0 Mode (When Rewriting Data Flash) and EW1 Mode

RENESAS

### 25.4.9 BGO (BackGround Operation) Function

When the program ROM area is specified while a program or block erase operation to the data flash, array data can be read. This eliminates the need for writing software commands. Access time is the same as for normal read operations.

Any other block of the data flash cannot read during a program or block erase operation to the data flash. Figure 25.6 shows the BGO Function.

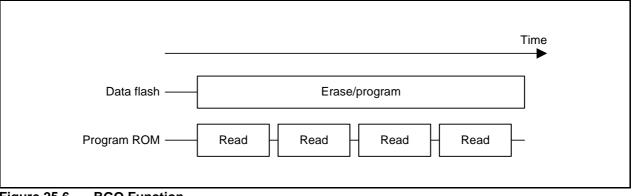



Figure 25.6 BGO Function



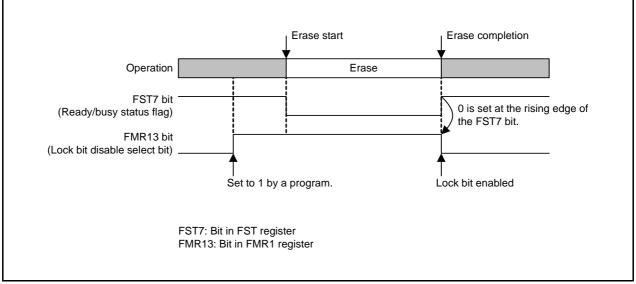
#### 25.4.10 Data Protect Function

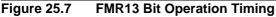
Each block in the flash memory has a nonvolatile lock bit. The lock bit is enabled by setting the FMR13 bit in the FMR1 register is set to 0 (lock bit enabled). The lock bit can be used to disable (lock) programming or erasing each block. This prevents data from being written or erased inadvertently. A block status changes according to the lock bit as follows:

- When the lock bit data is set to 0: locked (the block cannot be programmed or erased)
- When the lock bit data is set to 1: not locked (the block can be programmed and erased)

The lock bit data is set to 0 (locked) by executing the lock bit program command and to 1 (not locked) by erasing the block. No commands can be used to set only the lock bit data to 1. The lock bit data can be read using the read lock bit status command.

When the FMR13 bit is set to 1 (lock bit disabled), the lock bit function is disabled and all blocks are not locked (each lock bit data remains unchanged). The lock bit function is enabled by setting the FMR13 bit to 0 (the lock bit data is retained).


When the block erase command is executed while the FMR13 bit is set to 1, the target block is erased regardless of the lock bit status. The lock bit of the erase target block is set to 1 after auto-erasure completes.


Refer to **25.4.11 Software Commands** for the details of individual commands.

The FMR13 bit is set to 0 after auto-erasure completes. This bit is also set to 0 if one of the following conditions is met. To erase or program a different locked block, set the FMR 13 bit to 1 again and execute the block erase or program command.

- If the FST7 bit in the FST register is changed from 0 (busy) to 1 (ready).
- If a command sequence error occurs.
- If the FMR01 bit in the FMR0 register is set to 0 (CPU mode disabled).
- If the FMSTP bit in the FM0 register is set to 1 (flash memory stops).
- If the CMDRST bit in the FMR0 register is set to 1 (erasure/writing stopped).

Figure 25.7 shows the FMR13 Bit Operation Timing.







### 25.4.11 Software Commands

The software commands are described below. Read or write commands and data in 8-bit units. Do not input any command other than those listed in the table below.

Command		First Bus Cycl	e	Se	Second Bus Cycle				
Commanu	Mode	Address	Data	Mode	Address	Data			
Read array	Write	×	FFh						
Clear status register	Write	×	50h						
Program	Write	WA	40h	Write	WA	WD			
Block erase	Write	×	20h	Write	BA	D0h			
Lock bit program	Write	BT	77h	Write	BT	D0h			
Read lock bit status	Write	×	71h	Write	BT	D0h			
Block blank check	Write	×	25h	Write	BA	D0h			

#### Table 25.5 Software Commands

WA: Write address

WD: Write data

BA: Any block address

BT: Starting block address

x: Any address in the user ROM area

### 25.4.11.1 Read Array Command

The read array command is used to read the flash memory.

When FFh is written in the first bus cycle, the MCU enters read array mode. When the read address is input in the following bus cycles, the content of the specified address can be read in 8-bit units.

Since read array mode remains until another command is written, the contents of multiple addresses can be read continuously.

In addition, after a reset, the MCU enters read array mode after a program, block erase, block blank check, read lock bit status, or clear status register command, or after entering erase-suspend.

### 25.4.11.2 Clear Status Register Command

The clear status register command is used to set bits FST4 and FST5 in the FST register to 0. When 50h is written in the first bus cycle, bits FST4 and FST5 in the FST register are set to 0.



### 25.4.11.3 Program Command

The program command is used to write data to the flash memory in 1-byte units.

When 40h is written in the first bus cycle and data is written in the second bus cycle to the write address, autoprogramming (data program and verify operation) starts. Make sure the address value specified in the first bus cycle is the same address as the write address specified in the second bus cycle.

The FST7 bit in the FST register can be used to confirm whether auto-programming has completed. The FST7 bit is set to 0 during auto-programming and is set to 1 when auto-programming completes.

After auto-programming has completed, the auto-program result can be confirmed by the FST4 bit in the FST register. (Refer to **25.4.12 Full Status Check**.)

Do not write additions to the already programmed addresses.

The program command targeting each block in the program ROM can be disabled using the lock bit. The following commands are not accepted under the following conditions:

- Program commands targeting data flash block A when the FMR14 bit in the FMR1 register is set to 1 (rewrite disabled).
- Program commands targeting data flash block B when the FMR15 bit is set to 1 (rewrite disabled).
- Program commands targeting data flash block C when the FMR16 bit is set to 1 (rewrite disabled).
- Program commands targeting data flash block D when the FMR17 bit is set to 1 (rewrite disabled).

Figure 25.8 shows a Program Flowchart (Flash Ready Status Interrupt Disabled) and Figure 25.9 shows a Program Flowchart (Flash Ready Status Interrupt Enabled).

In EW1 mode, do not execute this command to any address where a rewrite control program is allocated.

When the RDYSTIE bit in the FMR0 register is set to 1 (flash ready status interrupt enabled), a flash ready status interrupt can be generated upon completion of auto-programming. The auto-program result can be confirmed by reading the FST register during the interrupt routine.

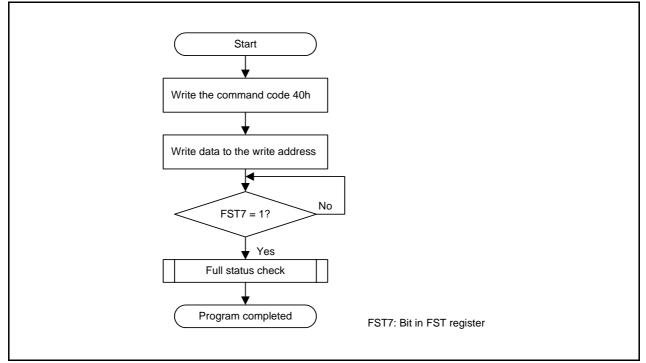



Figure 25.8 Program Flowchart (Flash Ready Status Interrupt Disabled)



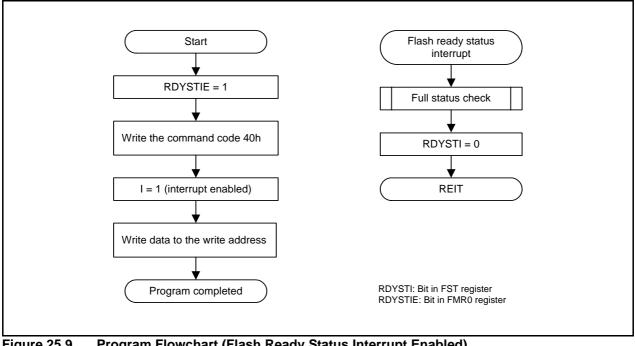



Figure 25.9 Program Flowchart (Flash Ready Status Interrupt Enabled)



### 25.4.11.4 Block Erase Command

When 20h is written in the first bus cycle and then D0h is written in the second bus cycle to any block address, auto-erasure (erase and erase verify operation) starts in the specified block.

The FST7 bit in the FST register can be used to confirm whether auto-erasure has completed. The FST7 bit is set to 0 during auto-erasure and is set to 1 when auto-erasure completes. After auto-erasure completes, all data in the block is set to FFh.

After auto-erasure has completed, the auto-erase result can be confirmed by the FST5 bit in the FST register. (Refer to **25.4.12 Full Status Check**.)

The block erase command targeting each block in the program ROM can be disabled using the lock bit.

- The following commands are not accepted under the following conditions:
- Program commands targeting data flash block A when the FMR14 bit in the FMR1 register is set to 1 (rewrite disabled).
- Program commands targeting data flash block B when the FMR15 bit is set to 1 (rewrite disabled).
- Program commands targeting data flash block C when the FMR16 bit is set to 1 (rewrite disabled).
- Program commands targeting data flash block D when the FMR17 bit is set to 1 (rewrite disabled).

Figure 25.10 shows a Block Erase Flowchart (Flash Ready Status Interrupt Disabled), Figure 25.11 shows a Block Erase Flowchart (Flash Ready Status Interrupt Disabled and Suspend Enabled), and Figure 25.12 shows a Block Erase Flowchart (Flash Ready Status Interrupt Enabled and Suspend Enabled).

In EW1 mode, do not execute this command to any block where a rewrite control program is allocated.

While the RDYSTIE bit in the FMR0 register is set to 1 (flash ready status interrupt enabled), a flash ready status interrupt can be generated upon completion of auto-erasure. While the RDYSTIE bit is set to 1 and the FMR20 bit in the FMR2 register is set to 1 (erase-suspend enabled), a flash ready status interrupt is generated when the FMR21 bit is set to 1 (erase-suspend request) and auto-erasure suspends. The auto-erase result can be confirmed by reading the FST register during the interrupt routine.

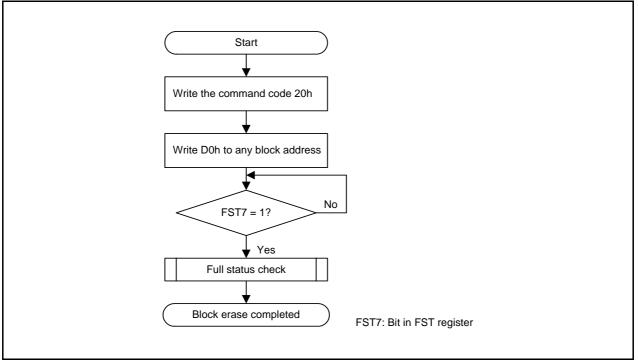



Figure 25.10 Block Erase Flowchart (Flash Ready Status Interrupt Disabled)



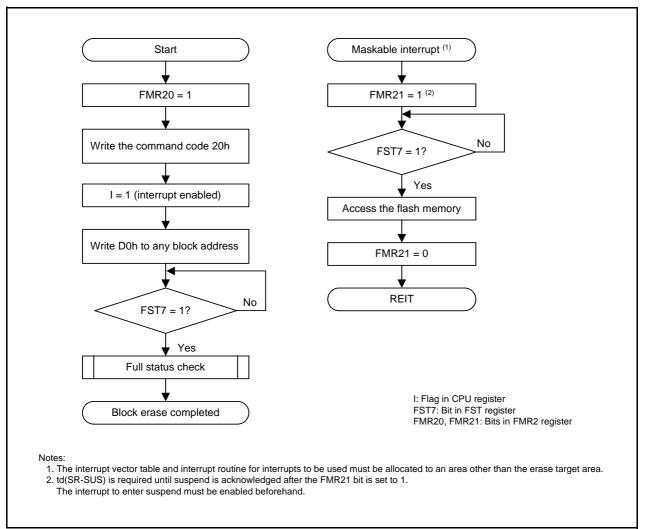
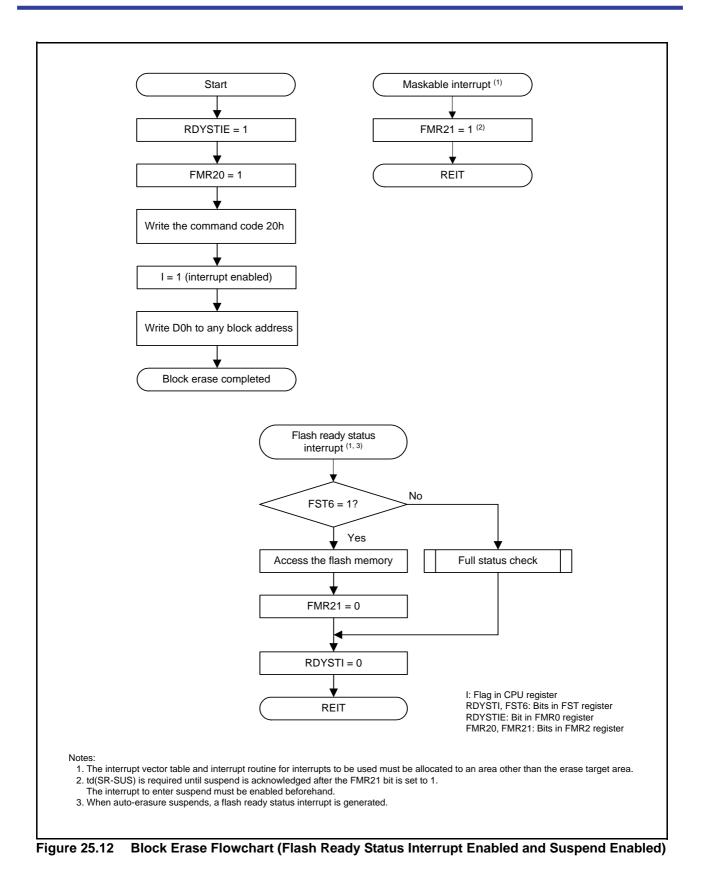




Figure 25.11 Block Erase Flowchart (Flash Ready Status Interrupt Disabled and Suspend Enabled)





RENESAS

### 25.4.11.5 Lock Bit Program Command

This command is used to set the lock bit of any block in the program ROM area to 0 (locked).

When 77h is written in the first bus cycle and D0h is written in the second bus cycle to the starting block address, 0 is written to the lock bit of the specified block. Make sure the address value in the first bus cycle is the same address as the starting block address specified in the second bus cycle.

Figure 25.13 shows a Lock Bit Program Flowchart. The lock bit status (lock bit data) can be read using the read lock bit status command.

The FST7 bit in the FST register can be used to confirm whether writing to the lock bit has completed.

Refer to **25.4.10 Data Protect Function** for the lock bit function and how to set the lock bit to 1 (not locked).




Figure 25.13 Lock Bit Program Flowchart



### 25.4.11.6 Read Lock Bit Status Command

This command is used to read the lock bit status of any block in the program ROM area.

When 71h written in the first bus cycle and D0h is written in the second cycle to the starting block address, the lock bit status of the specified block is stored in the LBDATA bit in the FST register. After the FST7 bit in the FST register has been set to 1 (ready), read the LBDATA bit.

Figure 25.14 shows a Read Lock Bit Status Flowchart.

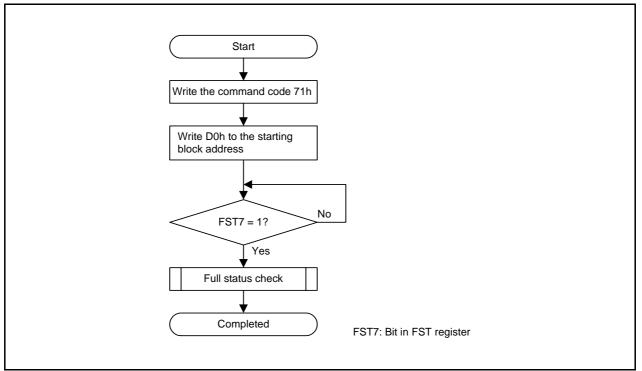



Figure 25.14 Read Lock Bit Status Flowchart



### 25.4.11.7 Block Blank Check Command

This command is used to confirm that all addresses in any block are blank data FFh.

When 25h is written in the first bus cycle and D0h is written in the second bus cycle to any block address, blank checking starts in the specified block. The FST7 bit in the FST register can be used to confirm whether blank checking has completed. The FST7 bit is set to 0 during the blank-check period and set to 1 when blank checking completes.

After blank checking has completed, the blank-check result can be confirmed by the FST5 bit in the FST register. (Refer to **25.4.12 Full Status Check**.) This command is used to verify the target block has not been written to. To confirm whether erasure has completed normally, execute the full status check.

Do not execute the block blank check command when the FST6 bit is set to 1 (during erase-suspend). Figure 25.15 shows a Block Blank Check Flowchart.

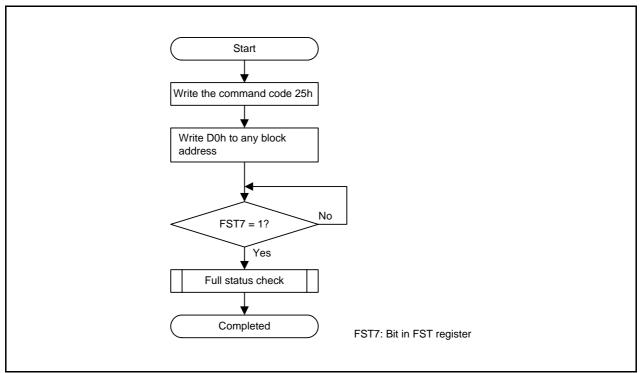



Figure 25.15 Block Blank Check Flowchart

This command is intended for programmer manufactures, not for general users.



### 25.4.12 Full Status Check

If an error occurs, bits FST4 and FST5 in the FST register are set to 1, indicating the occurrence of an error. The execution result can be confirmed by checking these status bits (full status check).

Table 25.6 lists the Errors and FST Register Status. Figure 25.16 shows the Full Status Check and Handling Procedure for Individual Errors.

Table 25.6 Errors and FST Register Status

FST Regis	ster Status	Error	Error Occurrence Condition					
FST5	FST4	Enor						
1	1	Command sequence error	<ul> <li>When a command is not written correctly.</li> <li>When data other than valid data (i.e., D0h or FFh) is written in the second bus cycle of the block erase command. ⁽¹⁾</li> <li>The erase command is executed during suspend.</li> <li>The command is executed to the block during suspend.</li> </ul>					
1	0	Erase error	When the block erase command is executed, but auto- erasure does not complete correctly.					
		Blank check error	When the block blank check command is executed and data other than blank data FFh is read.					
0	1	Program error	When the program command is executed, but auto- programming does not complete correctly.					
		Lock bit program error	When the lock bit command is executed, but the lock bit is no set to 0 (locked).					

Note:

1. When FFh is written in the second bus cycle of these commands, the MCU enters read array mode. At the same time, the command code written in the first bus cycle is invalid.



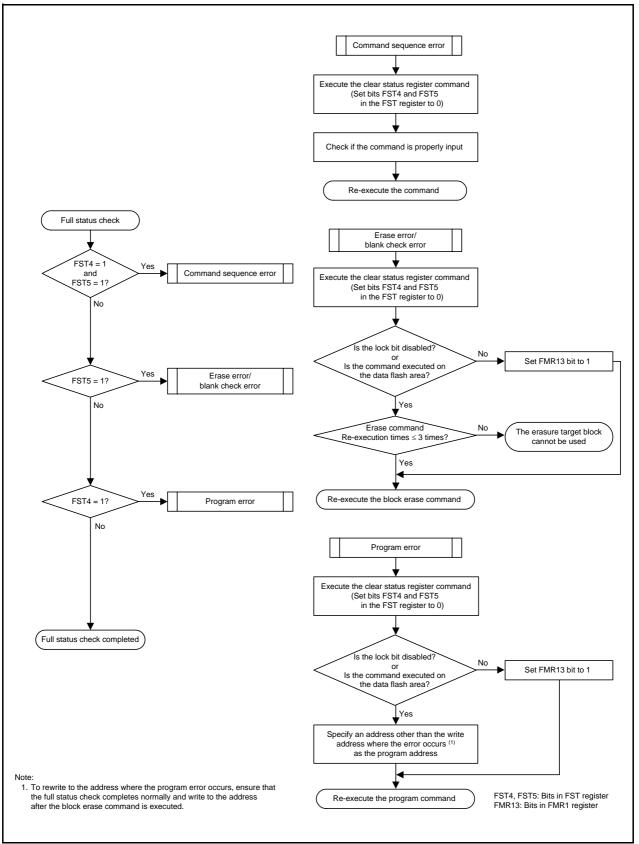



Figure 25.16 Full Status Check and Handling Procedure for Individual Errors



### 25.5 Standard Serial I/O Mode

In standard serial I/O mode, a serial programmer which supports the MCU can be used to rewrite the user ROM area while the MCU is mounted on-board.

There are three types of standard serial I/O modes:

- Standard serial I/O mode 1 ...... Clock synchronous serial I/O used to connect to a serial programmer
- Standard serial I/O mode 2 ..... Clock asynchronous serial I/O used to connect to a serial programmer
- Standard serial I/O mode 3 .......... Special clock asynchronous serial I/O used to connect to a serial programmer

Standard serial I/O mode 2 and standard serial I/O mode 3 can be used for the MCU.

Refer to Appendix 2. Connection Examples between Serial Programmer and On-Chip Debugging Emulator for examples of connecting to a serial programmer. Contact the serial programmer manufacturer for more information. Refer to the user's manual included with your serial programmer for instructions.

Table 25.7 lists the Pin Functions (Flash Memory Standard Serial I/O Mode 2) and Figure 25.17 shows Pin Handling in Standard Serial I/O Mode 2. Table 25.8 lists the Pin Functions (Flash Memory Standard Serial I/O Mode 3) and Figure 25.18 shows Pin Handling in Standard Serial I/O Mode 3.

After handling the pins shown in Table 25.8 and rewriting the flash memory using the programmer, apply a "H" level signal to the MODE pin and reset the hardware to run a program in the flash memory in single-chip mode.

### 25.5.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the serial programmer and those written in the flash memory match.

Refer to 12. ID Code Areas for details of the ID code check.



Pin	Name	I/O	Description
VCC, VSS	Power supply input		Apply the guaranteed programming and erasure voltage to the VCC pin and 0 V to the VSS pin.
RESET	Reset input	Ι	Reset input pin
P4_6/XIN	P4_6 input/clock input	Ι	Connect a ceramic resonator or crystal oscillator
P4_7/XOUT	P4_7 input/clock output	I/O	between pins XIN and XOUT.
P0_0 to P0_7	Input port P0	Ι	Input a "H" or "L" level signal or leave open.
P1_0 to P1_3, P1_6,	Input port P1	I	Input a "H" or "L" level signal or leave open.
P1_7			
P2_0 to P2_6	Input port P2	Ι	Input a "H" or "L" level signal or leave open.
P3_1, P3_3 to P3_5, P3_7	Input port P3	Ι	Input a "H" or "L" level signal or leave open.
P4_2/VREF, P4_5	Input port P4	Ι	Input a "H" or "L" level signal or leave open.
MODE	MODE	I/O	Input a "L" level signal.
P1_4	TXD output	0	Serial data output pin
P1_5	RXD input	I	Serial data input pin

Table 25.7	Pin Functions (Flash Memory Standard Serial I/O Mode 2)
------------	---------------------------------------------------------

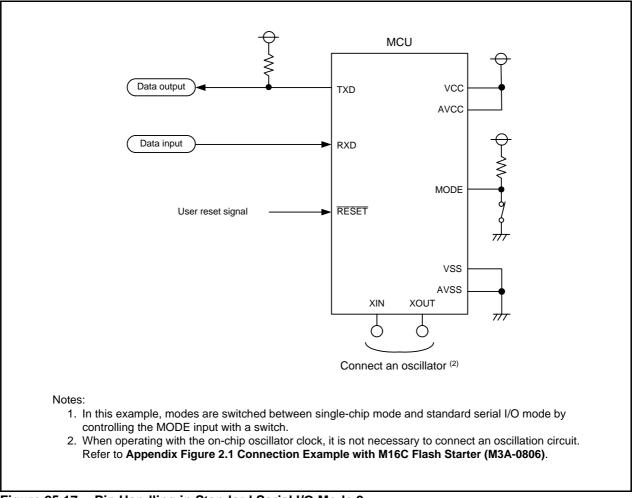



Figure 25.17 Pin Handling in Standard Serial I/O Mode 2

Pin	Name	I/O	Description
VCC, VSS	Power supply input		Apply the guaranteed programming and erasure voltage to the VCC pin and 0 V to the VSS pin.
RESET	Reset input	Ι	Reset input pin
P4_6/XIN	P4_6 input/clock input	I	If an external oscillator is connected, connect a ceramic resonator or crystal oscillator between pins XIN and XOUT.
P4_7/XOUT	P4_7 input/clock output	I/O	To use as an input port, input a "H" or "L" level signal or leave the pin open.
P0_0 to P0_7	Input port P0	Ι	Input a "H" or "L" level signal or leave open.
P1_0 to P1_7	Input port P1	I	Input a "H" or "L" level signal or leave open.
P2_0 to P2_6	Input port P2	Ι	Input a "H" or "L" level signal or leave open.
P3_1, P3_3 to P3_5, P3_7	Input port P3	Ι	Input a "H" or "L" level signal or leave open.
P4_2/VREF, P4_5	Input port P4	Ι	Input a "H" or "L" level signal or leave open.
MODE	MODE	I/O	Serial data I/O pin. Connect the pin to a programmer.

Table 25.8	Pin Functions (Flash Memory Standard Serial I/O Mode 3)
------------	---------------------------------------------------------

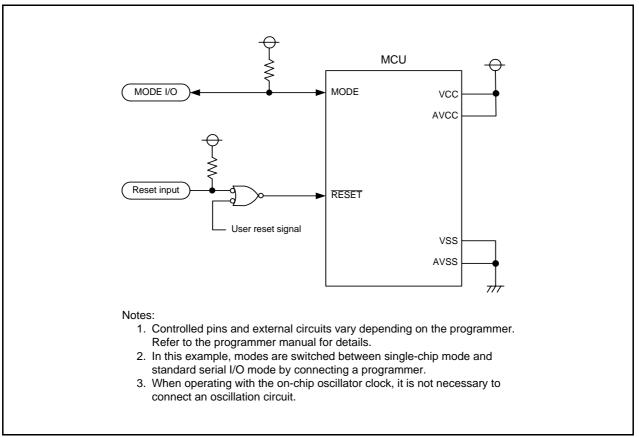



Figure 25.18 Pin Handling in Standard Serial I/O Mode 3



#### 25.6 Parallel I/O Mode

Parallel I/O mode is used to input and output software commands, addresses and data necessary to control (read, program, and erase) the on-chip flash memory.

Use a parallel programmer which supports the MCU. Contact the parallel programmer manufacturer for more information. Refer to the user's manual included with your parallel programmer for instructions. In parallel I/O mode, the user ROM areas shown in Figure 25.1 can be rewritten.

### 25.6.1 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read and rewritten. (Refer to **25.3.2 ROM Code Protect Function**.)



### 25.7 Notes on Flash Memory

#### 25.7.1 CPU Rewrite Mode

#### 25.7.1.1 Prohibited Instructions

The following instructions cannot be used while the program ROM area is being rewritten in EW0 mode because they reference data in the flash memory: UND, INTO, and BRK.

#### 25.7.1.2 Interrupts

Tables 25.9 to 25.11 list CPU Rewrite Mode Interrupts.

Mode	Erase/ Write Target	Status	Maskable Interrupt
EWO	Data flash	During auto-erasure (suspend enabled)	When an interrupt request is acknowledged, interrupt handling is executed. If the FMR22 bit is set to 1 (erase-suspend request enabled by interrupt request), the FMR21 bit is automatically set to 1 (erase-suspend request). The flash memory suspends auto-erasure after td(SR-SUS). If erase-suspend is required while the FMR22 bit is set to 0 (erase-suspend request disabled by interrupt request), set the FMR21 bit to 1 during interrupt handling. The flash memory suspends auto-erasure after td(SR-SUS). While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written. Auto-erasure can be restarted by setting the FMR21 bit to 0 (erase restart).
		During auto-erasure (suspend disabled or FMR22 = 0) During	Interrupt handling is executed while auto-erasure or auto-programming is being performed.
		auto-programming	
	Program ROM	During auto-erasure (suspend enabled)	Usable by allocating a vector in RAM.
		During auto-erasure (suspend disabled)	
		During auto-programming	
EW1	Data flash	During auto-erasure (suspend enabled)	When an interrupt request is acknowledged, interrupt handling is executed. If the FMR22 bit is set to 1, the FMR21 bit is automatically set to 1. The flash memory suspends auto-erasure after td(SR-SUS). If erase-suspend is required while the FMR22 bit is set to 0, set the FMR21 bit to 1 during interrupt handling. The flash memory suspends auto-erasure after td(SR-SUS). While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written. Auto-erasure can be restarted by setting the FMR21 bit to 0.
		During auto-erasure (suspend disabled or FMR22 = 0)	Interrupt handling is executed while auto-erasure or auto-programming is being performed.
		During auto-programming	
	Program ROM	During auto-erasure (suspend enabled)	Auto-erasure suspends after td(SR-SUS) and interrupt handling is executed. Auto- erasure can be restarted by setting the FMR21 bit to 0 after interrupt handling completes. While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written.
		During auto-erasure (suspend disabled or FMR22 = 0)	Auto-erasure and auto-programming have priority and interrupt requests are put on standby. Interrupt handling is executed after auto-erase and auto-program complete.
		During auto-programming	

 Table 25.9
 CPU Rewrite Mode Interrupts (1)

FMR21, FMR22: Bits in FMR2 register



Mode	Erase/ Write Target	Status	Watchdog Timer     Oscillation Stop Detection     Voltage Monitor 2     Voltage Monitor 1     (Note 1)	Undefined Instruction     INTO Instruction     BRK Instruction     Single Step     Address Match     Address Break     (Note 1)
EWO	Data flash	During auto-erasure (suspend enabled)	When an interrupt request is acknowledged, interrupt handling is executed. If the FMR22 bit is set to 1 (erase-suspend request enabled by interrupt request), the FMR21 bit is automatically set to 1 (erase- suspend request). The flash memory suspends auto-erasure after td(SR-SUS). If erase-suspend is required while the FMR22 bit is set to 0 (erase-suspend request disabled by interrupt request), set the FMR21 bit to 1 during interrupt handling. The flash memory suspends auto-erasure after td(SR-SUS). While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written. Auto-erasure can be restarted by setting the FMR21 bit is set to 0 (erase restart).	When an interrupt request is acknowledged, interrupt handling is executed. If erase-suspend is required, set the FMR21 bit to 1 during interrupt handling. The flash memory suspends auto-erasure after td(SR-SUS). While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written. Auto-erasure can be restarted by setting the FMR21 bit in the FMR2 register is set to 0 (erase restart).
		During auto-erasure (suspend disabled or FMR22 = 0) During auto-programming	Interrupt handling is executed while auto-era performed.	asure or auto-programming is being
	Program ROM	During auto-erasure (suspend enabled) During auto-erasure (suspend disabled) During auto-programming	When an interrupt request is acknowledged, auto-erasure or auto- programming is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts when the flash memory restarts after the fixed period. Since the block during auto-erasure or the address during auto-programming is forcibly stopped, the normal value may not be read. After the flash memory restarts, execute auto-erasure again and ensure it completes normally. The watchdog timer does not stop during the command operation, so interrupt requests may be generated. Initialize the watchdog timer regularly using the erase- suspend function.	Not usable during auto-erasure or auto- programming.

Table 25.10	CPU Rewrite Mode Interru	ots (2)
-------------	--------------------------	---------

FMR21, FMR22: Bits in FMR2 register

Note:

1. Do not use a non-maskable interrupt while block 0 is being auto-erased because the fixed vector is allocated in block 0.



Mode	Erase/ Write Target	Status	Watchdog Timer     Oscillation Stop Detection     Voltage Monitor 2     Voltage Monitor 1     (Note 1)	Undefined Instruction     INTO Instruction     BRK Instruction     Single Step     Address Match     Address Break     (Note 1)
EW1	Data flash	During auto-erasure (suspend enabled)	When an interrupt request is acknowledged, interrupt handling is executed. If the FMR22 bit is set to 1 (erase-suspend request enabled by interrupt request), the FMR21 bit is automatically set to 1 (erase- suspend request). The flash memory suspends auto-erasure after td(SR-SUS). If erase-suspend is required while the FMR22 bit is set to 0 (erase-suspend request disabled by interrupt request), set the FMR21 bit to 1 during interrupt handling. The flash memory suspends auto-erasure after td(SR-SUS). While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written. Auto-erasure can be restarted by setting the FMR21 bit is set to 0 (erase restart).	When an interrupt request is acknowledged, interrupt handling is executed. If erase-suspend is required, set the FMR21 bit to 1 during interrupt handling. The flash memory suspends auto-erasure after td(SR-SUS). While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written. Auto-erasure can be restarted by setting the FMR21 bit in the FMR2 register is set to 0 (erase restart).
		During auto-erasure (suspend disabled or FMR22 = 0) During auto-programming	Interrupt handling is executed while auto-era performed.	sure or auto-programming is being
	Program ROM	During auto-erasure (suspend enabled) During auto-erasure (suspend disabled or FMR22 = 0) During auto-programming	When an interrupt request is acknowledged, auto-erasure or auto- programming is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts when the flash memory restarts after the fixed period. Since the block during auto-erasure or the address during auto-programming is forcibly stopped, the normal value may not be read. After the flash memory restarts, execute auto-erasure again and ensure it completes normally. The watchdog timer does not stop during the command operation, so interrupt requests may be generated. Initialize the watchdog timer regularly using the erase- suspend function.	Not usable during auto-erasure or auto- programming.

Table 25.11	CPU Rewrite Mode Interrupts (3)
-------------	---------------------------------

FMR21, FMR22: Bits in FMR2 register

Note:

1. Do not use a non-maskable interrupt while block 0 is being auto-erased because the fixed vector is allocated in block 0.



#### 25.7.1.3 How to Access

To set one of the following bits to 1, first write 0 and then 1 immediately. Disable interrupts and DTC activation between writing 0 and writing 1.

- The FMR01 bit or FMR02 bit in the FMR0 register
- The FMR13 bit in the FMR1 register
- The FMR20 bit, FMR22 bit, or FMR 27 bit in the FMR2 register

To set one of the following bits to 0, first write 1 and then 0 immediately. Disable interrupts and DTC activation between writing 1 and writing 0.

• The FMR14 bit, FMR15 bit, FMR16 bit, or FMR17 bit in the FMR1 register

### 25.7.1.4 Rewriting User ROM Area

In EW0 mode, if the supply voltage drops while rewriting any block in which a rewrite control program is stored, it may not be possible to rewrite the flash memory because the rewrite control program cannot be rewritten correctly. In this case, use standard serial I/O mode.

#### 25.7.1.5 Programming

Do not write additions to the already programmed address.

### 25.7.1.6 Entering Stop Mode or Wait Mode

Do not enter stop mode or wait mode during erase-suspend.

If the FST7 bit in the FST register is set to 0 (busy (during programming or erasure execution), do not enter to stop mode or wait mode.

Do not enter stop mode or wait mode while the FMR27 bit is 1 (low-current-consumption read mode enabled).

#### 25.7.1.7 Programming and Erasure Voltage for Flash Memory

To perform programming and erasure, use VCC = 2.7 V to 5.5 V as the supply voltage. Do not perform programming and erasure at less than 2.7 V.

### 25.7.1.8 Block Blank Check

Do not execute the block blank check command during erase-suspend.

### 25.7.1.9 Low-Current-Consumption Read Mode

In low-speed on-chip oscillator mode, the current consumption when reading the flash memory can be reduced by setting the FMR27 bit in the FMR2 register to 1 (low-current-consumption read mode enabled).

When the CPU clock is set to the low-speed on-chip oscillator clock divided by 4, 8, or 16, low-currentconsumption read mode can be used. When divided by 1 (no division) or divided by 2 is set, do not use lowcurrent-consumption read mode. After setting the divide ratio of the CPU clock, set the FMR27 bit to 1. To reduce the power consumption, refer to **26. Reducing Power Consumption**.

To reduce the power consumption, refer to 26. Reducing Power Consumption.

Enter wait mode or stop mode after setting the FMR27 bit to 0 (low-current-consumption read mode disabled). Do not enter wait mode or stop mode while the FMR27 bit is 1 (low-current-consumption read mode enabled).



# 26. Reducing Power Consumption

### 26.1 Overview

This chapter describes key points and processing methods for reducing power consumption.

### 26.2 Key Points and Processing Methods for Reducing Power Consumption

Key points for reducing power consumption are shown below. They should be referred to when designing a system or creating a program.

### 26.2.1 Voltage Detection Circuit

If voltage monitor 1 is not used, set the VCA26 bit in the VCA2 register to 0 (voltage detection 1 circuit disabled). If voltage monitor 2 is not used, set the VCA27 bit in the VCA2 register to 0 (voltage detection 2 circuit disabled).

If the power-on reset and voltage monitor 0 reset are not used, set the VCA25 bit in the VCA2 register to 0 (voltage detection 0 circuit disabled).

#### 26.2.2 Ports

Even after the MCU enters wait mode or stop mode, the states of the I/O ports are retained. Current flows into the output ports in the active state, and shoot-through current flows into the input ports in the high-impedance state. Unnecessary ports should be set to input and fixed to a stable electric potential before the MCU enters wait mode or stop mode.

#### 26.2.3 Clocks

Power consumption generally depends on the number of the operating clocks and their frequencies. The fewer the number of operating clocks or the lower their frequencies, the more power consumption decreases. Unnecessary clocks should be stopped accordingly.

Stopping low-speed on-chip oscillator oscillation:Set the CM14 bit in the CM1 register to 1 (low-speed on-<br/>chip oscillator off) and the OCD2 bit in the OCD register to<br/>0 (XIN clock selected).Stopping high-speed on-chip oscillator oscillation:Set the FRA00 bit in the FRA0 register to 0.

### 26.2.4 Wait Mode, Stop Mode

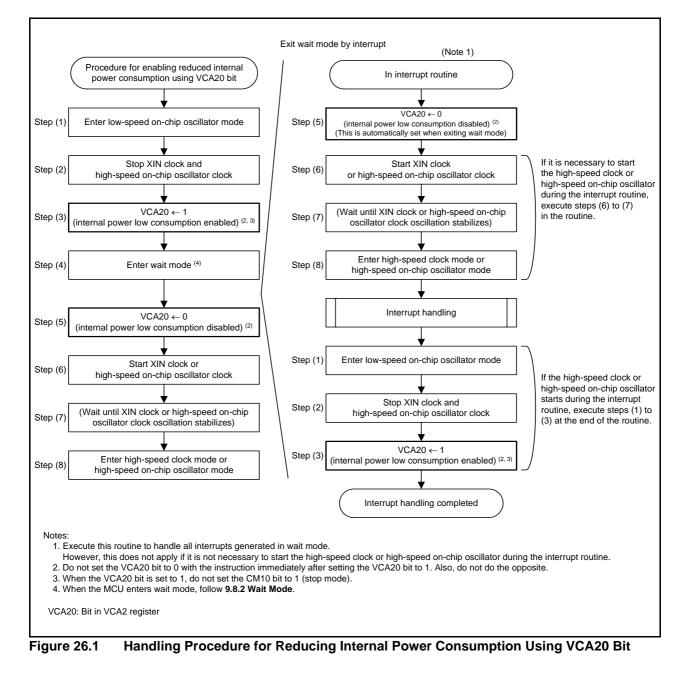
Power consumption can be reduced in wait mode and stop mode. Refer to 9.6 Power Control for details.

### 26.2.5 Stopping Peripheral Function Clocks

If the peripheral function f1, f2, f4, f8, and f32 clocks are not necessary in wait mode, set the CM02 bit in the CM0 register to 1 (peripheral function clock stops in wait mode). This will stop the f1, f2, f4, f8, and f32 clocks in wait mode.

#### 26.2.6 Timers

If timer RA is not used, set the TCKCUT bit in the TRAMR register to 1 (count source cutoff). If timer RB is not used, set the TCKCUT bit in the TRBMR register to 1 (count source cutoff). If timer RC is not used, set the MSTTRC bit in the MSTCR register to 1 (standby).


### 26.2.7 A/D Converter

When the A/D converter is not used, power consumption can be reduced by setting the ADSTBY bit in the ADCON1 register to 0 (A/D operation stops (standby)) to shut off any analog circuit current flow.



### 26.2.8 Reducing Internal Power Consumption

When the MCU enters wait mode using low-speed on-chip oscillator mode, internal power consumption can be reduced by using the VCA20 bit in the VCA2 register. Figure 26.1 shows the Handling Procedure for Reducing Internal Power Consumption Using VCA20 Bit. To enable reduced internal power consumption by the VCA20 bit, follow Figure 26.1 Handling Procedure for Reducing Internal Power Consumption Using VCA20 Bit.





### 26.2.9 Stopping Flash Memory

In low-speed on-chip oscillator mode, power consumption can be further reduced by stopping the flash memory using the FMSTP bit in the FMR0 register.

Access to the flash memory is disabled by setting the FMSTP bit to 1 (flash memory stops). The FMSTP bit must be written to by a program transferred to RAM.

When the MCU enters stop mode or wait mode while CPU rewrite mode is disabled, the power for the flash memory is automatically turned off. It is turned back on again after the MCU exits stop mode or wait mode. This eliminates the need to set the FMR0 register.

Figure 26.2 shows the Handling Procedure Example for Reducing Power Consumption Using FMSTP Bit.

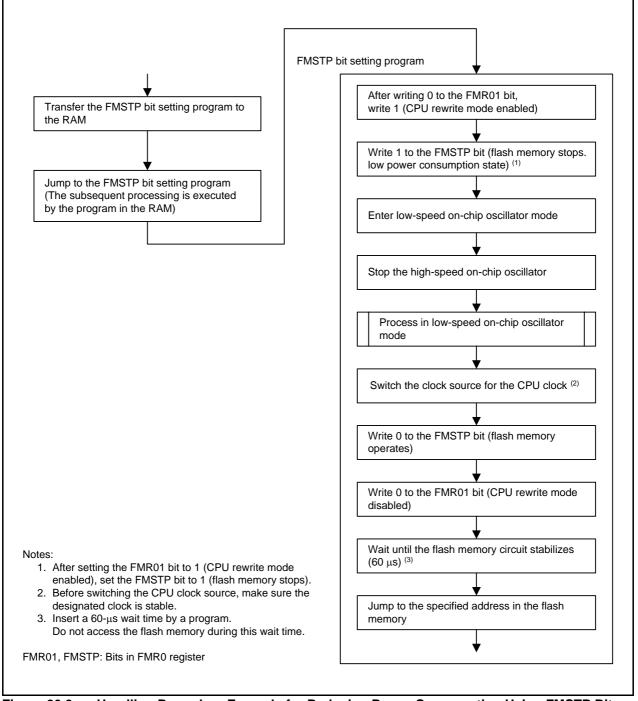
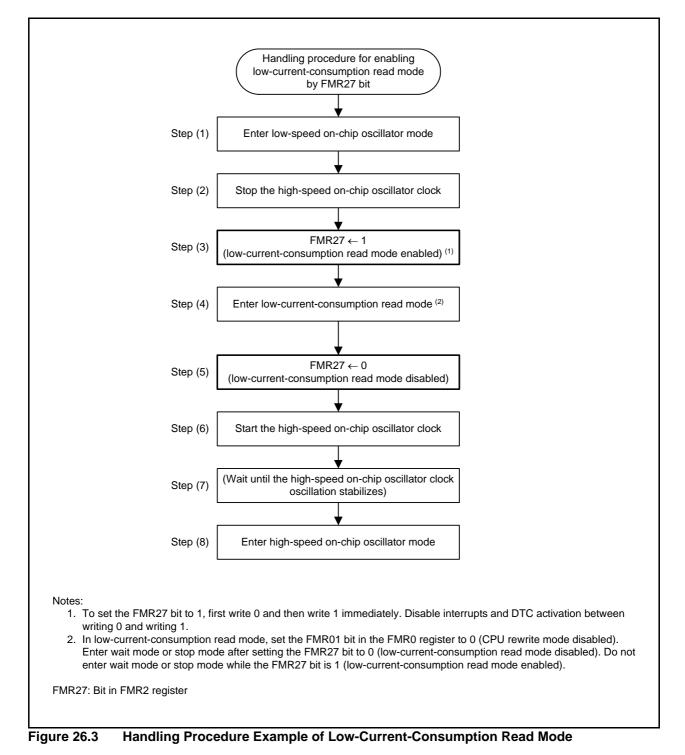



Figure 26.2 Handling Procedure Example for Reducing Power Consumption Using FMSTP Bit




#### 26.2.10 Low-Current-Consumption Read Mode

In low-speed on-chip oscillator mode, the current consumption when reading the flash memory can be reduced by setting the FMR27 bit in the FMR2 register to 1 (low-current-consumption read mode enabled).

When the CPU clock is set to the low-speed on-chip oscillator clock divided by 4, 8, or 16, low-currentconsumption read mode can be used. When divided by 1 (no division) or divided by 2 is set, do not use lowcurrent-consumption read mode. After setting the divide ratio of the CPU clock, set the FMR27 bit to 1 (lowcurrent-consumption read mode enabled).

Enter wait mode or stop mode after setting the FMR27 bit to 0 (low-current-consumption read mode disabled). Do not enter wait mode or stop mode while the FMR27 bit is 1 (low-current-consumption read mode enabled). Figure 26.3 shows the Handling Procedure Example of Low-Current-Consumption Read Mode.





# 26.2.11 Others

Set the MSTTRD bit in the MSTCR register to 1. The power consumption of the peripheral functions can be reduced.



# 27. Electrical Characteristics

Table 27.1	Absolute	Maximum	Ratings
------------	----------	---------	---------

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vi	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	$-20^{\circ}C \le Topr \le 85^{\circ}C$	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version)	°C
Tstg	Storage temperature		-65 to 150	°C



Question					Qualitization		Standard	1	11.2
Symbol		Pa	arameter		Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage					1.8	_	5.5	V
Vss/AVss	Supply voltage					—	0	_	V
Viн	Input "H" voltage Other than CMOS input				0.8 Vcc	—	Vcc	V	
			Input level	Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	_	Vcc	V
		input	switching	: 0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.55 Vcc	—	Vcc	V
			function (I/O port)		$1.8~V \leq Vcc < 2.7~V$	0.65 Vcc	—	Vcc	V
			(1/0 port)	Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.65 Vcc	_	Vcc	V
				: 0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.7 Vcc	_	Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0.8 Vcc	—	Vcc	V
				Input level selection		0.85 Vcc		Vcc	V
				: 0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.85 Vcc	_	Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0.85 Vcc	_	Vcc	V
		Externa	I clock input	(XOUT)		1.2		Vcc	V
VIL	Input "L" voltage		nan CMOS ir	•		0		0.2 Vcc	V
		CMOS	Input level	Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0	_	0.2 Vcc	V
		input	switching	: 0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	_	0.2 Vcc	V
			function (I/O port)		$1.8~V \leq Vcc < 2.7~V$	0	_	0.2 Vcc	V
			(1/0 port)	Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0	_	0.4 Vcc	V
				: 0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	_	0.3 Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0	_	0.2 Vcc	V
				Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0	_	0.55 Vcc	V
				: 0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	_	0.45 Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0		0.35 Vcc	V
			I clock input			0		0.4 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of	all pins IOH(p	beak)		—	_	-160	mA
IOH(sum)	Average sum output "H" current	Sum of	all pins IOH(a	avg)		—	_	-80	mA
IOH(peak)	Peak output "H"	Drive ca	apacity Low			_	_	-10	mA
	current	Drive ca	apacity High			_		-40	mA
IOH(avg)	Average output	Drive ca	apacity Low			_		-5	mA
	"H" current	Drive ca	apacity High			_		-20	mA
IOL(sum)	Peak sum output "L" current	Sum of	all pins IOL(p	eak)		—	—	160	mA
IOL(sum)	Average sum output "L" current	Sum of	all pins IOL(a	vg)		_	_	80	mA
IOL(peak)	Peak output "L"	Drive ca	apacity Low			_	_	10	mA
	current		apacity High			_	_	40	mA
IOL(avg)	Average output	Drive ca	apacity Low			_	_	5	mA
	"L" current	Drive ca	apacity High			_		20	mA
f(XIN)	XIN clock input os				$2.7~V \leq Vcc \leq 5.5~V$		_	20	MHz
					$1.8~V \leq Vcc < 2.7~V$	_	_	5	MHz
fOCO40M	When used as the	count so	urce for time	er RC ⁽³⁾	$2.7~V \leq Vcc \leq 5.5~V$	32		40	MHz
fOCO-F	fOCO-F frequency				$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	_	20	MHz
	. ,				$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	—	_	5	MHz
_	System clock frequ	Jency			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	_	20	MHz
	· · · ·	-			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	—	_	5	MHz
f(BCLK)	CPU clock frequer	псу			$2.7~V \leq Vcc \leq 5.5~V$		_	20	MHz
		-			1.8 V ≤ Vcc < 2.7 V	_	_	5	MHz

Table 27.2 Recommended Operating Conditions

Notes:

1. Vcc = 1.8 V to 5.5 V at Topr =  $-20^{\circ}$ C to 85°C (N version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 V to 5.5 V.



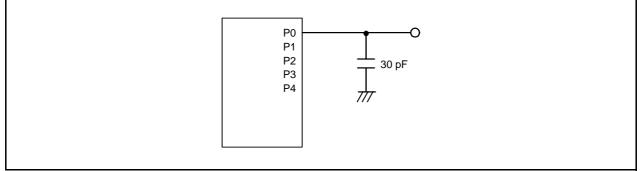



Figure 27.1 Ports P0 to P4 Timing Measurement Circuit



Symbol	Parameter		Cond	itions		Standard		Unit
Symbol	i arameter		Cond	110113	Min.	Тур.	Max.	Onit
—	Resolution		Vref = AVcc			—	10	Bit
—	Absolute accuracy	10-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input AN8 to AN11 input		—	±3	LSB
			Vref = AVcc = 3.3 V	AN0 to AN7 input AN8 to AN11 input	_	-	±5	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input AN8 to AN11 input			±5	LSB
			Vref = AVcc = 2.2 V	AN0 to AN7 input AN8 to AN11 input		—	±5	LSB
		8-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input AN8 to AN11 input		—	±2	LSB
			Vref = AVcc = 3.3 V	AN0 to AN7 input AN8 to AN11 input		_	±2	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input AN8 to AN11 input		—	±2	LSB
			Vref = AVcc = 2.2 V	AN0 to AN7 input AN8 to AN11 input	_	_	±2	LSB
φAD	A/D conversion clock		4.0 V $\leq$ Vref = AVcc $\leq$	5.5 V ⁽²⁾	2	—	20	MHz
			$3.2 \text{ V} \leq \text{Vref} = \text{AVcc} \leq$	5.5 V ⁽²⁾	2	—	16	MHz
			$2.7 \text{ V} \leq \text{Vref} = \text{AVcc} \leq$	5.5 V ⁽²⁾	2		10	MHz
			$2.2 \text{ V} \leq \text{Vref} = \text{AVcc} \leq$	5.5 V ⁽²⁾	2	—	5	MHz
—	Tolerance level impedance	е			_	3		kΩ
tCONV	Conversion time	10-bit mode	Vref = AVcc = 5.0 V, ¢	AD = 20 MHz	2.2	_		μS
		8-bit mode	Vref = AVcc = 5.0 V, ¢	AD = 20 MHz	2.2	_	—	ms
<b>t</b> SAMP	Sampling time		φAD = 20 MHz		0.75		—	μS
IVref	Vref current		Vcc = 5.0 V, XIN = f1	=	_	45	—	μA
Vref	Reference voltage				2.2	—	AVcc	V
VIA	Analog input voltage (3)				0	—	Vref	V
OCVREF	On-chip reference voltage		$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MHz}$	Z	1.19	1.34	1.49	V

Table 27.3 A/D Converter Characteristics

Notes:

1. Vcc/AVcc = Vref = 2.2 V to 5.5 V,  $Vss = 0 V at Topr = -20^{\circ}C to 85^{\circ}C$  (N version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-currentconsumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.



Symbol	Parameter	Conditions		Unit		
Symbol		Conditions	Min.	Тур.	Max.	Unit
_	Program/erase endurance (2)		1,000 ⁽³⁾	—	—	times
_	Byte program time		—	80	500	μS
—	Block erase time		—	0.3	—	S
td(SR-SUS)	Time delay from suspend request until suspend		—	—	5 + CPU clock × 3 cycles	ms
_	Interval from erase start/restart until following suspend request		0	—	—	μS
—	Time from suspend until erase restart		—	—	30 + CPU clock × 1 cycle	μS
td(CMDRST -READY)	Time from when command is forcibly terminated until reading is enabled		—	—	30 + CPU clock × 1 cycle	μS
_	Program, erase voltage		2.7		5.5	V
—	Read voltage		1.8	—	5.5	V
—	Program, erase temperature		0	—	60	°C
—	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	—	—	year

#### Table 27.4 Flash Memory (Program ROM) Electrical Characteristics

Notes:

1. Vcc = 2.7 V to 5.5 V at Topr =  $0^{\circ}$ C to  $60^{\circ}$ C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

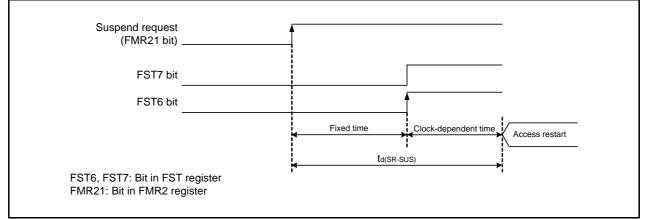
7. The data hold time includes time that the power supply is off or the clock is not supplied.

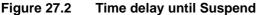


Symbol	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
—	Program/erase endurance (2)		10,000 (3)	_	—	times
—	Byte program time (program/erase endurance ≤ 1,000 times)		—	160	1,500	μS
—	Byte program time (program/erase endurance > 1,000 times)		—	300	1,500	μS
—	Block erase time (program/erase endurance ≤ 1,000 times)		—	0.2	1	S
-	Block erase time (program/erase endurance > 1,000 times)		_	0.3	1	S
td(SR-SUS)	Time delay from suspend request until suspend		—	_	5 + CPU clock × 3 cycles	ms
—	Interval from erase start/restart until following suspend request		0	_	—	μS
—	Time from suspend until erase restart		—	_	30 + CPU clock × 1 cycle	μS
td(CMDRST -READY)	Time from when command is forcibly terminated until reading is enabled		—	_	30 + CPU clock × 1 cycle	μS
—	Program, erase voltage		2.7		5.5	V
—	Read voltage		1.8	_	5.5	V
—	Program, erase temperature		-20	_	85	°C
	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	_		year

#### Table 27.5 Flash Memory (Data flash Block A to Block D) Electrical Characteristics

Notes:


1. Vcc = 2.7 V to 5.5 V at Topr =  $-20^{\circ}$ C to 85°C (N version), unless otherwise specified.


- 2. Definition of programming/erasure endurance
- The programming and erasure endurance is defined on a per-block basis.
- If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.







Sympol	Parameter	Condition		Unit		
Symbol	Faranieter	Condition	Min.	Тур.	Max.	Unit
Vdet0	Voltage detection level Vdet0_0 ⁽²⁾		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 ⁽²⁾		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
_	Voltage detection 0 circuit response time ⁽⁴⁾	At the falling of Vcc from 5 V to $(Vdet0_0 - 0.1)$ V	—	6	150	μS
—	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	—	1.5	—	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		—	—	100	μS

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr =  $-20^\circ C$  to 85°C (N version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Table 27.7	Voltage Detection 1 Circuit Electrical Characteristics
------------	--------------------------------------------------------

Symbol	Parameter	Condition		Unit		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 ⁽²⁾	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 ⁽²⁾	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 ⁽²⁾	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 (2)	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 ⁽²⁾	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 ⁽²⁾	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 ⁽²⁾	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A (2)	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C (2)	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E (2)	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
_	Hysteresis width at the rising of Vcc in voltage	Vdet1_0 to Vdet1_5 selected	—	0.07		V
	detection 1 circuit	Vdet1_6 to Vdet1_F selected	—	0.10		V
_	Voltage detection 1 circuit response time ⁽³⁾	At the falling of Vcc from 5 V to $(Vdet1_0 - 0.1) V$	—	60	150	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	—	1.7		μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		—	_	100	μS

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr =  $-20^{\circ}$ C to  $85^{\circ}$ C (N version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

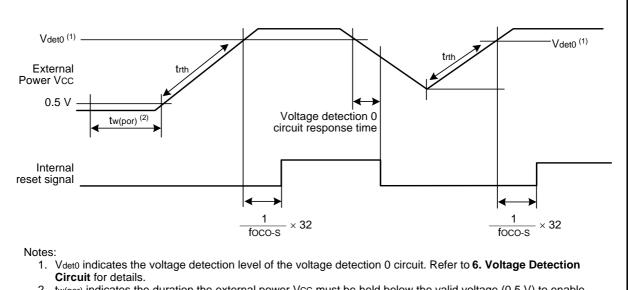
4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Symbol	Parameter	Condition		Unit		
Symbol	Faranielei	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level Vdet2_0	At the falling of Vcc	3.70	4.00	4.30	V
_	Hysteresis width at the rising of Vcc in voltage detection 2 circuit			0.10	—	V
—	Voltage detection 2 circuit response time ⁽²⁾	At the falling of Vcc from 5 V to $(Vdet2_0 - 0.1)$ V		20	150	μS
_	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	_	1.7		μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾			_	100	μS

#### Table 27.8 Voltage Detection 2 Circuit Electrical Characteristics

Notes:

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr =  $-20^{\circ}$ C to 85°C (N version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.


Table 27.9 Power-on Reset Circuit ⁽²⁾

Symbol	Parameter	Condition		Standard			
		Condition	Min.	Тур.	Max.	Unit	
trth	External power Vcc rise gradient	(Note 1)	0	—	50000	mV/msec	

Notes:

1. The measurement condition is Topr = -20°C to 85°C (N version), unless otherwise specified.

2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.



 tw(por) indicates the duration the external power Vcc must be held below the valid voltage (0.5 V) to enable a power-on reset. When turning on the power after it falls with voltage monitor 0 reset disabled, maintain tw(por) for 1 ms or more.

Figure 27.3 Power-on Reset Circuit Electrical Characteristics



Symbol	Parameter	Condition	Standard			Unit
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Offic
-	High-speed on-chip oscillator frequency after reset	Vcc = 1.8 V to 5.5 V −20°C ≤ Topr ≤ 85°C	37.8	40 42.6		MHz
	High-speed on-chip oscillator frequency when the FRA4 register correction value is written into the FRA1 register and the FRA5 register correction value into the FRA3 register ⁽²⁾	$\label{eq:Vcc} \begin{array}{l} Vcc = 1.8 \ V \ to \ 5.5 \ V \\ -20^{\circ}C \leq Topr \leq 85^{\circ}C \end{array}$	34.836	36.864	39.261	MHz
	High-speed on-chip oscillator frequency when the FRA6 register correction value is written into the FRA1 register and the FRA7 register correction value into the FRA3 register	Vcc = 1.8 V to 5.5 V −20°C ≤ Topr ≤ 85°C	30.24	32	34.08	MHz
—	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	—	0.5	3	ms
—	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	_	400	_	μΑ

Table 27.10	High-speed On-Chip Oscillator Circuit Electrical Characteristics
-------------	------------------------------------------------------------------

Notes:

1. Vcc = 1.8 V to 5.5 V, Topr =  $-20^{\circ}$ C to  $85^{\circ}$ C (N version), unless otherwise specified.

2. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

#### Table 27.11 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	d Max. 250 100 —	Unit
fOCO-S	Low-speed on-chip oscillator frequency		60	125	250	kHz
—	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	_	30	100	μS
—	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C		2		μA
L		•				·

Note:

1. Vcc = 1.8 V to 5.5 V, Topr =  $-20^{\circ}$ C to 85°C (N version), unless otherwise specified.

#### Table 27.12 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾			—	2000	μs

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr =  $25^{\circ}$ C.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.



Symbol	Parameter		Condition		Si	andard		Unit	
Symbol		Falametei	Condition –		Min.	Тур.	Max.		
Vон	Output "H"	Other than XOUT	Drive capacity High Vcc = 5 V IOH = $-20 \text{ mA}$ V		Vcc - 2.0	_	Vcc	V	
	voltage		Drive capacity Low Vcc = 5 V	Iон = -5 mA	Vcc - 2.0	_	Vcc	V	
		XOUT	Vcc = 5 V	Іон = -200 μА	1.0	_	Vcc	V	
Vol	Output "L"	Other than XOUT	Drive capacity High Vcc = $5 V$	IoL = 20 mA	—	_	2.0	V	
	voltage		Drive capacity Low Vcc = 5 V	IoL = 5 mA	_		2.0	V	
		XOUT	Vcc = 5 V	IoL = 200 μA	—		0.5	V	
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SCL2, SDA2			0.1	1.2		V	
		RESET			0.1	1.2	-	V	
Ін	Input "H" cu	rrent	VI = 5 V, Vcc = 5.0 V		_		5.0	μA	
lı∟	Input "L" cu	rrent	VI = 0 V, Vcc = 5.0 V		—	_	-5.0	μA	
RPULLUP	Pull-up resis	stance	VI = 0 V, Vcc = 5.0 V			50	100	kΩ	
Rfxin	Feedback resistance	XIN			—	0.3	_	MΩ	
Vram	RAM hold v	oltage	During stop mode		1.8	_	—	V	

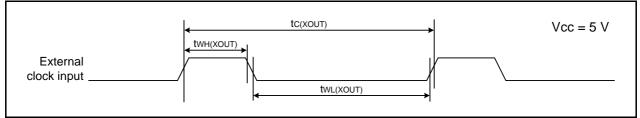
# Table 27.13 Electrical Characteristics (1) [4.2 V $\leq$ Vcc $\leq$ 5.5 V]

Note:

1. 4.2 V  $\leq$  Vcc  $\leq$  5.5 V at Topr = -20°C to 85°C (N version), f(XIN) = 20 MHz, unless otherwise specified.



Table 27.14	Electrical Characteristics (2) [3.3 V $\leq$ Vcc $\leq$ 5.5 V]
	(Topr = $-20^{\circ}$ C to $85^{\circ}$ C (N version), unless otherwise specified.)


Symbol	Parameter		Condition		Standar	d	Unit
Symbol	Faiaillelei			Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 V to 5.5 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6.5	15	mA
	other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	5.3	12.5	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	3.6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	3	—	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.2	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRD = MSTTRC = 1	-	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	400	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	15	100	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	4	90	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μA
		Stop mode	XIN clock off, Topr = $25^{\circ}$ C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off	_	2	5.0	μA
			VCA27 = VCA26 = VCA25 = 0 XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off	-	5		μΑ



#### Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C)

### Table 27.15 External Clock Input (XOUT)

Symbol	Parameter		Standard		
Symbol	Falameter	Min.	Max.	Unit	
tc(XOUT)	XOUT input cycle time	50	—	ns	
twh(xout)	XOUT input "H" width	24	—	ns	
twl(xout)	XOUT input "L" width	24	—	ns	



# Figure 27.4 External Clock Input Timing Diagram when Vcc = 5 V

#### Table 27.16 TRAIO Input

Symbol	Parameter		Standard		
Symbol	Symbol	Min.	Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	100	_	ns	
twh(traio)	TRAIO input "H" width	40	_	ns	
twl(traio)	TRAIO input "L" width	40	_	ns	

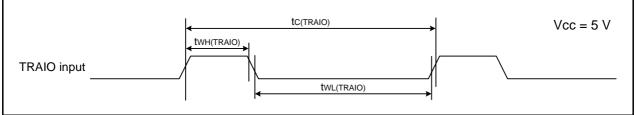



Figure 27.5 TRAIO Input Timing Diagram when Vcc = 5 V



#### Table 27.17Serial Interface

Symbol	Parameter		Standard		
Symbol	Falanelei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	200	—	ns	
tw(CKH)	CLKi input "H" width	100	—	ns	
tW(CKL)	CLKi input "L" width	100	—	ns	
td(C-Q)	TXDi output delay time	—	50	ns	
th(C-Q)	TXDi hold time	0	_	ns	
tsu(D-C)	RXDi input setup time	50	—	ns	
th(C-D)	RXDi input hold time	90	—	ns	

i = 0, 2

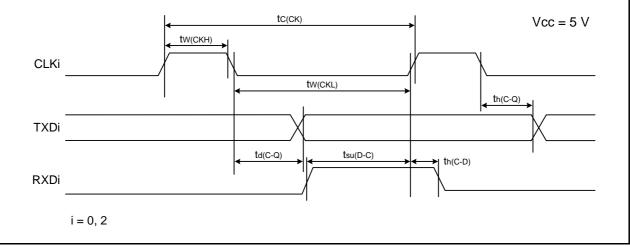



Figure 27.6 Serial Interface Timing Diagram when Vcc = 5 V

# Table 27.18 External Interrupt INTi (i = 0 to 3) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard		
	Falameter	Min.	Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	250 ⁽¹⁾	_	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	250 ⁽²⁾		ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

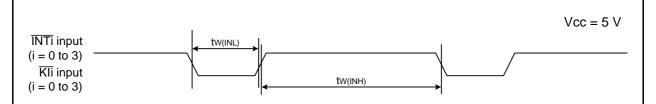



Figure 27.7 Input Timing for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 5 V

Symbol		Parameter	Conditio	Condition		Standard		Unit
Symbol		Falameter	Condition		Min.	Тур.	Max.	Onit
Vон	Output "H"	Other than XOUT	Drive capacity High	Iон = -5 mA	Vcc - 0.5	_	Vcc	V
	voltage		Drive capacity Low	Iон = -1 mA	Vcc - 0.5	_	Vcc	V
		XOUT		Іон = –200 μА	1.0	_	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High	IoL = 5 mA	—	_	0.5	V
	voltage		Drive capacity Low	IoL = 1 mA	—	_	0.5	V
		XOUT		IoL = 200 μA	—	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SCL2, SDA2	Vcc = 3.0 V		0.1	0.4	_	V
		RESET	Vcc = 3.0 V		0.1	0.5	—	V
Ін	Input "H" cu	rrent	VI = 3 V, Vcc = 3.0 V		—	_	4.0	μA
lı∟	Input "L" cu	rrent	VI = 0 V, Vcc = 3.0 V		—	_	-4.0	μA
Rpullup	Pull-up resis	stance	VI = 0 V, Vcc = 3.0 V		42	84	168	kΩ
Rfxin	Feedback resistance	XIN			—	0.3	—	MΩ
Vram	RAM hold v	oltage	During stop mode		1.8			V

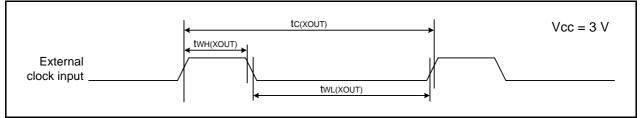
Table 27.19	Electrical Characteristics (3) [2.7 V $\leq$ Vcc $<$ 4.2 V]
-------------	-------------------------------------------------------------

Note:

1. 2.7 V  $\leq$  Vcc < 4.2 V at Topr = -20°C to 85°C (N version), f(XIN) = 10 MHz, unless otherwise specified.



Table 2	7.20	Characteristics (4) [2.7 V $\leq$ Vcc $<$ 3.3 V] $^{\circ}$ C to 85 $^{\circ}$ C (N version), unless otherwise specified.)


<u> </u>	-	Deveration		:	Standar	b	
Symbol	Parameter		Condition	Min.	Тур.	Max.	Uni
CC	Power supply current (Vcc = 2.7 V to 3.3 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	—	3.5	10	mA
	other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	1.5	7.5	m/
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	7	15	m/
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3		mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	—	4	—	m/
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	1.5		mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRD = MSTTRC = 1	_	1		m/
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	390	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	3.5	_	μΑ
		Stop mode	XIN clock off, Topr = $25^{\circ}$ C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0		2	5.0	μA
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	5	_	μA



#### Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C)

#### Table 27.21 External Clock Input (XOUT)

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(XOUT)	XOUT input cycle time	50	—	ns	
twh(xout)	XOUT input "H" width	24	—	ns	
twl(xout)	XOUT input "L" width	24	—	ns	



# Figure 27.8 External Clock Input Timing Diagram when Vcc = 3 V

#### Table 27.22 TRAIO Input

Symbol	Parameter		Standard		
	Faidilielei	Min.	Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	300	_	ns	
twh(traio)	TRAIO input "H" width	120	_	ns	
twl(traio)	TRAIO input "L" width	120	_	ns	

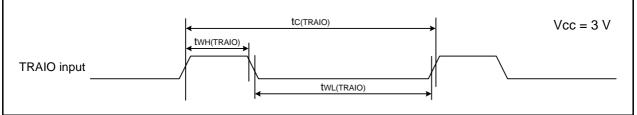



Figure 27.9 TRAIO Input Timing Diagram when Vcc = 3 V



#### Table 27.23Serial Interface

Symbol	Parameter	Sta	Standard		
	Falanelei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	300	—	ns	
tw(CKH)	CLKi input "H" width	150	—	ns	
tW(CKL)	CLKi Input "L" width	150	—	ns	
td(C-Q)	TXDi output delay time	—	80	ns	
th(C-Q)	TXDi hold time	0	—	ns	
tsu(D-C)	RXDi input setup time	70	—	ns	
th(C-D)	RXDi input hold time	90	_	ns	

i = 0, 2

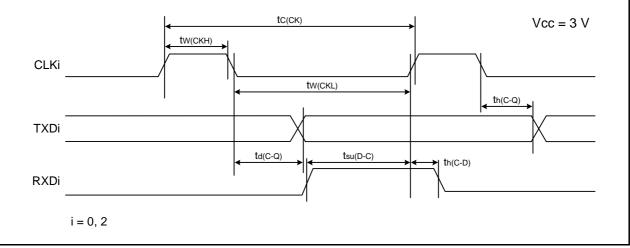



Figure 27.10 Serial Interface Timing Diagram when Vcc = 3 V

# Table 27.24 External Interrupt INTi (i = 0 to 3) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard		
			Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	380 (1)	_	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	380 (2)	1	ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

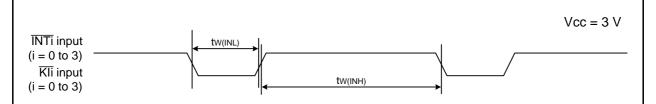



Figure 27.11 Input Timing for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 3 V



Symbol	Parameter		Condition		Standard			Unit
Symbol		Falameter			Min.	Тур.	Max.	Onit
Vон	Output "H"	Other than XOUT	Drive capacity High	Іон = –2 mA	Vcc - 0.5	_	Vcc	V
	voltage		Drive capacity Low	Iон = -1 mA	Vcc - 0.5	_	Vcc	V
		XOUT		Іон = -200 μА	1.0	_	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High	IOL = 2 mA	—	_	0.5	V
	voltage		Drive capacity Low	IoL = 1 mA	—	_	0.5	V
		XOUT		IoL = 200 μA	—	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SCL2, SDA2			0.05	0.20		V
		RESET			0.05	0.20	—	V
Ін	Input "H" cu	rrent	VI = 2.2 V, Vcc = 2.2 V		—		4.0	μA
l∟	Input "L" current		VI = 0 V, Vcc = 2.2 V		_	_	-4.0	μA
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 2.2 V		70	140	300	kΩ
Rfxin	Feedback resistance	XIN			—	0.3	_	MΩ
VRAM	RAM hold v	oltage	During stop mode		1.8	_	—	V

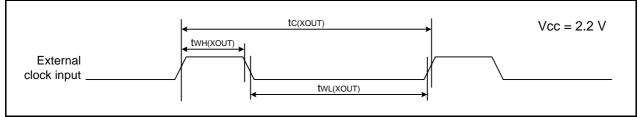
Table 27.25	Electrical Characteristics (5) [1.8 V $\leq$ Vcc $<$ 2.7 V]
-------------	-------------------------------------------------------------

Note:

1. 1.8 V  $\leq$  Vcc < 2.7 V at Topr = -20°C to 85°C (N version), f(XIN) = 5 MHz, unless otherwise specified.



Symbol	Parameter	Parameter Condition		b	Unit		
Cymbol	T diamotor		Condition	Min.	Тур.	Max.	0111
сс	Power supply current (Vcc = 1.8 V to 2.7 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	2.2	_	mA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	0.8	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	2.5	10	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8		1.7	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRD = MSTTRC = 1	_	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	300	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μA
		Stop mode	XIN clock off, Topr = $25^{\circ}$ C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2	5	μA
			XIN clock off, Topr = $85^{\circ}$ C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0		5		μΑ


# Table 27.26 Electrical Characteristics (6) [1.8 V $\leq$ Vcc < 2.7 V] (Topr = -20°C to 85°C (N version), unless otherwise specified.)



#### Timing requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C)

#### Table 27.27 External Clock Input (XOUT)

Symbol	Parameter		Standard		
Symbol		Min.	Max.	Unit	
tc(XOUT)	XOUT input cycle time	200	—	ns	
twh(xout)	XOUT input "H" width	90	—	ns	
twl(xout)	XOUT input "L" width	90	—	ns	



# Figure 27.12 External Clock Input Timing Diagram when Vcc = 2.2 V

#### Table 27.28 TRAIO Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	500	_	ns	
twh(traio)	TRAIO input "H" width	200	_	ns	
twl(traio)	TRAIO input "L" width	200	_	ns	

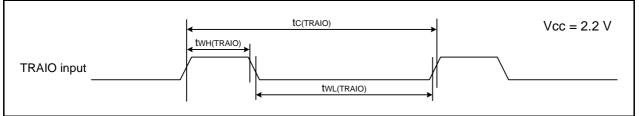



Figure 27.13 TRAIO Input Timing Diagram when Vcc = 2.2 V



#### Table 27.29Serial Interface

Symbol	Deremeter	Standard		Unit
	Parameter		Max.	
tc(CK)	CLKi input cycle time	800	—	ns
tW(CKH)	CLKi input "H" width	400	—	ns
tW(CKL)	CLKi input "L" width	400	—	ns
td(C-Q)	TXDi output delay time		200	ns
th(C-Q)	TXDi hold time		—	ns
tsu(D-C)	RXDi input setup time	150	—	ns
th(C-D)	RXDi input hold time	90	_	ns

i = 0, 2

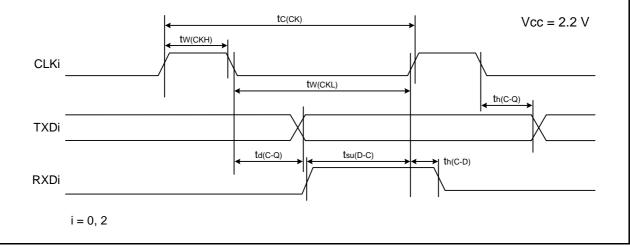



Figure 27.14 Serial Interface Timing Diagram when Vcc = 2.2 V

# Table 27.30 External Interrupt INTi (i = 0 to 3) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard	
			Max.	Unit
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	_	ns
tw(INL)	INTi input "L" width, Kli input "L" width	1000 (2)	1	ns

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.




Figure 27.15 Input Timing for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

# 28. Usage Notes

# 28.1 Notes on Clock Generation Circuit

### 28.1.1 Stop Mode

To enter stop mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and then the CM10 bit in the CM1 register to 1 (stop mode). An instruction queue pre-reads 4 bytes from the instruction which sets the CM10 bit to 1 (stop mode) and the program stops.

Insert at least four NOP instructions following the JMP.B instruction after the instruction which sets the CM10 bit to 1.

• Program example to enter stop mode

BCLR	1, FMR0	; CPU rewrite mode disabled
BCLR	7, FMR2	; Low-current-consumption read mode disabled
BSET	0, PRCR	; Writing to CM1 register enabled
FSET	Ι	; Enable interrupt
BSET	0, CM1	; Stop mode
JMP.B	LABEL_001	
LABEL_001:		
NOP		
NOP		
NOP		
NOP		

# 28.1.2 Wait Mode

To enter wait mode by setting the CM30 bit to 1, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) before setting the CM30 bit to 1.

To enter wait mode with the WAIT instruction, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and then execute the WAIT instruction. An instruction queue pre-reads 4 bytes from the instruction to set the CM30 bit to 1 (MCU enters wait mode) or the WAIT instruction, and then the program stops. Insert at least four NOP instructions after the instruction to set the CM30 bit to 1 (MCU enters wait mode) or the WAIT instruction.

• Program example to execute the WAIT instruction

	istruction	
BCLR	1, FMR0	; CPU rewrite mode disabled
BCLR	7, FMR2	; Low-current-consumption read mode disabled
FSET	Ι	; Enable interrupt
WAIT		; Wait mode
NOP		

• Program example to execute the instruction to set the CM30 bit to 1

o enteente		to bet the child's	
	BCLR	1, FMR0	; CPU rewrite mode disabled
	BCLR	7, FMR2	; Low-current-consumption read mode disabled
	BSET	0, PRCR	; Writing to CM3 register enabled
	FCLR	Ι	; Interrupt disabled
	BSET	0, CM3	; Wait mode
	NOP		
	BCLR	0, PRCR	; Writing to CM3 register disabled
	FSET	Ι	; Interrupt enabled



# 28.1.3 Oscillation Stop Detection Function

Since the oscillation stop detection function cannot be used if the XIN clock frequency is below 2 MHz, set bits OCD1 to OCD0 to 00b.

# 28.1.4 Oscillation Circuit Constants

Consult the oscillator manufacturer to determine the optimal oscillation circuit constants for the user system.



# 28.2 Notes on Interrupts

# 28.2.1 Reading Address 00000h

Do not read address 00000h by a program. When a maskable interrupt request is acknowledged, the CPU reads interrupt information (interrupt number and interrupt request level) from 00000h in the interrupt sequence. At this time, the IR bit for the acknowledged interrupt is set to 0.

If address 00000h is read by a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to 0. This may cause the interrupt to be canceled, or an unexpected interrupt to be generated.

# 28.2.2 SP Setting

Set a value in the SP before an interrupt is acknowledged. The SP is set to 0000h after a reset. If an interrupt is acknowledged before setting a value in the SP, the program may run out of control.

# 28.2.3 External Interrupt and Key Input Interrupt

Either the "L" level width or "H" level width shown in the Electrical Characteristics is required for the signal input to pins  $\overline{INT0}$  to  $\overline{INT3}$  and pins  $\overline{K10}$  to  $\overline{K13}$ , regardless of the CPU clock.

For details, refer to Table 27.18 (VCC = 5 V), Table 27.24 (VCC = 3 V), Table 27.30 (VCC = 2.2 V) External Interrupt INTi (i = 0 to 3) Input, Key Input Interrupt KIi (i = 0 to 3).



# 28.2.4 Changing Interrupt Sources

The IR bit in the interrupt control register may be set to 1 (interrupt requested) when the interrupt source changes. To use an interrupt, set the IR bit to 0 (no interrupt requested) after changing interrupt sources. Changing interrupt sources as referred to here includes all factors that change the source, polarity, or timing of the interrupt assigned to a software interrupt number. Therefore, if a mode change of a peripheral function involves the source, polarity, or timing of an interrupt, set the IR bit to 0 (no interrupt requested) after making these changes. Refer to the descriptions of the individual peripheral functions for related interrupts. Figure 28.1 shows a Procedure Example for Changing Interrupt Sources.

Interrupt source change Disable interrupts (2, 3) Change interrupt sources (including mode of peripheral function) Set the IR bit to 0 (no interrupt request) using the MOV instruction (3) Enable interrupts (2, 3) Change completed IR bit: The interrupt control register bit for the interrupt whose source is to be changed Notes: 1. The above settings must be executed individually. Do not execute two or more settings simultaneously (using one instruction). 2. To prevent interrupt requests from being generated disable the peripheral function before changing the interrupt source. In this case, use the I flag if all maskable interrupts can be disabled. If all maskable interrupts cannot be disabled, use bits ILVL0 to ILVL2 for the interrupt whose source is to be changed. 3. To change the interrupt source to the input with the digital filter used, wait for three or more cycles of the sampling clock of the digital filter before setting the IR bit to 0 (no interrupt request). Refer to 11.9.5 Rewriting Interrupt Control Register for the instructions to use and related notes.

Figure 28.1 Procedure Example for Changing Interrupt Sources



# 28.2.5 Rewriting Interrupt Control Register

- (a) The contents of the interrupt control register can be rewritten only while no interrupt requests corresponding to that register are generated. If an interrupt request may be generated, disable the interrupt before rewriting the contents of the interrupt control register.
- (b) When rewriting the contents of the interrupt control register after disabling the interrupt, be careful to choose appropriate instructions.

#### Changing any bit other than the IR bit

If an interrupt request corresponding to the register is generated while executing the instruction, the IR bit may not be set to 1 (interrupt requested), and the interrupt may be ignored. If this causes a problem, use one of the following instructions to rewrite the contents of the register: AND, OR, BCLR, and BSET.

#### Changing the IR bit

Depending on the instruction used, the IR bit may not be set to 0 (no interrupt requested). Use the MOV instruction to set the IR bit to 0.

(c) When using the I flag to disable an interrupt, set the I flag as shown in the sample programs below. Refer to(b) regarding rewriting the contents of interrupt control registers using the sample programs.

Examples 1 to 3 shows how to prevent the I flag from being set to 1 (interrupts enabled) before the contents of the interrupt control register are rewritten for the effects of the internal bus and the instruction queue buffer.

# **Example 1:** Use the NOP instructions to pause program until the interrupt control register is rewritten INT_SWITCH1:

FCLR	Ι	; Disable interrupts
AND.B	#00H, 0056H	; Set the TRAIC register to 00h
NOP		
NOP		
FSET	Ι	; Enable interrupts

# Example 2: Use a dummy read to delay the FSET instruction

INT_SWITCH2:

FCLR	Ι	; Disable interrupts
AND.B	#00H, 0056H	; Set the TRAIC register to 00h
MOV.W	MEM,R0	; <u>Dummy read</u>
FSET	Ι	; Enable interrupts

#### **Example 3:** Use the POPC instruction to change the I flag

INT_SWITCH3:				
PUSHC	FLG			
FCLR	Ι	; Disable interrupts		
AND.B	#00H, 0056H	; Set the TRAIC register to 00h		
POPC	FLG	; Enable interrupts		



# 28.3 Notes on ID Code Areas

# 28.3.1 Setting Example of ID Code Areas

The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. The following shows a setting example.

```
To set 55h in all of the ID code areas
.org 00FFDCH
.lword dummy | (5500000h) ; UND
.lword dummy | (5500000h) ; INTO
.lword dummy | (5500000h) ; ADDRESS MATCH
.lword dummy | (5500000h) ; SET SINGLE STEP
.lword dummy | (5500000h) ; WDT
.lword dummy | (5500000h) ; ADDRESS BREAK
.lword dummy | (5500000h) ; RESERVE
(Programming formats vary depending on the compiler. Check the compiler manual.)
```

# 28.4 Notes on Option Function Select Area

# 28.4.1 Setting Example of Option Function Select Area

The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. The following shows a setting example.

- To set FFh in the OFS register .org 00FFFCH .lword reset | (0FF000000h) ; RESET (Programming formats vary depending on the compiler. Check the compiler manual.)
- To set FFh in the OFS2 register .org 00FFDBH .byte 0FFh
  (Programming formats vary depending on the compiler. Check the compiler manual.)



# 28.5 Notes on DTC

# 28.5.1 DTC activation source

- Do not generate any DTC activation sources before entering wait mode or during wait mode.
- Do not generate any DTC activation sources before entering stop mode or during stop mode.

# 28.5.2 DTCENi (i = 0 to 3, 5, 6) Registers

- Modify bits DTCENi0 to DTCENi7 only while an interrupt request corresponding to the bit is not generated.
- When the interrupt source flag in the status register for the peripheral function is 1, do not modify the
- corresponding activation source bit among bits DTCENi0 to DTCENi7.Do not access the DTCENi registers using DTC transfers.

# 28.5.3 Peripheral Modules

Do not set the status register bit for the peripheral function to 0 using a DTC transfer.

# 28.5.4 Interrupt Request

No interrupt is generated for the CPU during DTC operation in any of the following cases:

- When the DTC activation source is flash ready status
- When performing the data transfer causing the DTCCTj (j = 0 to 23) register value to change to 0 in normal mode
- When performing the data transfer causing the DTCCRj register value to change to 0 while the RPTINT bit in the DTCCRj register is 1 (interrupt generation enabled) in repeat mode



# 28.6 Notes on Timer RA

- Timer RA stops counting after a reset. Set the values in the timer RA and timer RA prescalers before the count starts.
- Even if the prescaler and timer RA are read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In pulse width measurement mode and pulse period measurement mode, bits TEDGF and TUNDF in the TRACR register can be set to 0 by writing 0 to these bits by a program. However, these bits remain unchanged if 1 is written. When using the READ-MODIFY-WRITE instruction for the TRACR register, the TEDGF or TUNDF bit may be set to 0 although these bits are set to 1 while the instruction is being executed. In this case, write 1 to the TEDGF or TUNDF bit which is not supposed to be set to 0 with the MOV instruction.
- When changing to pulse period measurement mode from another mode, the contents of bits TEDGF and TUNDF are undefined. Write 0 to bits TEDGF and TUNDF before the count starts.
- The TEDGF bit may be set to 1 by the first timer RA prescaler underflow generated after the count starts.
- When using the pulse period measurement mode, leave two or more periods of the timer RA prescaler immediately after the count starts, then set the TEDGF bit to 0.
- The TCSTF bit retains 0 (count stops) for 0 to 1 cycle of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped.

During this time, do not access registers associated with timer RA ⁽¹⁾ other than the TCSTF bit. Timer RA starts counting at the first valid edge of the count source after the TCSTF bit is set to 1 (during count).

The TCSTF bit remains 1 for 0 to 1 cycle of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. Timer RA counting is stopped when the TCSTF bit is set to 0.

During this time, do not access registers associated with timer RA⁽¹⁾ other than the TCSTF bit.

Note:

1. Registers associated with timer RA: TRACR, TRAIOC, TRAMR, TRAPRE, and TRA.

- When the TRAPRE register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the count source clock for each write interval.
- When the TRA register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the prescaler underflow for each write interval.
- Do not set 00h to the TRA register in pulse width measurement mode and pulse period measurement mode.



# 28.7 Notes on Timer RB

- Timer RB stops counting after a reset. Set the values in the timer RB and timer RB prescalers before the count starts.
- Even if the prescaler and timer RB is read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In programmable one-shot generation mode and programmable wait one-shot generation mode, when setting the TSTART bit in the TRBCR register to 0 (stops counting) or setting the TOSSP bit in the TRBOCR register to 1 (stops one-shot), the timer reloads the value of reload register and stops. Therefore, in programmable one-shot generation mode and programmable wait one-shot generation mode, read the timer count value before the timer stops.
- The TCSTF bit remains 0 (count stops) for 1 to 2 cycles of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped.

During this time, do not access registers associated with timer RB ⁽¹⁾ other than the TCSTF bit. Timer RB starts counting at the first valid edge of the count source after the TCSTF bit is set to 1 (during count).

The TCSTF bit remains 1 for 1 to 2 cycles of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. Timer RB counting is stopped when the TCSTF bit is set to 0.

During this time, do not access registers associated with timer RB ⁽¹⁾ other than the TCSTF bit.

Note:

1. Registers associated with timer RB: TRBCR, TRBOCR, TRBIOC, TRBMR, TRBPRE, TRBSC, and TRBPR.

- If the TSTOP bit in the TRBCR register is set to 1 during timer operation, timer RB stops immediately.
- If 1 is written to the TOSST or TOSSP bit in the TRBOCR register, the value of the TOSSTF bit changes after one or two cycles of the count source have elapsed. If the TOSSP bit is written to 1 during the period between when the TOSST bit is written to 1 and when the TOSSTF bit is set to 1, the TOSSTF bit may be set to either 0 or 1 depending on the content state. Likewise, if the TOSST bit is written to 1 during the period between when the TOSSP bit is written to 1 and when the TOSSTF bit is set to 0, the TOSSTF bit may be set to either 0 or 1.
- To use the underflow signal of timer RA as the count source for timer RB, set timer RA in timer mode, pulse output mode, or event count mode.

# 28.7.1 Timer Mode

To write to registers TRBPRE and TRBPR during count operation (TCSTF bit in the TRBCR register is set to 1), note the following points:

- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.

# 28.7.2 Programmable Waveform Generation Mode

To write to registers TRBPRE and TRBPR during count operation (TCSTF bit in the TRBCR register is set to 1), note the following points:

- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.



# 28.7.3 Programmable One-shot Generation Mode

To write to registers TRBPRE and TRBPR during count operation (TCSTF bit in the TRBCR register is set to 1), note the following points:

- When the TRBPRE register is written continuously during count operation (TCSTF bit is set to 1), allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously during count operation (TCSTF bit is set to 1), allow three or more cycles of the prescaler underflow for each write interval.

# 28.7.4 Programmable Wait One-shot Generation Mode

To write to registers TRBPRE and TRBPR during count operation (TCSTF bit in the TRBCR register is set to 1), note the following points:

- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.



# 28.8 Notes on Timer RC

### 28.8.1 TRC Register

• The following note applies when the CCLR bit in the TRCCR1 register is set to 1 (clear TRC register at compare match with TRCGRA register).

When using a program to write a value to the TRC register while the TSTART bit in the TRCMR register is set to 1 (count starts), ensure that the write does not overlap with the timing with which the TRC register is set to 0000h.

If the timing of the write to the TRC register and the setting of the TRC register to 0000h coincide, the write value will not be written to the TRC register and the TRC register will be set to 0000h.

 Reading from the TRC register immediately after writing to it can result in the value previous to the write being read out. To prevent this, execute the JMP.B instruction between the read and the write instructions. Program Example
 MOV.W #XXXXh, TRC ; Write

xample	MOV.W	#XXXXh, TRC	; Write
	JMP.B	L1	; JMP.B instruction
L1:	MOV.W	TRC, DATA	; Read

# 28.8.2 TRCSR Register

Program

Reading from the TRCSR register immediately after writing to it can result in the value previous to the write being read out. To prevent this, execute the JMP.B instruction between the read and the write instructions.

Example	MOV.B	#XXh, TRCSR	; Write
	JMP.B	L1	; JMP.B instruction
L1:	MOV.B	TRCSR, DATA	; Read

# 28.8.3 TRCCR1 Register

To set bits TCK2 to TCK0 in the TRCCR1 register to 111b (fOCO-F), set fOCO-F to the clock frequency higher than the CPU clock frequency.

# 28.8.4 Count Source Switching

• Stop the count before switching the count source.

Switching procedure

- (1) Set the TSTART bit in the TRCMR register to 0 (count stops).
- (2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
- After switching the count source from fOCO40M to another clock, allow a minimum of two cycles of f1 to elapse after changing the clock setting before stopping fOCO40M.
- Switching procedure
- (1) Set the TSTART bit in the TRCMR register to 0 (count stops).
- (2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
- (3) Wait for a minimum of two cycles of f1.
- (4) Set the FRA00 bit in the FRA0 register to 0 (high-speed on-chip oscillator off).



• After switching the count source from fOCO-F to fOCO40M, allow a minimum of two cycles of fOCO-F to elapse after changing the clock setting before stopping fOCO-F.

Switching procedure

- (1) Set the TSTART bit in the TRCMR register to 0 (count stops).
- (2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
- (3) Wait for a minimum of two cycles of fOCO-F.
- (4) Set the FRA00 bit in the FRA0 register to 0 (high-speed on-chip oscillator off).
- After switching the count source from fOCO-F to a clock other than fOCO40M, allow a minimum of one cycle of fOCO-F + fOCO40M to elapse after changing the clock setting before stopping fOCO-F. Switching procedure
- (1) Set the TSTART bit in the TRCMR register to 0 (count stops).
- (2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
- (3) Wait for a minimum of one cycle of fOCO-F + fOCO40M.
- (4) Set the FRA00 bit in the FRA0 register to 0 (high-speed on-chip oscillator off).

### 28.8.5 Input Capture Function

 Set the pulse width of the input capture signal as follows: [When the digital filter is not used] Three or more cycles of the timer RC operation clock (refer to Table 19.1 Timer RC Operation Clock) [When the digital filter is used]

Five cycles of the digital filter sampling clock + three cycles of the timer RC operating clock, minimum (refer to **Figure 19.5 Digital Filter Block Diagram**)

• The value of the TRC register is transferred to the TRCGRj register one or two cycles of the timer RC operation clock after the input capture signal is input to the TRCIOj (j = A, B, C, or D) pin (when the digital filter function is not used).

# 28.8.6 TRCMR Register in PWM2 Mode

When the CSEL bit in the TRCCR2 register is set to 1 (count stops at compare match with the TRCGRA register), do not set the TRCMR register at compare match timing of registers TRC and TRCGRA.

# 28.8.7 Count Source fOCO40M

The count source fOCO40M can be used with supply voltage VCC = 2.7 V to 5.5 V. For supply voltage other than that, do not set bits TCK2 to TCK0 in the TRCCR1 register to 110b (select fOCO40M as the count source).



# 28.9 Notes on Serial Interface (UART0)

• When reading data from the UORB register either in clock synchronous serial I/O mode or in clock asynchronous serial I/O mode, always read data in 16-bit units.

When the high-order byte of the U0RB register is read, bits PER and FER in the U0RB register and the RI bit in the U0C1 register are set to 0.

To check receive errors, read the UORB register and then use the read data.

Program example to read the receive buffer register: MOV.W 00A6H, R0 ; Read the U0RB register

• When writing data to the U0TB register in clock asynchronous serial I/O mode with 9-bit transfer data length, write data to the high-order byte first and then the low-order byte, in 8-bit units.

Program example to write to the transmit buffer register:

MOV.B	#XXH, 00A3H	; Write to the high-order byte of the U0TB register
MOV.B	#XXH, 00A2H	; Write to the low-order byte of the U0TB register



# 28.10 Notes on Serial Interface (UART2)

# 28.10.1 Clock Synchronous Serial I/O Mode

# 28.10.1.1 Transmission/Reception

When the  $\overline{\text{RTS}}$  function is used with an external clock, the  $\overline{\text{RTS2}}$  pin outputs "L," which informs the transmitting side that the MCU is ready for a receive operation. The  $\overline{\text{RTS2}}$  pin outputs "H" when a receive operation starts. Therefore, the transmitting and receive timing can be synchronized by connecting the  $\overline{\text{RTS2}}$  pin to the  $\overline{\text{CTS2}}$  pin of the transmitting side. The  $\overline{\text{RTS}}$  function is disabled when an internal clock is selected.

# 28.10.1.2 Transmission

If an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit in the U2C0 register is set to 0 (transmit data output at the falling edge and receive data input at the rising edge of the transfer clock), or while the external clock is held low when the CKPOL bit is set to 1 (transmit data output at the rising edge and receive data input at the falling edge of the transfer clock).

- The TE bit in the U2C1 register = 1 (transmission enabled)
- The TI bit in the U2C1 register = 0 (data present in the U2TB register)
- If the  $\overline{\text{CTS}}$  function is selected, input on the  $\overline{\text{CTS2}}$  pin = "L"

# 28.10.1.3 Reception

In clock synchronous serial I/O mode, the shift clock is generated by activating the transmitter. Set the UART2associated registers for transmit operation even if the MCU is used for receive operation only. Dummy data is output from the TXD2 pin while receiving.

When an internal clock is selected, the shift clock is generated by setting the TE bit in the U2C1 register to 1 (transmission enabled) and placing dummy data in the U2TB register. When an external clock is selected, set the TE bit to 1 (transmission enabled), place dummy data in the U2TB register, and input an external clock to the CLK2 pin to generate the shift clock.

If data is received consecutively, an overrun error occurs when the RE bit in the U2C1 register is set to 1 (data present in the U2RB register) and the next receive data is received in the UART2 receive register. Then, the OER bit in the U2RB register is set to 1 (overrun error). At this time, the U2RB register value is undefined. If an overrun error occurs, the IR bit in the S2RIC register remains unchanged.

To receive data consecutively, set dummy data in the low-order byte in the U2TB register per each receive operation.

If an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit is set to 0, or while the external clock is held low when the CKPOL bit is set to 1.

- The RE bit in the U2C1 register = 1 (reception enabled)
- The TE bit in the U2C1 register = 1 (transmission enabled)
- The TI bit in the U2C1 register = 0 (data present in the U2TB register)

# 28.10.2 Special Mode 1 (I²C Mode)

When generating start, stop, and restart conditions, set the STSPSEL bit in the U2SMR4 register to 0 and wait for more than half cycle of the transfer clock before changing each condition generation bit (STAREQ, RSTAREQ, and STPREQ) from 0 to 1.



#### 28.11 Notes on Hardware LIN

For the time-out processing of the header and response fields, use another timer to measure the duration of time with a Synch Break detection interrupt as the starting point.

#### 28.12 Notes on A/D Converter

- Write to the ADMOD register, the ADINSEL register, the ADCON0 register (other than ADST bit), the ADCON1 register, the OCVREFCR register when A/D conversion is stopped (before a trigger occurs).
- To use the A/D converter in repeat mode 0, repeat mode 1, or repeat sweep mode, select the frequency of the A/D converter operating clock φAD or more for the CPU clock during A/D conversion.
   Do not select fOCO-F as φAD.
- Connect 0.1 µF capacitor between the VREF pin and AVSS pin.
- Do not enter stop mode during A/D conversion.
- Do not enter wait mode during A/D conversion regardless of the state of the CM02 bit in the CM0 register (1: Peripheral function clock stops in wait mode or 0: Peripheral function clock does not stop in wait mode).
- Do not set the FMSTP bit in the FMR0 register to 1 (flash memory stops) or the FMR27 bit to 1 (low-currentconsumption read mode enabled) during A/D conversion. Otherwise, the A/D conversion result will be undefined.
- Do not change the CKS2 bit in the ADMOD register while fOCO-F is stopped.
- During an A/D conversion operation, if the ADST bit in the ADCON0 register is set to 0 (A/D conversion stops) by a program to forcibly terminate A/D conversion, the conversion result of the A/D converter is undefined and no interrupt is generated. The value of the ADi register before A/D conversion may also be undefined. If the ADST bit is set to 0 by a program, do not use the value of all the ADi register.



#### 28.13 Notes on Sensor Control Unit

#### 28.13.1 A/D Converter

Do not use the A/D converter (or do not set the ADST bit in the ADCON0 register to 1) while the sensor control unit is operating.

#### 28.13.2 Address to Store Detection Data

Set the start address in the SCUDAR register. Also set the same start address in the DTDARj (j = 0 to 23) register of the DTC. For the DTC settings, refer to **15. DTC**.

#### 28.13.3 Wait Mode

• When the sensor control unit is used in wait mode, set wait mode immediately after setting the SCSTRT bit in the SCUCR0 register to 1 (measurement starts).

If the MCU exits wait mode during touch detection, the EWMER bit in the SCUFR register is set to 1. The detection data at that time is undefined.

- To enter wait mode while the sensor control unit is operating (the SCUE bit in the SCUCR0 register is set to 1), do not use the CM30 bit (wait control bit) in the CM3 register. Use the WAIT instruction.
- When the sensor control unit is used in wait mode, set the WTFMACT bit in the FMR1 register to 1 (flash memory operates in wait mode).

#### 28.13.4 Measurement Trigger

- If a measurement start trigger is generated during forced stop, all counter values change to 0.
- The measurement start trigger is recognized when bits SCCAP1 to SCCAP0 in the SCUMR register are set from 10b (measurement start trigger from timer RC) to 11b (external trigger (SCUTRG) while the SCUTRG pin is held "L" during measurement operation.

#### 28.13.5 Charging Time

To prevent measurement data from being overwritten to the next measurement data, the sensor control unit should be kept charged until DTC transfer or internal SDMA transfer is completed.



#### 28.14 Notes on Flash Memory

#### 28.14.1 CPU Rewrite Mode

#### 28.14.1.1 Prohibited Instructions

The following instructions cannot be used while the program ROM area is being rewritten in EW0 mode because they reference data in the flash memory: UND, INTO, and BRK.

#### 28.14.1.2 Interrupts

Tables 28.1 to 28.3 list CPU Rewrite Mode Interrupts.

Mode	Erase/ Write Target	Status	Maskable Interrupt
EWO	Data flash	During auto-erasure (suspend enabled)	When an interrupt request is acknowledged, interrupt handling is executed. If the FMR22 bit is set to 1 (erase-suspend request enabled by interrupt request), the FMR21 bit is automatically set to 1 (erase-suspend request). The flash memory suspends auto-erasure after td(SR-SUS). If erase-suspend is required while the FMR22 bit is set to 0 (erase-suspend request disabled by interrupt request), set the FMR21 bit to 1 during interrupt handling. The flash memory suspends auto-erasure after td(SR-SUS). While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written. Auto-erasure can be restarted by setting the FMR21 bit to 0 (erase restart).
		During auto-erasure (suspend disabled or FMR22 = 0) During auto-programming	Interrupt handling is executed while auto-erasure or auto-programming is being performed.
	Program ROM	During auto-erasure (suspend enabled) During auto-erasure	Usable by allocating a vector in RAM.
		(suspend disabled) During auto-programming	
EW1	Data flash	During auto-erasure (suspend enabled)	When an interrupt request is acknowledged, interrupt handling is executed. If the FMR22 bit is set to 1, the FMR21 bit is automatically set to 1. The flash memory suspends auto-erasure after td(SR-SUS). If erase-suspend is required while the FMR22 bit is set to 0, set the FMR21 bit to 1 during interrupt handling. The flash memory suspends auto-erasure after td(SR-SUS). While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written. Auto-erasure can be restarted by setting the FMR21 bit to 0.
		During auto-erasure (suspend disabled or FMR22 = 0) During	Interrupt handling is executed while auto-erasure or auto-programming is being performed.
		auto-programming	
	Program ROM	During auto-erasure (suspend enabled)	Auto-erasure suspends after td(SR-SUS) and interrupt handling is executed. Auto- erasure can be restarted by setting the FMR21 bit to 0 after interrupt handling completes. While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written.
		During auto-erasure (suspend disabled or FMR22 = 0)	Auto-erasure and auto-programming have priority and interrupt requests are put on standby. Interrupt handling is executed after auto-erase and auto-program complete.
		During auto-programming	

 Table 28.1
 CPU Rewrite Mode Interrupts (1)

FMR21, FMR22: Bits in FMR2 register



Mode	Erase/ Write Target	Status	Watchdog Timer     Oscillation Stop Detection     Voltage Monitor 2     Voltage Monitor 1     (Note 1)	Undefined Instruction     INTO Instruction     BRK Instruction     Single Step     Address Match     Address Break     (Note 1)
EWO	Data flash	During auto-erasure (suspend enabled)	When an interrupt request is acknowledged, interrupt handling is executed. If the FMR22 bit is set to 1 (erase-suspend request enabled by interrupt request), the FMR21 bit is automatically set to 1 (erase- suspend request). The flash memory suspends auto-erasure after td(SR-SUS). If erase-suspend is required while the FMR22 bit is set to 0 (erase-suspend request disabled by interrupt request), set the FMR21 bit to 1 during interrupt handling. The flash memory suspends auto-erasure after td(SR-SUS). While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written. Auto-erasure can be restarted by setting the FMR21 bit is set to 0 (erase restart).	When an interrupt request is acknowledged, interrupt handling is executed. If erase-suspend is required, set the FMR21 bit to 1 during interrupt handling. The flash memory suspends auto-erasure after td(SR-SUS). While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written. Auto-erasure can be restarted by setting the FMR21 bit in the FMR2 register is set to 0 (erase restart).
		During auto-erasure (suspend disabled or FMR22 = 0) During auto-programming	Interrupt handling is executed while auto-era performed.	isure or auto-programming is being
	Program ROM	During auto-erasure (suspend enabled) During auto-erasure (suspend disabled) During auto-programming	When an interrupt request is acknowledged, auto-erasure or auto- programming is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts when the flash memory restarts after the fixed period. Since the block during auto-erasure or the address during auto-programming is forcibly stopped, the normal value may not be read. After the flash memory restarts, execute auto-erasure again and ensure it completes normally. The watchdog timer does not stop during the command operation, so interrupt requests may be generated. Initialize the watchdog timer regularly using the erase- suspend function.	Not usable during auto-erasure or auto- programming.

 Table 28.2
 CPU Rewrite Mode Interrupts (2)

FMR21, FMR22: Bits in FMR2 register

Note:

1. Do not use a non-maskable interrupt while block 0 is being auto-erased because the fixed vector is allocated in block 0.



Mode	Erase/ Write Target	Status	<ul> <li>Watchdog Timer</li> <li>Oscillation Stop Detection</li> <li>Voltage Monitor 2</li> <li>Voltage Monitor 1 (Note 1)</li> </ul>	Undefined Instruction     INTO Instruction     BRK Instruction     Single Step     Address Match     Address Break     (Note 1)
EW1	Data flash	During auto-erasure (suspend enabled)	When an interrupt request is acknowledged, interrupt handling is executed. If the FMR22 bit is set to 1 (erase-suspend request enabled by interrupt request), the FMR21 bit is automatically set to 1 (erase- suspend request). The flash memory suspends auto-erasure after td(SR-SUS). If erase-suspend is required while the FMR22 bit is set to 0 (erase-suspend request disabled by interrupt request), set the FMR21 bit to 1 during interrupt handling. The flash memory suspends auto-erasure after td(SR-SUS). While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written. Auto-erasure can be restarted by setting the FMR21 bit is set to 0 (erase restart).	When an interrupt request is acknowledged, interrupt handling is executed. If erase-suspend is required, set the FMR21 bit to 1 during interrupt handling. The flash memory suspends auto-erasure after td(SR-SUS). While auto-erasure is being suspended, any block other than the block during auto- erasure execution can be read or written. Auto-erasure can be restarted by setting the FMR21 bit in the FMR2 register is set to 0 (erase restart).
		During auto-erasure (suspend disabled or FMR22 = 0) During auto-programming	Interrupt handling is executed while auto-era performed.	asure or auto-programming is being
	Program ROM	During auto-erasure (suspend enabled) During auto-erasure (suspend disabled or FMR22 = 0) During auto-programming	When an interrupt request is acknowledged, auto-erasure or auto- programming is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts when the flash memory restarts after the fixed period. Since the block during auto-erasure or the address during auto-programming is forcibly stopped, the normal value may not be read. After the flash memory restarts, execute auto-erasure again and ensure it completes normally. The watchdog timer does not stop during the command operation, so interrupt requests may be generated. Initialize the watchdog timer regularly using the erase- suspend function.	Not usable during auto-erasure or auto- programming.

 Table 28.3
 CPU Rewrite Mode Interrupts (3)

FMR21, FMR22: Bits in FMR2 register

Note:

1. Do not use a non-maskable interrupt while block 0 is being auto-erased because the fixed vector is allocated in block 0.



#### 28.14.1.3 How to Access

To set one of the following bits to 1, first write 0 and then 1 immediately. Disable interrupts and DTC activation between writing 0 and writing 1.

- The FMR01 bit or FMR02 bit in the FMR0 register
- The FMR13 bit in the FMR1 register
- The FMR20 bit, FMR22 bit, or FMR 27 bit in the FMR2 register

To set one of the following bits to 0, first write 1 and then 0 immediately. Disable interrupts and DTC activation between writing 1 and writing 0.

• The FMR14 bit, FMR15 bit, FMR16 bit, or FMR17 bit in the FMR1 register

#### 28.14.1.4 Rewriting User ROM Area

In EW0 mode, if the supply voltage drops while rewriting any block in which a rewrite control program is stored, it may not be possible to rewrite the flash memory because the rewrite control program cannot be rewritten correctly. In this case, use standard serial I/O mode.

#### 28.14.1.5 Programming

Do not write additions to the already programmed address.

#### 28.14.1.6 Entering Stop Mode or Wait Mode

Do not enter stop mode or wait mode during erase-suspend.

If the FST7 bit in the FST register is set to 0 (busy (during programming or erasure execution), do not enter to stop mode or wait mode.

Do not enter stop mode or wait mode while the FMR27 bit is 1 (low-current-consumption read mode enabled).

#### 28.14.1.7 Programming and Erasure Voltage for Flash Memory

To perform programming and erasure, use VCC = 2.7 V to 5.5 V as the supply voltage. Do not perform programming and erasure at less than 2.7 V.

#### 28.14.1.8 Block Blank Check

Do not execute the block blank check command during erase-suspend.

#### 28.14.1.9 Low-Current-Consumption Read Mode

In low-speed on-chip oscillator mode, the current consumption when reading the flash memory can be reduced by setting the FMR27 bit in the FMR2 register to 1 (low-current-consumption read mode enabled).

When the CPU clock is set to the low-speed on-chip oscillator clock divided by 4, 8, or 16, low-currentconsumption read mode can be used. When divided by 1 (no division) or divided by 2 is set, do not use lowcurrent-consumption read mode. After setting the divide ratio of the CPU clock, set the FMR27 bit to 1. To reduce the power consumption, refer to 26. Reducing Power Consumption.

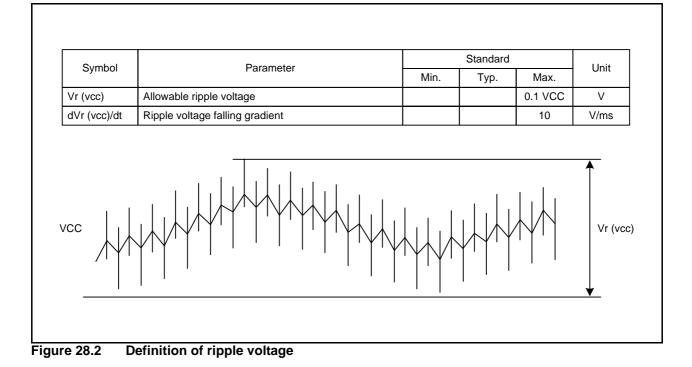
Enter wait mode or stop mode after setting the FMR27 bit to 0 (low-current-consumption read mode disabled). Do not enter wait mode or stop mode while the FMR27 bit is 1 (low-current-consumption read mode enabled).



#### 28.15 Notes on Noise

# 28.15.1 Inserting a Bypass Capacitor between VCC and VSS Pins as a Countermeasure against Noise and Latch-up

Connect a bypass capacitor (approximately 0.1  $\mu$ F) using the shortest and thickest wire possible.


#### 28.15.2 Countermeasures against Noise Error of Port Control Registers

During rigorous noise testing or the like, external noise (mainly power supply system noise) can exceed the capacity of the MCU's internal noise control circuitry. In such cases the contents of the port related registers may be changed.

As a firmware countermeasure, it is recommended that the port registers, port direction registers, and pull-up control registers be reset periodically. However, examine the control processing fully before introducing the reset routine as conflicts may be created between the reset routine and interrupt routines.

#### 28.16 Note on Supply Voltage Fluctuation

After reset is deasserted, the supply voltage applied to the VCC pin must meet either or both the allowable ripple voltage Vr (vcc) or ripple voltage falling gradient dVr (vcc)/dt shown in Figure 28.2.





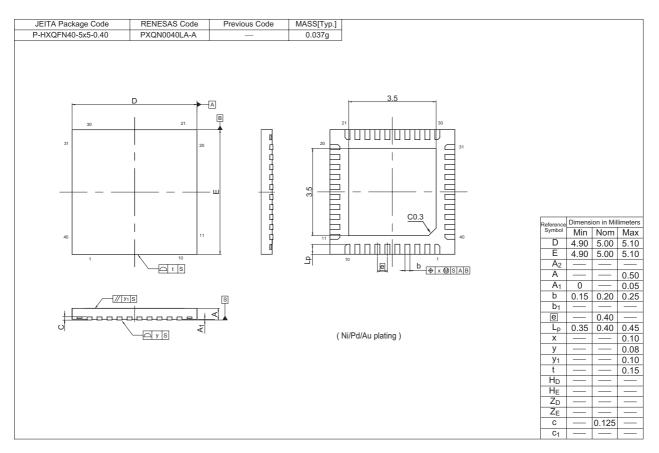
## 29. Notes on On-Chip Debugger

When using the on-chip debugger to develop and debug programs for the R8C/3JT Group, take note of the following:

- (1) Some of the user flash memory and RAM areas are used by the on-ship debugger. These areas cannot be accessed by the user.
  - Refer to the on-chip debugger manual for which areas are used.
- (2) Do not set the address match interrupt (registers AIER0, AIER1, RMAD0, and RMAD1 and fixed vector tables) in a user system.
- (3) Do not use the BRK instruction in a user system.
- (4) Debugging is available under the condition of supply voltage VCC = 1.8 V to 5.5 V. Set the supply voltage to 2.7 V or above for rewriting the flash memory.

Connecting and using the on-chip debugger has some special restrictions. Refer to the on-chip debugger manual for details.




# 30. Notes on Emulator Debugger

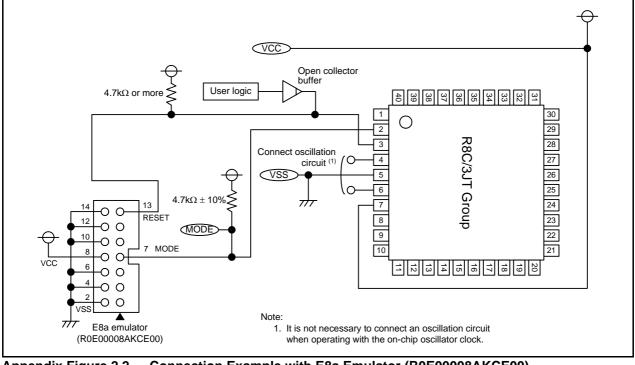
Connecting and using the emulator debugger has some special restrictions. Refer to the emulator debugger manual for details.



# Appendix 1. Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics website.



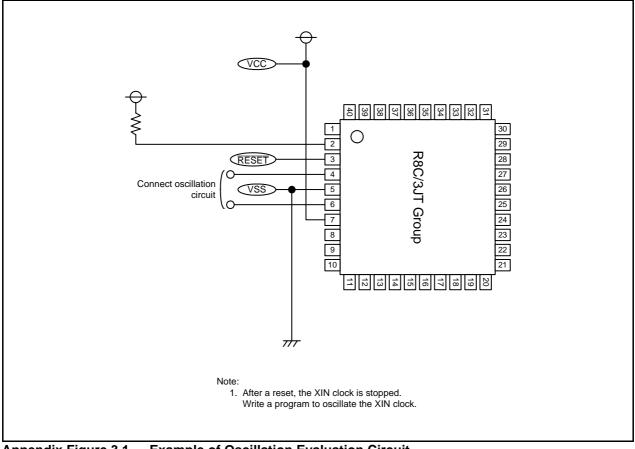



# Appendix 2. Connection Examples between Serial Programmer and On-Chip Debugging Emulator

Appendix Figure 2.1 shows a Connection Example with M16C Flash Starter (M3A-0806) and Appendix Figure 2.2 shows a Connection Example with E8a Emulator (R0E00008AKCE00).



Appendix Figure 2.1 Connection Example with M16C Flash Starter (M3A-0806)




Appendix Figure 2.2 Connection Example with E8a Emulator (R0E00008AKCE00)



# Appendix 3. Example of Oscillation Evaluation Circuit

Appendix Figure 3.1 shows an Example of Oscillation Evaluation Circuit.



Appendix Figure 3.1 Example of Oscillation Evaluation Circuit



## Index

[ A ]	
ADCON0	389
ADCON1	390
ADi (i = 0 to 7)	386
ADIC	144
ADINSEL	388
ADMOD	387
AIERi (i = 0 or 1)	162

#### [C]

CM0 1	10
CM1 1	11
СМЗ 1	12
СМРА	41
CPSRF	15
CSPR	

#### [D]

80
81
187
187
188
189
190
188
188
188

#### [F]

FMR0	444
FMR1	447
FMR2	449
FMRDYIC	
FRA0	
FRA1	
FRA2	115
FRA3	
FRA4	116
FRA5	
FRA6	
FRA7	
FST	442

[1]	
INTEN 1	56
INTF	56
INTiIC (i = 0 to 3)	46
INTSR	54

)
4

[L]	
LINCR	
LINCR2	
LINST	

#### 

#### [P]

[P]	
P1DRR	79
P2DRR	79
PDi (i = 0 to 4)	
Pi (i = 0 to 4)	69
PINSR	
РМО	
PM1	
PRCR	
PUR0	
PUR1	78

#### [R]

[]	
RMADi (i = 0 or 1)	32
RSTFR	

#### [S]

[0]	
SORIC	
SOTIC	
S2RIC	
S2TIC	
SCHCR	
SCSCSR	420
SCTCR0	411
SCTCR1	412
SCTCR2	414
SCTCR3	416
SCUCHC	418
SCUCR0	410
SCUDAR	421
SCUDBR	422
SCUFR	•••••
SCUIC	
SCUMR	
SCUPRC	423
SCUSCC	420
SCUSTC	420

#### [T]

[']	
TRA	
TRACR	
TRAIC	
TRAIOC	7, 210, 213, 215, 217, 220
TRAMR	
TRAPRE	
TRASR	
TRBCR	
TRBIC	
TRBIOC	
TRBIOC TRBMR	225, 228, 232, 235, 239 225
TRBIOC TRBMR TRBOCR	225, 228, 232, 235, 239 
TRBIOC TRBMR TRBOCR TRBPR	225, 228, 232, 235, 239 
TRBIOC TRBMR TRBOCR TRBPR	225, 228, 232, 235, 239 
TRBIOC TRBMR TRBOCR TRBPR TRBPRE	225, 228, 232, 235, 239 
TRBIOC TRBMR TRBOCR TRBPR TRBPRE TRBRCSR	225, 228, 232, 235, 239 
TRBIOC TRBMR TRBOCR TRBPR TRBPRE TRBRCSR TRBSC	225, 228, 232, 235, 239 
TRBIOC TRBMR TRBOCR TRBPR TRBPRE TRBRCSR	225, 228, 232, 235, 239 



TRCCR1	
TRCCR2	
TRCDF	
TRCGRA	
TRCGRB	
TRCGRC	
TRCGRD	
TRCIC	
TRCIER	
TRCIOR0	
TRCIOR1	
TRCMR	
TRCPSR0	
TRCPSR1	
TRCSR	
TSIER0	
TSIER1	
TSIER2	
TSMR	

[U]	
U0BRG	295
U0C0	297
U0C1	297
U0MR	295
U0RB	298
U0SR	73, 299
U0TB	
U2BCNIC	144
U2BRG	
U2C0	321
U2C1	322
U2MR	319
U2RB	323
U2SMR	326
U2SMR2	
U2SMR3	325
U2SMR4	325
U2SMR5	
U2SR0	74, 327
U2SR1	75, 328
U2TB	
URXDF	324

# [V] VCA1 42 VCA2 43, 117 VCAC 42 VCMP1IC 144 VCMP2IC 144 VD1LS 44 VLT0 82 VLT1 82 VW0C 45 VW1C 46 VW2C 47 [W] WDTC 179 179

WDTR	 178
WDTS .	 178



**REVISION HISTORY** 

R8C/3JT Group User's Manual: Hardware

Davi	Dete	Description		
Rev.	Date	Page	Summary	
0.10	Jul 09, 2010	_	First Edition issued	
1.00	Apr 22, 2011	All	"Preliminary" and "Under development" deleted	
		_	"D version" deleted	
		4	"ROM number" deleted	
		12	3.1 "The internal ROM with address 0FFFFh." deleted	
		37	Table 6.1 "Voltage Monitor 0" revised	
		107		
		112	9.2.3 Note 4 "• OM05 bit in OM0 register = 1" $\rightarrow$ "• OM05 bit in OM0 register = 0"	
		113	9.2.4 Note 4 revised	
		121	9.5.4 revised	
		126	Table 9.3 "A/D conversion interrupt" revised	
		134		
		137, 502	5	
		142	Table 11.1 Note 2 and Note 3 added	
		143	Table 11.2 Note 3 and Note 4 added	
		163	11.8 and Table 11.11 revised	
		209	17.2.5 Note 2 added	
		222, 508	17.8 and 28.6	
			"• Do not set 00h pulse period measurement mode." added	
		246	19.2.1 Note 1 revised	
		262	Table 19.7 "Count period" revised	
		311	Figure 20.6 " Transfer Data is 8 Bits Long" $\rightarrow$ " Transfer Data 8 Bits is Long"	
		323	21.2.6 "Always read the U2RB register in 16-bit units." added	
		390	23.2.6 Note 4 added	
		405	23.9 "0.75 $\mu$ s" $\rightarrow$ "0.8 $\mu$ s", "3.5 k $\Omega$ " $\rightarrow$ "4.4 k $\Omega$ "	
		436, 516	24.5.3 A/D Converter $\rightarrow$ 24.5.1 A/D Converter 28.13.3 A/D Converter $\rightarrow$ 28.13.1 A/D Converter	
		441	Table 25.3 "EW1 Mode" revised	
		443	25.4.1 "FST5 Bit" revised	
		445	25.4.2 "CMDRST Bit" revised	
		453	Figure 25.4 revised	
		457, 459	25.4.11.3 and 25.4.11.4 revised	
		463	25.4.11.6 "any address" $\rightarrow$ "any block"	
		464	Figure 25.15 "Write D0h to the starting block address" $\rightarrow$ "Write D0h to any block address" $25.4.11.7$ "commanded" $\rightarrow$ "command"	
		465	25.4.11.7 "commanded" $\rightarrow$ "command" Table 25.6 revised	
		465 468	Figure 25.17 revised	
		400 475	26.2.3 revised	
		470		

R8C/3JT Group User's Manual: Hardware

Publication Date:	Rev.0.10 Rev.1.00	Jul 09, 2010 Apr 22, 2011
Published by:	Renesas Electronics Corporation	



#### SALES OFFICES

**Renesas Electronics Corporation** 

http://www.renesas.com

Refer to "http://www.renessas.com/" for the latest and detailed information. Renesas Electronics America Inc. 2880 Scott Bouleward Samta Clara. CA 95050-2554, U.S.A. Tel: +1408-588-6000, Fax: +1408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Curope Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-182-855-100, Fax: +44-1028-585-900 Renesas Electronics Europe Limited Tre: +49-21-185003, Fax: +44-1218-585-900 Renesas Electronics (China) Co., Ltd. The Floor, Quantum Pizza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +49-21-155, Fax: +86-10-8235-7679 Renesas Electronics (China) Co., Ltd. Unit 204, 205, A2IA Center, No.1233 Lujiazui fing Rd., Pudong District, Shanghai 200120, China Tel: +86-21-887-71816, Fax: +86-21-887-7888 Renesas Electronics Taits, Fax: +86-10-8235-7679 Renesas Electronics Taits, Fax: +86-21-887-7898 Renesas Electronics Taits, Fax: +86-21-887-7898 Renesas Electronics Taits, Fax: +86-20229044 Unit 204, 205, A2IA Center, No.1233 Lujiazui fing Rd., Pudong District, Shanghai 200120, China Tel: +862-487-7807, Taits, Fax: +86-20229044 Paresas Electronics Taits, Fax: +86-20229044 Renesas Electronics Taits, Fax: +86-20229044 Renesas Electronics Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits, Taits,

> © 2011 Renesas Electronics Corporation. All rights reserved. Colophon 1.1

R8C/3JT Group



Renesas Electronics Corporation